Araştırma Makalesi
BibTex RIS Kaynak Göster

Effects of salt applications on growth and development of ornamental cabbage (Brassica oleracea var. acephala)

Yıl 2025, Cilt: 42 Sayı: 2, 158 - 166, 30.08.2025
https://doi.org/10.55507/gopzfd.1697987

Öz

This study was conducted during 2024 and 2025 to determine the effects of varying doses of salt application to the growing medium on the growth, and development of ornamental Cabbage (Brassica oleracea var. acephala) plants. Different salinity doses (EC 0 mM (Control), EC 25 mM, EC 50 mM, EC 100 mM and EC 200 mM) were applied to the growth medium (70% peat + 30% perlite). Data relating to plant height (cm), head diameter (mm), root length (cm), number of leaves (number), leaf length (cm), leaf width (cm), stem wet weight (g), stem diameter (mm), stem length (cm), root dry-wet weight (g), leaf wet-dry weight (g), chlorophyll index (Spad), proportional water (%), ion flow (%), and cell membrane damage rate (%) were collected. Results revealed that increasing salt concentrations raised relative water content, ion flow, and cell membrane damage rate compared to the control. However, control treatment gave better results for other analysed traits. It was observed that there were proportional decrease in the treatments in parallel with the increase in salinity doses.

Etik Beyan

There is no need to obtain permission from the ethics committee for this study.

