Research Article
BibTex RIS Cite

Akışkan Yatak Kurutucuda İki Kademeli Isı Geri Kazanım Sistemi Tasarımı: Çevresel ve Ekonomik Analiz

Year 2023, Volume: 9 Issue: 3, 443 - 452, 01.01.2024

Abstract

Döküm sektöründeki maça üretiminde kullanılan kumun kurutulması için akışkan yataklı kurutucu kullanılmaktadır. Bu çalışmada, atık ısı geri kazanımının kullanıldığı kurutma sisteminde bir ısı geri kazanım ünitesi tasarlanarak özgül enerji tüketiminin ısı geri kazanımına etkileri gerekli analizler yapılarak incelenmiştir. Endüstriyel uygulamalarda artan enerji tüketimini minimize etmek amacıyla yeni bir sistem yapısı oluşturulmuştur. Bu kapsamda sistemde fan ile üflenen kurutma havasının ön ısıtmasında kullanılan ısı geri kazanım ünitesi ile kurutma verimini yükseltmek ve karbon salımını azaltarak küresel ısınmanın etkilerini azaltmak amaçlanmıştır. Elde edilen sonuçlara göre, mevcut tasarımdan 1. kademe kurutma havası ön ısıtma ısı geri kazanım ünitesinin prosese eklendiği tasarıma geçildiği takdirde doğalgaz tüketiminde 12,815 m3/h’lik, karbon salımında ise 0,032 ton CO2/h’lik bir azalma meydana gelecektir. Böylece mevcut sistemden ısı geri kazanım ünitesi entegreli sisteme geçildiği takdirde yıllık 1.428.753,81 TL tasarruf edilebilecek olup ısı geri kazanım ünitesinin geri ödeme süresi 0,66 yıl olarak hesaplanmıştır. Mevcut tasarımdan 2. kademe fabrika içi su ısıtma için tasarlanan ısı geri kazanım ünitesinin prosese eklendiği tasarıma geçildiği takdirde doğalgaz tüketiminde 4,34 m3/h’lik bir düşüş, karbon salımında ise 0,011 ton CO2/h’lik bir azalma meydana gelecektir. Böylece mevcut sistemden ısı geri kazanım ünitesi entegreli sisteme geçildiği takdirde yıllık 1.912.602,548 TL tasarruf edilebilecek olup ısı geri kazanım ünitesinin geri ödeme süresi 0,16 yıl olarak hesaplanmıştır. Bu tasarım uygulandığında daha ekonomik ve sürdürülebilir bir kurutma sistemi hayata geçirilmiş olacaktır.

Thanks

Çalışmaya vermiş olduğu katkılardan dolayı Erkunt Sanayi A.Ş.’ye teşekkür ederiz.

