Research Article
BibTex RIS Cite
Year 2019, Volume: 32 Issue: 4, 1228 - 1236, 01.12.2019
https://doi.org/10.35378/gujs.513478

Abstract

References

  • Bernstein, S.N. “Demonstration du theoreme de Weierstrass fondee sur le calcul de probabilities”.Commun.Soc.Math.Kharkow 13(2),1-2 (1912)
  • Durrmeyer, J.L. “Une Formule D’inversion de la transformée de Laplace : Aplications a la théorie des moments, Thése de 3e cycle”. Faculté des Sciences de I’Université de Paris, 1967.
  • Gadhziev, A.D. and Chorbanalizadeh, A.M. “Approximation properties of a new type Bernstein-Stancu polynomials of one and two variables”. Appl. Math. Comput. 216, 890-901 (2010)
  • Stancu D.D. “Approximation of functions by a new class of linear polynomial operators”. Rev.Roum.Math.Pures Appl. 13, 1173-1194 (1968)
  • Dong L. and Yu D. “Pointwise Approximation By A Durrmeyer Variant Of Bernstein-Stancu Operators”. Jaurnal of ınequalities and applications , 2017:28 (2017)
  • Gadhziev, A.D. “Theorems of the type of P.P. Korovkin type theorems”. Math. Zametki 20 (5) (1976) 781-786 (English Translation, Math . Notes, 20 (5/6), 996-998 (1976)
  • Gupta V. and Duman O. “Bernstein – Durrmeyer type operators preserving linear function”. Matematikci Vesnik 62(4) 259-264 (2010)
  • Taşdelen, F., Başcanbaz-Tunca G. and Erençin, A. “On a new type Bernstein-Stancu operators”. Fasc. Math. 48 ,119-128 (2012)
  • Acar, T., Aral , A. and Gupta, V. “On approximation properties of a new type Bernstein-Durrmeyer operators”. Math. Slovaca. 65,1107-1122 (2015)
  • İçöz, G. “A Kantrovich variant of a new type Bernstein Stancu polynomials”. Appl. Math. Comput. 218, 8552-8560 (2012)
  • Wang, M.L., Yuo, D.S. and Zhou, P. “On the approximation by operators of Bernstein-Stancu types”. Appl. Math. Comput. 246, 79-87 (2014)

A Voronovskaja-Type Theorem for a Kind of Durrmeyer-Bernstein-Stancu Operators

Year 2019, Volume: 32 Issue: 4, 1228 - 1236, 01.12.2019
https://doi.org/10.35378/gujs.513478

Abstract

In this paper, we study on a Durrmeyer variant
of Bernstein-Stancu operators.  We give a
Voronovskaja-type theorem for these type operators. 

References

  • Bernstein, S.N. “Demonstration du theoreme de Weierstrass fondee sur le calcul de probabilities”.Commun.Soc.Math.Kharkow 13(2),1-2 (1912)
  • Durrmeyer, J.L. “Une Formule D’inversion de la transformée de Laplace : Aplications a la théorie des moments, Thése de 3e cycle”. Faculté des Sciences de I’Université de Paris, 1967.
  • Gadhziev, A.D. and Chorbanalizadeh, A.M. “Approximation properties of a new type Bernstein-Stancu polynomials of one and two variables”. Appl. Math. Comput. 216, 890-901 (2010)
  • Stancu D.D. “Approximation of functions by a new class of linear polynomial operators”. Rev.Roum.Math.Pures Appl. 13, 1173-1194 (1968)
  • Dong L. and Yu D. “Pointwise Approximation By A Durrmeyer Variant Of Bernstein-Stancu Operators”. Jaurnal of ınequalities and applications , 2017:28 (2017)
  • Gadhziev, A.D. “Theorems of the type of P.P. Korovkin type theorems”. Math. Zametki 20 (5) (1976) 781-786 (English Translation, Math . Notes, 20 (5/6), 996-998 (1976)
  • Gupta V. and Duman O. “Bernstein – Durrmeyer type operators preserving linear function”. Matematikci Vesnik 62(4) 259-264 (2010)
  • Taşdelen, F., Başcanbaz-Tunca G. and Erençin, A. “On a new type Bernstein-Stancu operators”. Fasc. Math. 48 ,119-128 (2012)
  • Acar, T., Aral , A. and Gupta, V. “On approximation properties of a new type Bernstein-Durrmeyer operators”. Math. Slovaca. 65,1107-1122 (2015)
  • İçöz, G. “A Kantrovich variant of a new type Bernstein Stancu polynomials”. Appl. Math. Comput. 218, 8552-8560 (2012)
  • Wang, M.L., Yuo, D.S. and Zhou, P. “On the approximation by operators of Bernstein-Stancu types”. Appl. Math. Comput. 246, 79-87 (2014)
There are 11 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Mathematics
Authors

Ulku Dınlemez Kantar 0000-0002-5656-3924

Gizem Ergelen This is me 0000-0002-5656-3924

Publication Date December 1, 2019
Published in Issue Year 2019 Volume: 32 Issue: 4

Cite

APA Dınlemez Kantar, U., & Ergelen, G. (2019). A Voronovskaja-Type Theorem for a Kind of Durrmeyer-Bernstein-Stancu Operators. Gazi University Journal of Science, 32(4), 1228-1236. https://doi.org/10.35378/gujs.513478
AMA Dınlemez Kantar U, Ergelen G. A Voronovskaja-Type Theorem for a Kind of Durrmeyer-Bernstein-Stancu Operators. Gazi University Journal of Science. December 2019;32(4):1228-1236. doi:10.35378/gujs.513478
Chicago Dınlemez Kantar, Ulku, and Gizem Ergelen. “A Voronovskaja-Type Theorem for a Kind of Durrmeyer-Bernstein-Stancu Operators”. Gazi University Journal of Science 32, no. 4 (December 2019): 1228-36. https://doi.org/10.35378/gujs.513478.
EndNote Dınlemez Kantar U, Ergelen G (December 1, 2019) A Voronovskaja-Type Theorem for a Kind of Durrmeyer-Bernstein-Stancu Operators. Gazi University Journal of Science 32 4 1228–1236.
IEEE U. Dınlemez Kantar and G. Ergelen, “A Voronovskaja-Type Theorem for a Kind of Durrmeyer-Bernstein-Stancu Operators”, Gazi University Journal of Science, vol. 32, no. 4, pp. 1228–1236, 2019, doi: 10.35378/gujs.513478.
ISNAD Dınlemez Kantar, Ulku - Ergelen, Gizem. “A Voronovskaja-Type Theorem for a Kind of Durrmeyer-Bernstein-Stancu Operators”. Gazi University Journal of Science 32/4 (December 2019), 1228-1236. https://doi.org/10.35378/gujs.513478.
JAMA Dınlemez Kantar U, Ergelen G. A Voronovskaja-Type Theorem for a Kind of Durrmeyer-Bernstein-Stancu Operators. Gazi University Journal of Science. 2019;32:1228–1236.
MLA Dınlemez Kantar, Ulku and Gizem Ergelen. “A Voronovskaja-Type Theorem for a Kind of Durrmeyer-Bernstein-Stancu Operators”. Gazi University Journal of Science, vol. 32, no. 4, 2019, pp. 1228-36, doi:10.35378/gujs.513478.
Vancouver Dınlemez Kantar U, Ergelen G. A Voronovskaja-Type Theorem for a Kind of Durrmeyer-Bernstein-Stancu Operators. Gazi University Journal of Science. 2019;32(4):1228-36.