Kaynakça

  • Acosta-Motos, J. R., Hernández, J. A., Álvarez, S., Barba-Espín, G., & SánchezBlanco, M. J. (2017). Long-term resistance mechanisms and irrigation critical threshold showed by Eugenia myrtifolia plants in response to saline reclaimed water and relief capacity. Plant Physiol. Biochem., 111: 244–256.
  • Ağar, A. (2015). Atık su arıtma çamurunun süs lahanasının gelişimi ve besin elementi içeriği üzerine etkisi. [Yüksek Lisans Tezi, Çukurova Üniversitesi]. Bahçe Bitkileri Anabilim Dalı, 125, Adana.
  • Akat Saraçoğlu, Ö., & Akat, H. (2022). Topraksız Süs Lahanası (Brassica oleracea var. acephala) Yetiştiriciliğinde Farklı Tuzluluk Düzeylerinin Bazı Kalite Kriterleri ve Bitki Besin Elementleri Üzerindeki Etkileri. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 13(1), 114-128. https://doi.org/10.29048/makufebed.1087207
  • Álvarez, S., Gómez-Bellot, M. J., Castillo, M., Bañón, S., & Sánchez-Blanco, M. J. (2012). Osmotic and saline effect on growth, water relations, and ion uptake and translocation in Phlomis purpurea plants. Environ. Exp. Bot., 78: 138–145.
  • Álvarez, S., & Sánchez-Blanco, M. J. (2014). Long-term effect of salinity on plant quality, water relations, photosynthetic parameters and ion distribution in Callistemon citrinus. Plant Biol., 16: 757–764.
  • Ashrafi, N., & Nejad A. R. (2017). Lisianthus response to salinity stress. Photosynthetica, 55.
  • Bañón, S., Miralles, J., Franco, J. A., Ochoa, R., & Sánchez-Blanco, M. J. (2011). Effects of diluted and pure treated wastewater on the growth, physiological status and visual quality of potted lantana and polygala plants. Sci. Hortic., 129: 869–876.
  • Bayat, R. A., Kuşvuran, Ş., Üstün, A. S., & Ellialtıoğlu, Ş. (2012). Tuza tolerans özelliği farklı iki kabak genotipine ait fidelere yapılan dışsal prolin uygulamalarının etkileri üzerinde araştırmalar. Ulusal Sebze Tarımı Sempozyumu, 2- 14.
  • Bizhani, S., Jowkar, A., & Abdolmaleki, M. (2013). Growth and antioxidant response of Zinnia elegans under salt stress conditions. Technical Journal of Engineering and Applied Sciences, 3(13): 1285-1292
  • Błażewicz-Woźniak, M., Rybicka, A., & Fil, M. (2021). Growth, decorative and nutritional values of ornamental cabbage (Brassica oleracea L.) in flowerbed conditions. Hort. Sci. (Prague). 48(1):30-37. https://doi.org/10.17221/21/2020-HORTSCI.
  • Bres, W., Bandurska, H., Kupska, A., Niedziela, J., & Fraszezak, B. (2016). Responses of pelargonium (Pelargonium hortorum L.H. Bailey) to long term salinity stress induced by treatment with different NaCl doses. Acta Physiol Plant, 38-26.
  • Cai, X., Niu, G., Starman, T., & Hall, C. (2014). Response of six garden roses (Rosa × hybrida L.) to salt stress. Scientia Horticulturae, 168: 27–32
  • Carter, K. (2003). Ornamental kale. Center for Landscape and Urban Horticulture. University of California Cooperative Extension Central Coast & South Region, 4p.
  • Carter, K. (2019). Ornamental kale. University of California Cooperative Extension, Central Coast and South region.
  • Carvalho, D. R. A., Vasconcelos, M. W., Lee, S., Vreugdenhil, D., Heuvelink, E., & Carvalho, S. M. P. (2017). Moderate salinity improves stomatal functioning in rose plants grown at high relative air humidity. Environmental and Experimental Botany, 143: 1–9
  • Cassaniti, C., Romano, D., Hop, M. E. C. M., & Flowers, T. J. (2013). Growing floricultural crops with brackish water. Environmental and Experimental Botany, 92: 165– 175.
  • Cirillo, C., Rouphael, Y., Caputo, R., Raimondi, G., Sifola, M. I., & De Pascale, S. (2016). Effects of high salinity and the exogenous of an osmolyte on growth, photosynthesis and mineral composition in two ornamental shrubs. J. Hortic. Sci. Biotechnol., 91: 14–22.
  • Cordovilla, M. P., Bueno, M., Aparicio, C., & Urrestarazu, M. (2014). Effects of Salinity and the Interaction between Thymus vulgaris and Lavandula angustifolia On Growth, Ethylene Production and Essential Oil Contents, Journal of Plant Nutrition, 37:6, 875-888.
  • Çulha Ş., & Çakırlar H. (2011). Tuzluluğun Bitkiler Üzerine Etkileri ve Tuz Tolerans Mekanizmaları. AKU J. Sci, 11-021002 (11-34)
  • Darwish, N. M., Hosni, A. M., Hewidy, M., Mubarak, M. M., & Ouda, M. S. (2016). Silicon and Selenium Application to Alleviate Salinity Stress Effects on the Vegetative Growth and Flowering of French Marigold (Tagetes patula) cv. ‘Cat Eye’. J. Biol. Chem. Environ. Sci., 11(3): 219- 238.