References

  • [1] H. Genççele, "Kurutma Ders Notları," Ondokuz Mayıs Üniversitesi, Mühendislik Fakültesi, Gıda Mühendisliği Bölümü, Gıda Teknolojisi Anabilim Dalı, [Erişildi: Eylül 2023].
  • [2] Bayrock, D. and W. M. Ingledew. “Mechanism of Viability Loss During Fluidized Bed Drying of Baker's Yeast,” Food Research International, vol. 30, pp. 417-425, 1997. doi:10.1016/S0963-9969(97)00072-0
  • [3] A. Güngör ve N. Özbalta, “Endüstriyel Kurutma Sistemleri,” III. Ulusal Tesisat Mühendisliği Kongresi ve Sergisi, İzmir, Türkiye, 20-23 Kasım, 1997, pp. 737-747.
  • [4] B. Dai, P. Zhao, S. Liu, M. Su, D. Zhong, J. Qian, X. Hu and Y. Hao, “Assessment of Heat Pump with Carbon Dioxide/Low-Global Warming Potential Working Fluid Mixture for Drying Process: Energy and Emissions Saving Potential,” Energy Conversion and Management, vol. 222, pp. e113225, 2020. doi:10.1016/j.enconman.2020.113225
  • [5] T. G. Walmsley, M. R. W. Walmsley, M. J. Atkins, J. R. Neale and A. H. Tarighaleslami, “Thermo-Economic Optimisation of Industrial Milk Spray Dryer Exhaust to Inlet Air Heat Recovery,” Energy, vol. 90, pp. 95-104, 2015. doi:10.1016/j.energy.2015.03.102
  • [6] B. Golman and W. Julklang, “Simulation of Exhaust Gas Heat Recovery from A Spray Dryer,” Applied Thermal Engineering, vol. 73, pp. 899-913, 2014. doi:10.1016/j.applthermaleng.2014.08.045
  • [7] B. Delpech, M. Milani, L. Montorsi, D. Boscardin, A. Chauhan, S. Almahmoud, B. Axcell and H. Jouhara, “Energy Efficiency Enhancement and Waste Heat Recovery in Industrial Processes by means of the Heat Pipe Technology: Case of the Ceramic Industry,” Energy, vol. 158, pp. 656-665, 2018. doi:10.1016/j.energy.2018.06.041
  • [8] S. K. Patel and M. H. Bade, “Energy Analysis and Heat Recovery Opportunities in Spray Dryers Applied for Effluent Management,” Energy Conversion and Management, vol. 186, pp. 597-609, 2019. doi:10.1016/j.enconman.2019.02.065
  • [9] B. Lamrani, A. Draoui and F. Kuznik, “Thermal Performance and Environmental Assessment of a Hybrid Solar-Electrical Wood Dryer Integrated with Photovoltaic/Thermal Air Collector and Heat Recovery System,” Solar Energy, vol. 221, pp. 60-74, 2021. doi:10.1016/j.solener.2021.04.035
  • [10] R. T. Oğulata, “Utilization of Waste-Heat Recovery in Textile Drying,” Applied Energy, vol. 79, pp. 41-49, 2004. doi:10.1016/j.apenergy.2003.12.002
  • [11] B. Golman and W. Julklang, “Analysis of Heat Recovery from A Spray Dryer by Recirculation of Exhaust Air,” Energy Conversion and Management, vol. 88, pp. 641-649, 2014. doi:10.1016/j.enconman.2014.09.012
  • [12] S. Bellochi, G. L. Guizzi, M. Manno, M. Pentimalli, M. Salvatori and A. Zaccagnini, “Adsorbent Materials for Low-Grade Waste Heat Recovery: Application to Industrial Pasta Drying Processes,” Energy, vol. 140, pp. 729-745, 2017. doi:10.1016/j.energy.2017.09.008
  • [13] M. K. Krokida and G. I. Bisharat, “Heat Recovery from Dryer Exhaust Air,” Drying Technology, vol. 22, pp. 1661-1674, 2004. doi:10.1081/DRT-200025626
  • [14] H. Ishaq and İ. Dinçer, “A New Energy Efficient Single-Stage Flash Drying System Integrated with Heat Recovery Applications in Industry,” Drying Technology, vol. 38, pp. 735-746, 2019. doi:10.1080/07373937.2019.1702557
  • [15] M. J. Atkins, M. R. W. Walmsley and J. R. Neale, “Integrating Heat Recovery from Milk Powder Spray Dryer Exhausts in the Dairy Industry,” Applied Thermal Engineering, vol. 31, pp. 2101-2106, 2011. doi:10.1016/j.applthermaleng.2011.03.006
  • [16] T. G. Walmsley, M. R. W. Walmsley, M. J. Atkins and J. R. Neale, “Integration of Industrial Solar and Gaseous Waste Heat into Heat Recovery Loops Using Constant and Variable Temperature Storage,” Energy, vol. 75, pp. 53-67, 2014. doi:10.1016/j.energy.2014.01.103
  • [17] D. Fiaschi, G. Manfrida, L. Russo and L. Talluri, “Improvement of Waste Heat Recuperation on An Industrial Textile Dryer: Redesign of Heat Exchangers Network and Components,” Energy Conversion and Management, vol. 150, pp. 924-940, 2017. doi:10.1016/j.enconman.2017.05.053
  • [18] W. Julklang and B. Golman, “Effect of Process Parameters on Energy Performance of Spray Drying with Exhaust Air Heat Recovery for Production of High Value Particles,” Applied Energy, vol. 151, pp. 285-295, 2015. doi:10.1016/j.apenergy.2015.04.069
  • [19] A. Akbari, S. Kouravand and G. Chegini, “Experimental Analysis of A Rotary Heat Exchanger for Waste Heat Recovery from the Exhaust Gas of Dryer,” Applied Thermal Engineering, vol. 138, pp. 668-674, 2018. doi:10.1016/j.applthermaleng.2018.04.103
  • [20] L. Kong, H. Liu, J. Li and J. Tao, “Waste Heat Integration of Coating Paper Machine Drying Process,” Drying Technology, vol. 29, pp. 442-450, 2011. doi:10.1080/07373937.2010.506620
  • [21] X. Guo, M. Liu, F. Lai, D. Chong, J. Yan and F. Xiao, “Theoretical Study and Case Analysis of A Predried Lignite-Fired Power Plant with the Waste Heat Recovery System,” Drying Technology, vol. 30, pp. 425-434, 2012. doi:10.1080/07373937.2011.645981
  • [22] I. C. Kemp, “Reducing Dryer Energy Use by Process Integration and Pinch Analysis,” Drying Technology, vol. 23, pp. 2089-2104, 2005. doi:10.1080/07373930500210572
  • [23] C. G. J. Baker, Y. M. Al-Roomi and G. Al-Sharrah, “Optimal Design of Well-Mixed Fluidized Bed Dryers,” Drying Technology, vol. 18, pp. 1509-1535, 2000. doi:10.1080/07373930008917791
  • [24] X. Han, M. Liu, J. Wang, J. Yan, J. Liu and F. Xiao, “Simulation Study on Lignite-Fired Power System Integrated with Flue Gas Drying and Waste Heat Recovery - Performances Under Variable Power Loads Coupled with Off-Design Parameters,” Energy, vol. 76, pp. 406-418, 2014. doi:10.1016/j.energy.2014.08.032
  • [25] M. Aktaş, S. Şevik, A. Amini and A. Khanlari, “Analysis of Drying of Melon in A Solar-Heat Recovery Assisted Infrared Dryer,” Solar Energy, vol. 137, pp. 500-515, 2016. doi:10.1016/j.solener.2016.08.036
  • [26] M. Aktaş, A. Sözen, A. Amini and A. Khanlari, “Experimental Analysis and CFD Simulation of Infrared Apricot Dryer with Heat Recovery,” Drying Technology, vol. 35, pp. 766-783, 2017. doi:10.1080/07373937.2016.1212871
  • [27] M. Yahya, A. Rachman and R. Hasibuan, “Performance Analysis of Solar-Biomass Hybrid Heat Pump Batch-Type Horizontal Fluidized Bed Dryer Using Multi-Stage Heat Exchanger for Paddy Drying,” Energy, vol. 254, e124294, 2022. doi:10.1016/j.energy.2022.124294

