Research Article
BibTex RIS Cite
Year 2023, Volume: 36 Issue: 2, 660 - 673, 01.06.2023
https://doi.org/10.35378/gujs.1063289

Abstract

References

  • [1] Leiter, U., Eigentler, T., Garbe, C., “Epidemiology of skin cancer”, Advances in Experimental Medicine and Biology, 810: 120-40, (2014).
  • [2] Mahbod, A., Schaefer, G., Wang, C., Dorffner, G., Ecker, R., Ellinger, I., “Transfer learning using a multi-scale and multi-network ensemble for skin lesion classification”, Computer Methods and Programs in Biomedicine, 193(2020): 105475, (2020).
  • [3] Schadendorf, D., van Akkooi, A., Berking, C., Griewank, K., Gutzmer, R., Hauschild, A., Stang, A., Roesch, A., Ugurel, S., “Melanoma”, Lancet, 392(10151): 971–984, (2018).
  • [4] Brinker, T., Hekler, A., Utikal, J., Grabe, N., Schadendorf, D., Klode, J., Berking, C., Steeb, T., Enk, A., Von Kalle, C. “Skin cancer classification using convolutional neural networks: systematic review”, Journal of Medical Internet Research, 20(10), (2018).
  • [5] Stolz, W., Riemann, A., Cognetta, A., Pillet, L., Abmayr, W., Holzel, D., Bilek, P., Nachbar, F., Landthaler, M., Braun-Falco, O, “ABCD Rule of dermatoscopy: a new practical method for early recognition of malignant melanoma”, European Journal of Dermatology, 4: 521–527, (1994).
  • [6] Tromme, I., Sacré, L., Hammouch, F., Legrand, C., Marot, L., Vereecken, P., Theate, I., Van Eeckhout, P., Richez, P., Baurain, J., Thomas, L., Speybroeck, N., on behalf of the DEPIMELA study group, “Availability of digital dermoscopy in daily practice dramatically reduces the number of excised melanocytic lesions: results from an observational study”, British Journal of Dermatology, 167(4): 778–786, (2012).
  • [7] Simonyan, K., Zisserman, A., “Very deep convolutional networks for large-scale image recognition”, Proceeding of the 2015 International Conference on Learning Representations, (2015).
  • [8] He, K., Zhang, X., Ren, S., Sun, J., “Deep residual learning for image recognition”, Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, 770–778, (2016).
  • [9] Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z., “Rethinking the inception architecture for computer vision”, Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, 2818–2826, (2016).
  • [10] Huang, G., Liu, Z., van der Maaten, L., Weinberger K., “Densely connected convolutional networks”, Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, 2261–2269, (2017).
  • [11] Tsiakmaki, M., Kostopoulos, G., Kotsiantis, S., Ragos, O., “Transfer learning from deep neural networks for predicting student performance”, Applied Sciences, 10(6): 2145, (2020).
  • [12] Khan, M.A., Muhammad, K., Sharif, M., Akram, T., de Albuquerque, V.H.C., “Multi-class skin lesion detection and classification via teledermatology”, IEEE Journal of Biomedical and Health Informatics, 25(12): 4267-4275, (2021).
  • [13] Rodrigues, D. D. A., Ivo, R.F., Satapathy, S.C., Hemanth, J., Filho, P.P.R., “A new approach for classification skin lesion based on transfer learning, deep learning, and IoT system”, Pattern Recognition Letters, 136: 8–15, (2020).
  • [14] Hosny, K., Kassem, M.A., Fouad, M.M., “Classification of skin lesions using transfer learning and augmentation with Alex-net”, PLoS ONE, 14(5), (2019).
  • [15] Zunair, H., Hamza, A.B., “Melanoma detection using adversarial training and deep transfer learning”, Physics in Medicine Biology, 65(15): 135005, (2020).
  • [16] Afza, F., Sharif, M., Mittal, M., Khan, M.A., Hemanth, D.J., “A hierarchical three-step superpixels and deep learning framework for skin lesion classification”, Methods, (2021).
  • [17] Singhal., A., Shukla, R., Kankar, P., Dubey, S., Singh, S., Pachori, R., “Comparing the capabilities of transfer learning models to detect skin lesion in humans”, Proceedings of the 2020 Institution of Mechanical Engineers Part H Journal of Engineering in Medicine, 234(10): 1083–1093, (2020).