  • Daliakopoulos, I. N., Pappa, P., Grillakis, M. G., Varouchakis, E. A., & Tsanis, I. K. (2016). Modeling soil salinity in greenhouse cultivations under a changing climate with Saltmed: model modification and application in Timpaki, Crete. Soil science, 181(6), 241-251.
  • Dlugokecka, E., & Kacperska-Palacz, A. (1978). Re-Examination of electrical conductivity method for estimation of drought injuries. Biologia Plantarum, 20(4), 262-267.
  • Fan, S., & Blake, T. J. (1994). Abscisic acid induced electrolyte leakage in woody species with contrasting ecological requirements. Physiologia Plantarum. 90(2), 414-419.
  • Farooq, H., Bashir, M. A., Khalofah, A., Khan, K. A., Ramzan, M., Hussain, A., & Ahmad, Z. (2021). Interactive effects of saline water irrigation and nitrogen fertilization on tomato growth and yield. Fresenius Environmental Bulletin, 30(04), 3557-3564.
  • Fernández-García, N., Olmos, E., Bardisi, E., García-De la Garma, J., López-Berenguer, C., & Rubio-Asensio, J. S. (2014). Intrinsic water use efficiency controls the adaptation to high salinity in a semi-arid adapted plant, henna (Lawsonia inermis L.). J. Plant Physiol., 171: 64–75.
  • Figueiredo, J. R. M., de Oliveira Paiva, P. D., dos Reis, M. V., Nery, F. C., de Menezes Campos, S., da Sliva, D. P. C., & Paiva, R. (2017). Development changes in calla lily plants due to salt stress. Acta Physiol Plant, 39: 147.
  • Gómez-Bellot, M. J., Álvarez, S., Castillo, M., Bañón, S., Ortuño, M. F., & Sánchez-Blanco, M. J. (2013). Water relations nutrient content and developmental responses of Euonymus plants irrigated with water of different degrees of salinity and quality. J. Plant Res., 126: 567–576.
  • Gomes, M. A. C., Pestana, I. A., Santa-Catarina, C., Hauser-Davis, R. A., & Suzuki, M. S. (2017). Salinity effects on photosynthetic pigments, proline, biomass and nitric oxide in Salvinia auriculata Aubl. Acta Limnologica Brasiliensia, 29, 2017. https://doi.org/10.1590/S2179-975X4716
  • Hoagland, D. R., & Arnon, D. I. (1950). The water-culture method for growing plants without soil. Circular. California agricultural experiment station, 347(2nd edit).
  • Hooks, T., & Niu, G. (2019). Relative Salt Tolerance of Four Herbaceous Perennial Ornamentals. Horticulturae, 5 (2): 36. https://doi.org/10.3390/horticulturae5020036
  • Kaya, E. (2011). Erken bitki gelişme aşamasında kuraklık ve tuzluluk streslerine tolerans bakımından fasulye genotiplerinin taranması. [Yüksek Lisans Tezi, Çukurova Üniversitesi]. Fen Bilimleri Enstitüsü, Bahçe Bitkileri Anabilim Dalı, Adana, 213 s.
  • Kızılgeçi, F. (2021). Diallel analysis of salinity tolerance at germination and the early seedling stage in bread wheat (Triticum aestivum). Harran Tarım Ve Gıda Bilimleri Dergisi, 25(1), 23-29. https://doi.org/10.29050/harranziraat.755280
  • Kishimoto, K., Maeda, H., Haketa, T., & Oyama-Okubo, N. (2014). Odor components and the control of odor development in ornamental cabbage. The Japanese Society for Horticultural Science, 83(3): 252-258.
  • Kumar, D., Al Hassan, M., Vicente, O., Agrawal V., & Boscaiu, M. (2016). Mechanisms of Response to Salt Stress in Oleander (Nerium oleander L.). Bulletin Horticulture, 73 (2): 249-251.
  • Kuşvuran, Ş. (2010). Kavunlarda kuraklık ve tuzluluğa toleransın fizyolojik mekanizmaları arasındaki bağlantılar. [Doktora Tezi, Çukurova Üniversitesi]. Fen Bilimleri Enstitüsü, Bahçe Bitkileri Anabilim Dalı, Adana, 377 s.
  • Köksal, N., & Külahlıoğlu, İ. (2013). Tuz stresinin sümbül (Hyacinthus orientalis) bitkisinin gelişimine etkisi. V. Süs Bitkileri Kongresi (06-09 Mayıs 2013- Yalova) Bildiriler Cilt-II, 860-865.
  • Li, X., Wan, S., Kang, Y., Chen, X., & Chu, L. (2016). Chinese rose (Rosa chinensis) growth and ion accumulation under irrigation with waters of different salt contents. Agricultural Water Management, 163: 180–189.
  • Ludwiczak, A., Osiak, M., Cárdenas-Pérez, S., Lubińska-Mielińska, S., & Piernik, A. (2021). Ozmotik stres veya iyonik kompozisyon: Mahsul türlerinin erken gelişimini hangisi daha fazla etkiler? Tarım Bilimi , 11 (3), 435.
  • Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651–681. https://doi.org/10.1146/annurev.arplant.59.032607.092911