Design of Two Stage Heat Recovery System in Fluidized Bed Dryer: Environmental and Economic Analysis

Year 2023, Volume: 9 Issue: 3, 443 - 452, 01.01.2024

Abstract

Fluidized bed dryer is used for drying the sand used in core production in the casting industry. In this study, a heat recovery unit was designed in a drying system using waste heat recovery and the effects of specific energy consumption on heat recovery were investigated by performing the necessary analyzes. A new system structure has been created to minimize the increasing energy consumption in industrial applications. In this context, it is aimed to increase the drying efficiency and reduce the effects of global warming by reducing carbon emissions with the heat recovery unit used in the preheating of the drying air blown by the fan in the system. According to the results obtained, a reduction of 12,815 m3/h in natural gas consumption and 0,032 tons CO2/h in carbon emissions will occur if the design is changed from the current design to the design where the 1st stage drying air preheating heat recovery unit is added to the process. Thus, if the existing system is switched to a system with heat recovery unit integrated, 1.428.753.81 TL can be saved annually and the payback period of the heat recovery unit was calculated 0,66 years. A reduction of 4,34 m3/h in natural gas consumption and 0,011 tons CO2/h in carbon emissions will occur if the design is changed from the current design to the design where the 2st stage in-plant water heating heat recovery unit is added to the process. Thus, if the existing system is switched to a system with heat recovery unit integrated, 1.912.602,548 TL can be saved annually and the payback period of the heat recovery unit was calculated 0,16 years. When this design is implemented, a more economical and sustainable drying system will be bringed to life.