  • [18] El-Khatib, H., Popescu, D., Ichim, L., “Deep learning-based methods for automatic diagnosis of skin lesions”, Sensors, 20(6): 1753, (2020).
  • [19] Rahman, Z., Ami, A., “A transfer learning based approach for skin lesion classification from ımbalanced data”, Proceedings of the 2020 11th International Conference on Electrical and Computer Engineering, 65–68, (2020).
  • [20] Kondaveeti, H., Edupuganti, P., “Skin cancer classification using transfer learning”, Proceedings of the 2020 IEEE International Conference on Advent Trends in Multidisciplinary Research and Innovation, 1–4, (2020).
  • [21] Jibhakate, A., Parnerkar, P., Mondal, S., Bharambe, V., Mantri, S., “Skin lesion classification using deep learning and ımage processing”, Proceedings of the 2020 3rd International Conference on Intelligent Sustainable Systems, 333–340, (2020).
  • [22] Cauvery, K., Siddalingaswamy, P., Pathan, S., D'souza, N., “A multiclass skin lesion classification approach using transfer learning based convolutional neural network”, Proceedings of the 2021 Seventh International Conference on Bio Signals, Images, and Instrumentation, 1–6, (2021).
  • [23] Islam, M.K., Ali, M.S., Ali, M.M., Haque, M.F., Das, A., Hossain, M., Duranta, D., Rahman, M., “Melanoma Skin Lesions Classification using Deep Convolutional Neural Network with Transfer Learning”, Proceedings of the 2021 1st International Conference on Artificial Intelligence and Data Analytics, 48–53, (2021).
  • [24] Bian, J., Zhang, S., Wang, S., Zhang, J., Guo, J., “Skin lesion classification by multi-view filtered transfer learning”, IEEE Access, 9: 66052–66061, (2021).
  • [25] Kumari, A., Sharma, N., “A review on convolutional neural networks for skin lesion classification”, Proceedings of the 2021 2nd International Conference on Secure Cyber Computing and Communications, 186–191, (2021).
  • [26] Tschandl, P., Rosendahl, C., Kittler, H., “The HAM10000 dataset: A large collection of multi-source dermatoscopic ımages of common pigmented skin lesions”, Scientific Data, 2018, 5(1): 1-9, (2018).
  • [27] Pacheco, A., Lima, G., Salomão, A., B.Krohling., Biral, I., de Angelo, G., Alves Jr, F., Esgario, J., Simora, A., Castro, P., Rodrigues, F., Frasson, P., Krohling, R., H.Knidel., Santos, M., do Espírito Santo, R., Macedo, T., Canuto, T., de Barros, L., “PAD-UFES-20: A skin lesion dataset composed of patient data and clinical images collected from smartphones”, Data in Brief, 32: 106221, (2020).
  • [28] Farajnia, S., “Overcoming the data gap for the remote diagnosis of skin cancer”, Patterns (NY), 1(7): 100117, (2020).
  • [29] Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D., “Grad-CAM: visual explanations from deep networks via gradient-based localization”, Proceedings of the 2017 IEEE International Conference on Computer Vision, 618–626, (2017).
  • [30] Weiss, K., Khoshgoftaar, T., Wang, D., “A survey of transfer learning”, Journal of Big Data, 3(1): 1-40, (2016).
  • [31] Krohling, B., Castro, P.C., Pacheco, A.C., Krohling, R., “A smartphone based application for skin cancer classification using deep learning with clinical ımages and lesion ınformation”, arXiv preprint arXiv:2104.14353, (2021).
  • [32] Pacheco, A., Krohling, R., “The impact of patient clinical information on automated skin cancer detection”, Computers in Biology and Medicine, 116: 103545, (2020).
  • [33] Karthik, R., Vaichole, T. S., Kulkarni, S. K., Yadav, O., Khan, F., “Eff2Net: An efficient channel attention-based convolutional neural network for skin disease classification”, Biomedical Signal Processing and Control, 73: 103406, (2022).
  • [34] Khan, I. U., Aslam, N., Anwar, T., Aljameel, S. S., Ullah, M., Khan, R., Akhtar, N., “Remote Diagnosis and Triaging Model for Skin Cancer Using EfficientNet and Extreme Gradient Boosting”, Complexity, 2021: 5591614, (2021).