  • Niu, G., Wang, M., Rodriguez, D. S., & Zhang, D. (2012). Response of Zinnia Plants to Saline Water Irrigation. Hort. science, 47(6): 793–797.
  • Oral, N. (2004). Bahçe Çiçekleri. TMMOB Ziraat Mühendisleri Odası Yay. No:3, Adalı Matbaası, Bursa, 140s. Oliveira, F.I.F., de Medeiros, W.J.F., de Lacerda, C.F., Neves, A.L.R., & Oliveira, D.R. (2017). Saline water irrigation managements on growth ornamental plants. Revista Brasileira de Engenharia Agrícola Ambiental, 21(11): 739-745.
  • Özden, M., Demirel, U., & Kahraman, A. (2009). Effects of proline on antioxidant system in leaves of grapevine (Vitis vinifera L.) exposed to oxidative stress by H2O2. Scientia Horticulturae, 119, 163-168.
  • Ouhibi, C., Attia, H., Rebah, F., Msilini, N., Chebbi, M., Aarrouf, J. & Lachaal, M. (2014). Salt stress mitigation by seed priming with UV-C in lettuce plants: Growth, antioxidant activity and phenolic compounds. Plant Physiology and Biochemistry, 83, 126-133.
  • Qadir, M., Quillérou, E., Nangia, V., Murtaza, G., Singh, M., Thomas, R. J. & Noble, A. D. (2014, November). Economics of salt‐induced land degradation and restoration. In Natural resources forum 38 (4): 282-295.
  • Parida, A. K., & Das, A. B. (2005). Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety, 60(3), 324 349. https://doi.org/10.1016/j.ecoenv.2004.06.010
  • Parwaiz, A., & Satyawati, S. (2008). Salt stress and phyto-biochemical responses of plants – a review. Plant Soil Environ., 54 (3): 89–99.
  • Prabucki, A., Serek, M., & Andersen, A. S. (1999). Influence of salt stress on stock plant growth and cutting performance of Chrysanthemum morifolium. The Journal of Horticultural Science and Biotechnology, 74: 1, 132-134.
  • Rengasamy, P. (2006). World salinization with emphasis on Australia. J. of Experimental Botany, 57(5), 1017-1023.
  • Salachna, P., Piechocki, R., & Byczynska, A. (2017). Plant growth of curly kale under salinity stress. Journal of Ecological Engineering, 18(1): 119–124.
  • Sayyed, A., Gul, H., Ullah, Z., & Hamayun, M. (2014). Effect of salt stress on growth of Tagetes erecta L. Pakhtunkhwa J. Life Sci., 2(3/4): 96106.
  • Squires, V. R., & Glenn, E. P. (2011)., Salination, desertification and soil erosion 3: 102-123. EOLSS Publications.
  • Sonneveld, C. (2000). Effects of salinity on substrate grown vegetables and ornamentals in greenhouse horticulture. pHD thesis, Wageningen University, The Netherlands, 151p.
  • Sun, Y., Niu, G., Perez, C., Pemberton, H. B., & Altland, J. (2018). Responses of Marigold Cultivars to Saline Water Irrigation. Hort. Technology, 28(2): 166-171.
  • Topaloğlu, K. (2010). Tuz stresinin chili biberlerinin pigment ve kapsaisinoid değişimi ile peroksidaz aktivitesi arasındaki ilişki. [Yüksek Lisans Tezi, Çukurova Üniversitesi]. Fen Bilimleri Enstitüsü, Biyoloji Anabilim Dalı, Adana, 131 s.
  • Trivellini, A., Gordillo, B., Rodriguez Pulido, F. J., Borghesi, E., Ferrante, A., Vernieri, P., Quijada Morin, N., Gonzalez Miret, M. L., & Heredia F. J. (2014). Effect of Salt Stress in the Regulation of Anthocyanins and Color of Hibiscus Flowers by Digital Image Analysis. J. Agric. Food Chem., 62: 6966−6974.
  • Valdez-Aguilar, L. A., Grieve, C. M., Razak-Mahar, A., McGiffen, M., & Merhaut, D. J. (2011). Growth and ion distribution is affected by irrigation with saline water in selected landscape species grown in two consecutive growing-seasons. Hort. Science, 46: 632– 642.
  • Veatch-Blohm, M. E., Malinowski, M., & Keefer, D. (2012). Leaf water status, osmotic adjustment and carbon assimilation in colored calla lilies in response to saline irrigation. Scientia Horticulturae, 144: 65–73.
  • Yasemin, S., Köksal, N., Özkaya, A., & Yener, M. (2017). Growth and Physiological Responses of ‘Chrysanthemum paludosum’ under Salinity Stress. J. Biol. Environ. Sci., 11(32): 59-66.
  • Yasemin, S. (2020). Tuz stresi altında Zinnia (Zinnia sp.) türlerinde morfolojik, anatomik, fizyolojik ve biyokimyasal değişimler. [Doktora Tezi, Çukurova Üniversitesi].
  • Yılmaz, E., Tuna A. L., & Bürün, B. (2011). Bitkilerin Tuz Stresi Etkilerine Karşı Geliştirdikleri Tolerans Stratejileri. C.B.Ü. Fen Bilimleri Dergisi, 7(1): 47–66
  • Zhu, P., Tian, Z., Pan, Z., & Feng, X. (2017). Identification and quantification of anthocyanins in different coloured cultivars of ornamental kale. The Journal of Horticultural Science and Biotechnology, 93(5): 466-473