References

  • [1] H. Genççele, "Kurutma Ders Notları," Ondokuz Mayıs Üniversitesi, Mühendislik Fakültesi, Gıda Mühendisliği Bölümü, Gıda Teknolojisi Anabilim Dalı, [Erişildi: Eylül 2023].
  • [2] Bayrock, D. and W. M. Ingledew. “Mechanism of Viability Loss During Fluidized Bed Drying of Baker's Yeast,” Food Research International, vol. 30, pp. 417-425, 1997. doi:10.1016/S0963-9969(97)00072-0
  • [3] A. Güngör ve N. Özbalta, “Endüstriyel Kurutma Sistemleri,” III. Ulusal Tesisat Mühendisliği Kongresi ve Sergisi, İzmir, Türkiye, 20-23 Kasım, 1997, pp. 737-747.
  • [4] B. Dai, P. Zhao, S. Liu, M. Su, D. Zhong, J. Qian, X. Hu and Y. Hao, “Assessment of Heat Pump with Carbon Dioxide/Low-Global Warming Potential Working Fluid Mixture for Drying Process: Energy and Emissions Saving Potential,” Energy Conversion and Management, vol. 222, pp. e113225, 2020. doi:10.1016/j.enconman.2020.113225
  • [5] T. G. Walmsley, M. R. W. Walmsley, M. J. Atkins, J. R. Neale and A. H. Tarighaleslami, “Thermo-Economic Optimisation of Industrial Milk Spray Dryer Exhaust to Inlet Air Heat Recovery,” Energy, vol. 90, pp. 95-104, 2015. doi:10.1016/j.energy.2015.03.102
  • [6] B. Golman and W. Julklang, “Simulation of Exhaust Gas Heat Recovery from A Spray Dryer,” Applied Thermal Engineering, vol. 73, pp. 899-913, 2014. doi:10.1016/j.applthermaleng.2014.08.045
  • [7] B. Delpech, M. Milani, L. Montorsi, D. Boscardin, A. Chauhan, S. Almahmoud, B. Axcell and H. Jouhara, “Energy Efficiency Enhancement and Waste Heat Recovery in Industrial Processes by means of the Heat Pipe Technology: Case of the Ceramic Industry,” Energy, vol. 158, pp. 656-665, 2018. doi:10.1016/j.energy.2018.06.041
  • [8] S. K. Patel and M. H. Bade, “Energy Analysis and Heat Recovery Opportunities in Spray Dryers Applied for Effluent Management,” Energy Conversion and Management, vol. 186, pp. 597-609, 2019. doi:10.1016/j.enconman.2019.02.065
  • [9] B. Lamrani, A. Draoui and F. Kuznik, “Thermal Performance and Environmental Assessment of a Hybrid Solar-Electrical Wood Dryer Integrated with Photovoltaic/Thermal Air Collector and Heat Recovery System,” Solar Energy, vol. 221, pp. 60-74, 2021. doi:10.1016/j.solener.2021.04.035
  • [10] R. T. Oğulata, “Utilization of Waste-Heat Recovery in Textile Drying,” Applied Energy, vol. 79, pp. 41-49, 2004. doi:10.1016/j.apenergy.2003.12.002
  • [11] B. Golman and W. Julklang, “Analysis of Heat Recovery from A Spray Dryer by Recirculation of Exhaust Air,” Energy Conversion and Management, vol. 88, pp. 641-649, 2014. doi:10.1016/j.enconman.2014.09.012
  • [12] S. Bellochi, G. L. Guizzi, M. Manno, M. Pentimalli, M. Salvatori and A. Zaccagnini, “Adsorbent Materials for Low-Grade Waste Heat Recovery: Application to Industrial Pasta Drying Processes,” Energy, vol. 140, pp. 729-745, 2017. doi:10.1016/j.energy.2017.09.008
  • [13] M. K. Krokida and G. I. Bisharat, “Heat Recovery from Dryer Exhaust Air,” Drying Technology, vol. 22, pp. 1661-1674, 2004. doi:10.1081/DRT-200025626
  • [14] H. Ishaq and İ. Dinçer, “A New Energy Efficient Single-Stage Flash Drying System Integrated with Heat Recovery Applications in Industry,” Drying Technology, vol. 38, pp. 735-746, 2019. doi:10.1080/07373937.2019.1702557
  • [15] M. J. Atkins, M. R. W. Walmsley and J. R. Neale, “Integrating Heat Recovery from Milk Powder Spray Dryer Exhausts in the Dairy Industry,” Applied Thermal Engineering, vol. 31, pp. 2101-2106, 2011. doi:10.1016/j.applthermaleng.2011.03.006
  • [16] T. G. Walmsley, M. R. W. Walmsley, M. J. Atkins and J. R. Neale, “Integration of Industrial Solar and Gaseous Waste Heat into Heat Recovery Loops Using Constant and Variable Temperature Storage,” Energy, vol. 75, pp. 53-67, 2014. doi:10.1016/j.energy.2014.01.103