Skin Lesion Classification Using CNN-based Transfer Learning Model

Year 2023, Volume: 36 Issue: 2, 660 - 673, 01.06.2023
https://doi.org/10.35378/gujs.1063289

Abstract

The computer-aided diagnosis (CAD) and the analysis of skin lesions using deep learning models have become common in the last decade. The proposed CAD systems have considered various datasets and deep learning models. The transfer of knowledge from particular pre-trained models to others has also gained importance due to the efficient convergence and superior results. This study presents the design and implementation of a transfer learning model using Convolutional Neural Networks (CNN) with variable training epoch numbers to classify skin lesion images obtained by smartphones. The model is divided into the inner and external CNN models to train and transfer the knowledge, and the preprocessing and data augmentation are not applied. Several experiments are performed to classify cancerous and non-cancerous skin lesions and all skin lesion types provided in the dataset separately. The designed model increased the classification rates by 20% compared to the conventional CNN. The transfer learning model achieved 0.81, 0.88, and 0.86 mean recall, mean specificity, and mean accuracy in detecting cancerous lesions, and 0.83, 0.90, and 0.86 macro recall, macro precision, and macro F1 score in classifying six skin lesions. The obtained results show the efficacy of transfer learning in skin lesion diagnosis. 

References

  • [1] Leiter, U., Eigentler, T., Garbe, C., “Epidemiology of skin cancer”, Advances in Experimental Medicine and Biology, 810: 120-40, (2014).
  • [2] Mahbod, A., Schaefer, G., Wang, C., Dorffner, G., Ecker, R., Ellinger, I., “Transfer learning using a multi-scale and multi-network ensemble for skin lesion classification”, Computer Methods and Programs in Biomedicine, 193(2020): 105475, (2020).
  • [3] Schadendorf, D., van Akkooi, A., Berking, C., Griewank, K., Gutzmer, R., Hauschild, A., Stang, A., Roesch, A., Ugurel, S., “Melanoma”, Lancet, 392(10151): 971–984, (2018).
  • [4] Brinker, T., Hekler, A., Utikal, J., Grabe, N., Schadendorf, D., Klode, J., Berking, C., Steeb, T., Enk, A., Von Kalle, C. “Skin cancer classification using convolutional neural networks: systematic review”, Journal of Medical Internet Research, 20(10), (2018).
  • [5] Stolz, W., Riemann, A., Cognetta, A., Pillet, L., Abmayr, W., Holzel, D., Bilek, P., Nachbar, F., Landthaler, M., Braun-Falco, O, “ABCD Rule of dermatoscopy: a new practical method for early recognition of malignant melanoma”, European Journal of Dermatology, 4: 521–527, (1994).
  • [6] Tromme, I., Sacré, L., Hammouch, F., Legrand, C., Marot, L., Vereecken, P., Theate, I., Van Eeckhout, P., Richez, P., Baurain, J., Thomas, L., Speybroeck, N., on behalf of the DEPIMELA study group, “Availability of digital dermoscopy in daily practice dramatically reduces the number of excised melanocytic lesions: results from an observational study”, British Journal of Dermatology, 167(4): 778–786, (2012).
  • [7] Simonyan, K., Zisserman, A., “Very deep convolutional networks for large-scale image recognition”, Proceeding of the 2015 International Conference on Learning Representations, (2015).
  • [8] He, K., Zhang, X., Ren, S., Sun, J., “Deep residual learning for image recognition”, Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, 770–778, (2016).
  • [9] Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z., “Rethinking the inception architecture for computer vision”, Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, 2818–2826, (2016).
  • [10] Huang, G., Liu, Z., van der Maaten, L., Weinberger K., “Densely connected convolutional networks”, Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, 2261–2269, (2017).
  • [11] Tsiakmaki, M., Kostopoulos, G., Kotsiantis, S., Ragos, O., “Transfer learning from deep neural networks for predicting student performance”, Applied Sciences, 10(6): 2145, (2020).
  • [12] Khan, M.A., Muhammad, K., Sharif, M., Akram, T., de Albuquerque, V.H.C., “Multi-class skin lesion detection and classification via teledermatology”, IEEE Journal of Biomedical and Health Informatics, 25(12): 4267-4275, (2021).
  • [13] Rodrigues, D. D. A., Ivo, R.F., Satapathy, S.C., Hemanth, J., Filho, P.P.R., “A new approach for classification skin lesion based on transfer learning, deep learning, and IoT system”, Pattern Recognition Letters, 136: 8–15, (2020).
  • [14] Hosny, K., Kassem, M.A., Fouad, M.M., “Classification of skin lesions using transfer learning and augmentation with Alex-net”, PLoS ONE, 14(5), (2019).
  • [15] Zunair, H., Hamza, A.B., “Melanoma detection using adversarial training and deep transfer learning”, Physics in Medicine Biology, 65(15): 135005, (2020).
  • [16] Afza, F., Sharif, M., Mittal, M., Khan, M.A., Hemanth, D.J., “A hierarchical three-step superpixels and deep learning framework for skin lesion classification”, Methods, (2021).