Tuz uygulamalarının süs lahanası (Brassica oleracea var. acephala) bitkisinin büyüme ve gelişimine etkileri

Yıl 2025, Cilt: 42 Sayı: 2, 158 - 166, 30.08.2025
https://doi.org/10.55507/gopzfd.1697987

Öz

Bu çalışma, yetiştirme ortamına farklı dozlarda tuz uygulamasının Süs Lahanası (Brassica oleracea var. acephala) bitkisinin büyüme ve gelişimine etkilerini belirlemek amacıyla 2024-2025 yılları arasında yürütülmüştür. Çalışmada, yetiştirme ortamına (hacim esasına göre %70 torf + %30 perlit) farklı dozlarda tuz (EC 0 mM (Kontrol), EC 25 mM, EC 50 mM, EC 100 mM ve EC 200 mM) uygulanmıştır. Bu çalışmada, bitki boyu (cm), baş çapı (mm), kök uzunluğu (cm), yaprak sayısı (adet), yaprak boyu (cm), yaprak eni (cm), gövde yaş ağırlık (g), gövde çapı (mm), gövde uzunluğu (cm), kök yaş-kuru ağırlık (g), yaprak yaş-kuru ağırlık (g), klorofil indeksi (Spad), oransal su (%), iyon akışı (%) ve hücre zarı zarar oranı (%) gibi parametreler incelenmiştir. Çalışma sonunda, uygulamalar arasında, oransal su kapsamı, iyon akışı ve hücre zarı zarar oranı bakımından tuz konsantrasyonları arttıkça bu değerlerde kontrole kıyasla artmıştır. Ancak diğer incelenen parametreler açısından, kontrol uygulamalarının daha iyi sonuç verdiği; Tuz uygulama dozlarının artmasına paralel olarak uygulamalarda oransal olarak azalmalar olduğu gözlenmiştir.