  • [17] D. Fiaschi, G. Manfrida, L. Russo and L. Talluri, “Improvement of Waste Heat Recuperation on An Industrial Textile Dryer: Redesign of Heat Exchangers Network and Components,” Energy Conversion and Management, vol. 150, pp. 924-940, 2017. doi:10.1016/j.enconman.2017.05.053
  • [18] W. Julklang and B. Golman, “Effect of Process Parameters on Energy Performance of Spray Drying with Exhaust Air Heat Recovery for Production of High Value Particles,” Applied Energy, vol. 151, pp. 285-295, 2015. doi:10.1016/j.apenergy.2015.04.069
  • [19] A. Akbari, S. Kouravand and G. Chegini, “Experimental Analysis of A Rotary Heat Exchanger for Waste Heat Recovery from the Exhaust Gas of Dryer,” Applied Thermal Engineering, vol. 138, pp. 668-674, 2018. doi:10.1016/j.applthermaleng.2018.04.103
  • [20] L. Kong, H. Liu, J. Li and J. Tao, “Waste Heat Integration of Coating Paper Machine Drying Process,” Drying Technology, vol. 29, pp. 442-450, 2011. doi:10.1080/07373937.2010.506620
  • [21] X. Guo, M. Liu, F. Lai, D. Chong, J. Yan and F. Xiao, “Theoretical Study and Case Analysis of A Predried Lignite-Fired Power Plant with the Waste Heat Recovery System,” Drying Technology, vol. 30, pp. 425-434, 2012. doi:10.1080/07373937.2011.645981
  • [22] I. C. Kemp, “Reducing Dryer Energy Use by Process Integration and Pinch Analysis,” Drying Technology, vol. 23, pp. 2089-2104, 2005. doi:10.1080/07373930500210572
  • [23] C. G. J. Baker, Y. M. Al-Roomi and G. Al-Sharrah, “Optimal Design of Well-Mixed Fluidized Bed Dryers,” Drying Technology, vol. 18, pp. 1509-1535, 2000. doi:10.1080/07373930008917791
  • [24] X. Han, M. Liu, J. Wang, J. Yan, J. Liu and F. Xiao, “Simulation Study on Lignite-Fired Power System Integrated with Flue Gas Drying and Waste Heat Recovery - Performances Under Variable Power Loads Coupled with Off-Design Parameters,” Energy, vol. 76, pp. 406-418, 2014. doi:10.1016/j.energy.2014.08.032
  • [25] M. Aktaş, S. Şevik, A. Amini and A. Khanlari, “Analysis of Drying of Melon in A Solar-Heat Recovery Assisted Infrared Dryer,” Solar Energy, vol. 137, pp. 500-515, 2016. doi:10.1016/j.solener.2016.08.036
  • [26] M. Aktaş, A. Sözen, A. Amini and A. Khanlari, “Experimental Analysis and CFD Simulation of Infrared Apricot Dryer with Heat Recovery,” Drying Technology, vol. 35, pp. 766-783, 2017. doi:10.1080/07373937.2016.1212871
  • [27] M. Yahya, A. Rachman and R. Hasibuan, “Performance Analysis of Solar-Biomass Hybrid Heat Pump Batch-Type Horizontal Fluidized Bed Dryer Using Multi-Stage Heat Exchanger for Paddy Drying,” Energy, vol. 254, e124294, 2022. doi:10.1016/j.energy.2022.124294
There are 27 citations in total.

Details

Primary Language Turkish
Subjects Mechanical Engineering (Other)
Journal Section Research Articles
Authors

Deniz Gökben 0009-0002-3410-5663

Veysel Durak 0009-0001-2352-8188

Merve Ulular 0000-0003-2204-7689

Ufuk Bahçecioğlu 0009-0002-7824-0488

Mustafa Aktaş 0000-0003-1187-5120

Yaren Güven 0000-0003-0732-4692

Publication Date January 1, 2024
Submission Date September 29, 2023
Acceptance Date November 29, 2023
Published in Issue Year 2023 Volume: 9 Issue: 3

Cite

IEEE D. Gökben, V. Durak, M. Ulular, U. Bahçecioğlu, M. Aktaş, and Y. Güven, “Akışkan Yatak Kurutucuda İki Kademeli Isı Geri Kazanım Sistemi Tasarımı: Çevresel ve Ekonomik Analiz”, GJES, vol. 9, no. 3, pp. 443–452, 2024.

Gazi Journal of Engineering Sciences (GJES) publishes open access articles under a Creative Commons Attribution 4.0 International License (CC BY). 1366_2000-copia-2.jpg