Kaynakça

  • Acosta-Motos, J. R., Hernández, J. A., Álvarez, S., Barba-Espín, G., & SánchezBlanco, M. J. (2017). Long-term resistance mechanisms and irrigation critical threshold showed by Eugenia myrtifolia plants in response to saline reclaimed water and relief capacity. Plant Physiol. Biochem., 111: 244–256.
  • Ağar, A. (2015). Atık su arıtma çamurunun süs lahanasının gelişimi ve besin elementi içeriği üzerine etkisi. [Yüksek Lisans Tezi, Çukurova Üniversitesi]. Bahçe Bitkileri Anabilim Dalı, 125, Adana.
  • Akat Saraçoğlu, Ö., & Akat, H. (2022). Topraksız Süs Lahanası (Brassica oleracea var. acephala) Yetiştiriciliğinde Farklı Tuzluluk Düzeylerinin Bazı Kalite Kriterleri ve Bitki Besin Elementleri Üzerindeki Etkileri. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 13(1), 114-128. https://doi.org/10.29048/makufebed.1087207
  • Álvarez, S., Gómez-Bellot, M. J., Castillo, M., Bañón, S., & Sánchez-Blanco, M. J. (2012). Osmotic and saline effect on growth, water relations, and ion uptake and translocation in Phlomis purpurea plants. Environ. Exp. Bot., 78: 138–145.
  • Álvarez, S., & Sánchez-Blanco, M. J. (2014). Long-term effect of salinity on plant quality, water relations, photosynthetic parameters and ion distribution in Callistemon citrinus. Plant Biol., 16: 757–764.
  • Ashrafi, N., & Nejad A. R. (2017). Lisianthus response to salinity stress. Photosynthetica, 55.
  • Bañón, S., Miralles, J., Franco, J. A., Ochoa, R., & Sánchez-Blanco, M. J. (2011). Effects of diluted and pure treated wastewater on the growth, physiological status and visual quality of potted lantana and polygala plants. Sci. Hortic., 129: 869–876.
  • Bayat, R. A., Kuşvuran, Ş., Üstün, A. S., & Ellialtıoğlu, Ş. (2012). Tuza tolerans özelliği farklı iki kabak genotipine ait fidelere yapılan dışsal prolin uygulamalarının etkileri üzerinde araştırmalar. Ulusal Sebze Tarımı Sempozyumu, 2- 14.
  • Bizhani, S., Jowkar, A., & Abdolmaleki, M. (2013). Growth and antioxidant response of Zinnia elegans under salt stress conditions. Technical Journal of Engineering and Applied Sciences, 3(13): 1285-1292
  • Błażewicz-Woźniak, M., Rybicka, A., & Fil, M. (2021). Growth, decorative and nutritional values of ornamental cabbage (Brassica oleracea L.) in flowerbed conditions. Hort. Sci. (Prague). 48(1):30-37. https://doi.org/10.17221/21/2020-HORTSCI.
  • Bres, W., Bandurska, H., Kupska, A., Niedziela, J., & Fraszezak, B. (2016). Responses of pelargonium (Pelargonium hortorum L.H. Bailey) to long term salinity stress induced by treatment with different NaCl doses. Acta Physiol Plant, 38-26.
  • Cai, X., Niu, G., Starman, T., & Hall, C. (2014). Response of six garden roses (Rosa × hybrida L.) to salt stress. Scientia Horticulturae, 168: 27–32
  • Carter, K. (2003). Ornamental kale. Center for Landscape and Urban Horticulture. University of California Cooperative Extension Central Coast & South Region, 4p.
  • Carter, K. (2019). Ornamental kale. University of California Cooperative Extension, Central Coast and South region.
  • Carvalho, D. R. A., Vasconcelos, M. W., Lee, S., Vreugdenhil, D., Heuvelink, E., & Carvalho, S. M. P. (2017). Moderate salinity improves stomatal functioning in rose plants grown at high relative air humidity. Environmental and Experimental Botany, 143: 1–9
  • Cassaniti, C., Romano, D., Hop, M. E. C. M., & Flowers, T. J. (2013). Growing floricultural crops with brackish water. Environmental and Experimental Botany, 92: 165– 175.
  • Cirillo, C., Rouphael, Y., Caputo, R., Raimondi, G., Sifola, M. I., & De Pascale, S. (2016). Effects of high salinity and the exogenous of an osmolyte on growth, photosynthesis and mineral composition in two ornamental shrubs. J. Hortic. Sci. Biotechnol., 91: 14–22.
  • Cordovilla, M. P., Bueno, M., Aparicio, C., & Urrestarazu, M. (2014). Effects of Salinity and the Interaction between Thymus vulgaris and Lavandula angustifolia On Growth, Ethylene Production and Essential Oil Contents, Journal of Plant Nutrition, 37:6, 875-888.
  • Çulha Ş., & Çakırlar H. (2011). Tuzluluğun Bitkiler Üzerine Etkileri ve Tuz Tolerans Mekanizmaları. AKU J. Sci, 11-021002 (11-34)
  • Darwish, N. M., Hosni, A. M., Hewidy, M., Mubarak, M. M., & Ouda, M. S. (2016). Silicon and Selenium Application to Alleviate Salinity Stress Effects on the Vegetative Growth and Flowering of French Marigold (Tagetes patula) cv. ‘Cat Eye’. J. Biol. Chem. Environ. Sci., 11(3): 219- 238.
  • Daliakopoulos, I. N., Pappa, P., Grillakis, M. G., Varouchakis, E. A., & Tsanis, I. K. (2016). Modeling soil salinity in greenhouse cultivations under a changing climate with Saltmed: model modification and application in Timpaki, Crete. Soil science, 181(6), 241-251.
  • Dlugokecka, E., & Kacperska-Palacz, A. (1978). Re-Examination of electrical conductivity method for estimation of drought injuries. Biologia Plantarum, 20(4), 262-267.
  • Fan, S., & Blake, T. J. (1994). Abscisic acid induced electrolyte leakage in woody species with contrasting ecological requirements. Physiologia Plantarum. 90(2), 414-419.
  • Farooq, H., Bashir, M. A., Khalofah, A., Khan, K. A., Ramzan, M., Hussain, A., & Ahmad, Z. (2021). Interactive effects of saline water irrigation and nitrogen fertilization on tomato growth and yield. Fresenius Environmental Bulletin, 30(04), 3557-3564.
  • Fernández-García, N., Olmos, E., Bardisi, E., García-De la Garma, J., López-Berenguer, C., & Rubio-Asensio, J. S. (2014). Intrinsic water use efficiency controls the adaptation to high salinity in a semi-arid adapted plant, henna (Lawsonia inermis L.). J. Plant Physiol., 171: 64–75.
  • Figueiredo, J. R. M., de Oliveira Paiva, P. D., dos Reis, M. V., Nery, F. C., de Menezes Campos, S., da Sliva, D. P. C., & Paiva, R. (2017). Development changes in calla lily plants due to salt stress. Acta Physiol Plant, 39: 147.
  • Gómez-Bellot, M. J., Álvarez, S., Castillo, M., Bañón, S., Ortuño, M. F., & Sánchez-Blanco, M. J. (2013). Water relations nutrient content and developmental responses of Euonymus plants irrigated with water of different degrees of salinity and quality. J. Plant Res., 126: 567–576.
  • Gomes, M. A. C., Pestana, I. A., Santa-Catarina, C., Hauser-Davis, R. A., & Suzuki, M. S. (2017). Salinity effects on photosynthetic pigments, proline, biomass and nitric oxide in Salvinia auriculata Aubl. Acta Limnologica Brasiliensia, 29, 2017. https://doi.org/10.1590/S2179-975X4716
  • Hoagland, D. R., & Arnon, D. I. (1950). The water-culture method for growing plants without soil. Circular. California agricultural experiment station, 347(2nd edit).
  • Hooks, T., & Niu, G. (2019). Relative Salt Tolerance of Four Herbaceous Perennial Ornamentals. Horticulturae, 5 (2): 36. https://doi.org/10.3390/horticulturae5020036
  • Kaya, E. (2011). Erken bitki gelişme aşamasında kuraklık ve tuzluluk streslerine tolerans bakımından fasulye genotiplerinin taranması. [Yüksek Lisans Tezi, Çukurova Üniversitesi]. Fen Bilimleri Enstitüsü, Bahçe Bitkileri Anabilim Dalı, Adana, 213 s.
  • Kızılgeçi, F. (2021). Diallel analysis of salinity tolerance at germination and the early seedling stage in bread wheat (Triticum aestivum). Harran Tarım Ve Gıda Bilimleri Dergisi, 25(1), 23-29. https://doi.org/10.29050/harranziraat.755280
  • Kishimoto, K., Maeda, H., Haketa, T., & Oyama-Okubo, N. (2014). Odor components and the control of odor development in ornamental cabbage. The Japanese Society for Horticultural Science, 83(3): 252-258.
  • Kumar, D., Al Hassan, M., Vicente, O., Agrawal V., & Boscaiu, M. (2016). Mechanisms of Response to Salt Stress in Oleander (Nerium oleander L.). Bulletin Horticulture, 73 (2): 249-251.
  • Kuşvuran, Ş. (2010). Kavunlarda kuraklık ve tuzluluğa toleransın fizyolojik mekanizmaları arasındaki bağlantılar. [Doktora Tezi, Çukurova Üniversitesi]. Fen Bilimleri Enstitüsü, Bahçe Bitkileri Anabilim Dalı, Adana, 377 s.
  • Köksal, N., & Külahlıoğlu, İ. (2013). Tuz stresinin sümbül (Hyacinthus orientalis) bitkisinin gelişimine etkisi. V. Süs Bitkileri Kongresi (06-09 Mayıs 2013- Yalova) Bildiriler Cilt-II, 860-865.
  • Li, X., Wan, S., Kang, Y., Chen, X., & Chu, L. (2016). Chinese rose (Rosa chinensis) growth and ion accumulation under irrigation with waters of different salt contents. Agricultural Water Management, 163: 180–189.
  • Ludwiczak, A., Osiak, M., Cárdenas-Pérez, S., Lubińska-Mielińska, S., & Piernik, A. (2021). Ozmotik stres veya iyonik kompozisyon: Mahsul türlerinin erken gelişimini hangisi daha fazla etkiler? Tarım Bilimi , 11 (3), 435.
  • Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651–681. https://doi.org/10.1146/annurev.arplant.59.032607.092911
  • Niu, G., Wang, M., Rodriguez, D. S., & Zhang, D. (2012). Response of Zinnia Plants to Saline Water Irrigation. Hort. science, 47(6): 793–797.
  • Oral, N. (2004). Bahçe Çiçekleri. TMMOB Ziraat Mühendisleri Odası Yay. No:3, Adalı Matbaası, Bursa, 140s. Oliveira, F.I.F., de Medeiros, W.J.F., de Lacerda, C.F., Neves, A.L.R., & Oliveira, D.R. (2017). Saline water irrigation managements on growth ornamental plants. Revista Brasileira de Engenharia Agrícola Ambiental, 21(11): 739-745.
  • Özden, M., Demirel, U., & Kahraman, A. (2009). Effects of proline on antioxidant system in leaves of grapevine (Vitis vinifera L.) exposed to oxidative stress by H2O2. Scientia Horticulturae, 119, 163-168.
  • Ouhibi, C., Attia, H., Rebah, F., Msilini, N., Chebbi, M., Aarrouf, J. & Lachaal, M. (2014). Salt stress mitigation by seed priming with UV-C in lettuce plants: Growth, antioxidant activity and phenolic compounds. Plant Physiology and Biochemistry, 83, 126-133.
  • Qadir, M., Quillérou, E., Nangia, V., Murtaza, G., Singh, M., Thomas, R. J. & Noble, A. D. (2014, November). Economics of salt‐induced land degradation and restoration. In Natural resources forum 38 (4): 282-295.
  • Parida, A. K., & Das, A. B. (2005). Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety, 60(3), 324 349. https://doi.org/10.1016/j.ecoenv.2004.06.010
  • Parwaiz, A., & Satyawati, S. (2008). Salt stress and phyto-biochemical responses of plants – a review. Plant Soil Environ., 54 (3): 89–99.
  • Prabucki, A., Serek, M., & Andersen, A. S. (1999). Influence of salt stress on stock plant growth and cutting performance of Chrysanthemum morifolium. The Journal of Horticultural Science and Biotechnology, 74: 1, 132-134.
  • Rengasamy, P. (2006). World salinization with emphasis on Australia. J. of Experimental Botany, 57(5), 1017-1023.
  • Salachna, P., Piechocki, R., & Byczynska, A. (2017). Plant growth of curly kale under salinity stress. Journal of Ecological Engineering, 18(1): 119–124.
  • Sayyed, A., Gul, H., Ullah, Z., & Hamayun, M. (2014). Effect of salt stress on growth of Tagetes erecta L. Pakhtunkhwa J. Life Sci., 2(3/4): 96106.
  • Squires, V. R., & Glenn, E. P. (2011)., Salination, desertification and soil erosion 3: 102-123. EOLSS Publications.
  • Sonneveld, C. (2000). Effects of salinity on substrate grown vegetables and ornamentals in greenhouse horticulture. pHD thesis, Wageningen University, The Netherlands, 151p.
  • Sun, Y., Niu, G., Perez, C., Pemberton, H. B., & Altland, J. (2018). Responses of Marigold Cultivars to Saline Water Irrigation. Hort. Technology, 28(2): 166-171.
  • Topaloğlu, K. (2010). Tuz stresinin chili biberlerinin pigment ve kapsaisinoid değişimi ile peroksidaz aktivitesi arasındaki ilişki. [Yüksek Lisans Tezi, Çukurova Üniversitesi]. Fen Bilimleri Enstitüsü, Biyoloji Anabilim Dalı, Adana, 131 s.
  • Trivellini, A., Gordillo, B., Rodriguez Pulido, F. J., Borghesi, E., Ferrante, A., Vernieri, P., Quijada Morin, N., Gonzalez Miret, M. L., & Heredia F. J. (2014). Effect of Salt Stress in the Regulation of Anthocyanins and Color of Hibiscus Flowers by Digital Image Analysis. J. Agric. Food Chem., 62: 6966−6974.
  • Valdez-Aguilar, L. A., Grieve, C. M., Razak-Mahar, A., McGiffen, M., & Merhaut, D. J. (2011). Growth and ion distribution is affected by irrigation with saline water in selected landscape species grown in two consecutive growing-seasons. Hort. Science, 46: 632– 642.
  • Veatch-Blohm, M. E., Malinowski, M., & Keefer, D. (2012). Leaf water status, osmotic adjustment and carbon assimilation in colored calla lilies in response to saline irrigation. Scientia Horticulturae, 144: 65–73.
  • Yasemin, S., Köksal, N., Özkaya, A., & Yener, M. (2017). Growth and Physiological Responses of ‘Chrysanthemum paludosum’ under Salinity Stress. J. Biol. Environ. Sci., 11(32): 59-66.
  • Yasemin, S. (2020). Tuz stresi altında Zinnia (Zinnia sp.) türlerinde morfolojik, anatomik, fizyolojik ve biyokimyasal değişimler. [Doktora Tezi, Çukurova Üniversitesi].
  • Yılmaz, E., Tuna A. L., & Bürün, B. (2011). Bitkilerin Tuz Stresi Etkilerine Karşı Geliştirdikleri Tolerans Stratejileri. C.B.Ü. Fen Bilimleri Dergisi, 7(1): 47–66
  • Zhu, P., Tian, Z., Pan, Z., & Feng, X. (2017). Identification and quantification of anthocyanins in different coloured cultivars of ornamental kale. The Journal of Horticultural Science and Biotechnology, 93(5): 466-473
Toplam 61 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Sera Bitkileri Yetiştirme ve Islahı
Bölüm Araştırma Makaleleri
Yazarlar

Hakan Kartal 0000-0002-3870-1588

Saliha Erdoğdu 0000-0001-8639-2938

Fulya Okatar 0000-0002-7105-9208

Yayımlanma Tarihi 30 Ağustos 2025
Gönderilme Tarihi 13 Mayıs 2025
Kabul Tarihi 24 Temmuz 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 42 Sayı: 2

Kaynak Göster

APA Kartal, H., Erdoğdu, S., & Okatar, F. (2025). Effects of salt applications on growth and development of ornamental cabbage (Brassica oleracea var. acephala). Journal of Agricultural Faculty of Gaziosmanpaşa University, 42(2), 158-166. https://doi.org/10.55507/gopzfd.1697987