  • [17] Singhal., A., Shukla, R., Kankar, P., Dubey, S., Singh, S., Pachori, R., “Comparing the capabilities of transfer learning models to detect skin lesion in humans”, Proceedings of the 2020 Institution of Mechanical Engineers Part H Journal of Engineering in Medicine, 234(10): 1083–1093, (2020).
  • [18] El-Khatib, H., Popescu, D., Ichim, L., “Deep learning-based methods for automatic diagnosis of skin lesions”, Sensors, 20(6): 1753, (2020).
  • [19] Rahman, Z., Ami, A., “A transfer learning based approach for skin lesion classification from ımbalanced data”, Proceedings of the 2020 11th International Conference on Electrical and Computer Engineering, 65–68, (2020).
  • [20] Kondaveeti, H., Edupuganti, P., “Skin cancer classification using transfer learning”, Proceedings of the 2020 IEEE International Conference on Advent Trends in Multidisciplinary Research and Innovation, 1–4, (2020).
  • [21] Jibhakate, A., Parnerkar, P., Mondal, S., Bharambe, V., Mantri, S., “Skin lesion classification using deep learning and ımage processing”, Proceedings of the 2020 3rd International Conference on Intelligent Sustainable Systems, 333–340, (2020).
  • [22] Cauvery, K., Siddalingaswamy, P., Pathan, S., D'souza, N., “A multiclass skin lesion classification approach using transfer learning based convolutional neural network”, Proceedings of the 2021 Seventh International Conference on Bio Signals, Images, and Instrumentation, 1–6, (2021).
  • [23] Islam, M.K., Ali, M.S., Ali, M.M., Haque, M.F., Das, A., Hossain, M., Duranta, D., Rahman, M., “Melanoma Skin Lesions Classification using Deep Convolutional Neural Network with Transfer Learning”, Proceedings of the 2021 1st International Conference on Artificial Intelligence and Data Analytics, 48–53, (2021).
  • [24] Bian, J., Zhang, S., Wang, S., Zhang, J., Guo, J., “Skin lesion classification by multi-view filtered transfer learning”, IEEE Access, 9: 66052–66061, (2021).
  • [25] Kumari, A., Sharma, N., “A review on convolutional neural networks for skin lesion classification”, Proceedings of the 2021 2nd International Conference on Secure Cyber Computing and Communications, 186–191, (2021).
  • [26] Tschandl, P., Rosendahl, C., Kittler, H., “The HAM10000 dataset: A large collection of multi-source dermatoscopic ımages of common pigmented skin lesions”, Scientific Data, 2018, 5(1): 1-9, (2018).
  • [27] Pacheco, A., Lima, G., Salomão, A., B.Krohling., Biral, I., de Angelo, G., Alves Jr, F., Esgario, J., Simora, A., Castro, P., Rodrigues, F., Frasson, P., Krohling, R., H.Knidel., Santos, M., do Espírito Santo, R., Macedo, T., Canuto, T., de Barros, L., “PAD-UFES-20: A skin lesion dataset composed of patient data and clinical images collected from smartphones”, Data in Brief, 32: 106221, (2020).
  • [28] Farajnia, S., “Overcoming the data gap for the remote diagnosis of skin cancer”, Patterns (NY), 1(7): 100117, (2020).
  • [29] Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D., “Grad-CAM: visual explanations from deep networks via gradient-based localization”, Proceedings of the 2017 IEEE International Conference on Computer Vision, 618–626, (2017).
  • [30] Weiss, K., Khoshgoftaar, T., Wang, D., “A survey of transfer learning”, Journal of Big Data, 3(1): 1-40, (2016).
  • [31] Krohling, B., Castro, P.C., Pacheco, A.C., Krohling, R., “A smartphone based application for skin cancer classification using deep learning with clinical ımages and lesion ınformation”, arXiv preprint arXiv:2104.14353, (2021).
  • [32] Pacheco, A., Krohling, R., “The impact of patient clinical information on automated skin cancer detection”, Computers in Biology and Medicine, 116: 103545, (2020).
  • [33] Karthik, R., Vaichole, T. S., Kulkarni, S. K., Yadav, O., Khan, F., “Eff2Net: An efficient channel attention-based convolutional neural network for skin disease classification”, Biomedical Signal Processing and Control, 73: 103406, (2022).
  • [34] Khan, I. U., Aslam, N., Anwar, T., Aljameel, S. S., Ullah, M., Khan, R., Akhtar, N., “Remote Diagnosis and Triaging Model for Skin Cancer Using EfficientNet and Extreme Gradient Boosting”, Complexity, 2021: 5591614, (2021).
There are 34 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Electrical & Electronics Engineering
Authors

Kamil Dimililer 0000-0002-2751-0479

Boran Sekeroglu This is me 0000-0001-7284-1173

Publication Date June 1, 2023
Published in Issue Year 2023 Volume: 36 Issue: 2

Cite

APA Dimililer, K., & Sekeroglu, B. (2023). Skin Lesion Classification Using CNN-based Transfer Learning Model. Gazi University Journal of Science, 36(2), 660-673. https://doi.org/10.35378/gujs.1063289
AMA Dimililer K, Sekeroglu B. Skin Lesion Classification Using CNN-based Transfer Learning Model. Gazi University Journal of Science. June 2023;36(2):660-673. doi:10.35378/gujs.1063289
Chicago Dimililer, Kamil, and Boran Sekeroglu. “Skin Lesion Classification Using CNN-Based Transfer Learning Model”. Gazi University Journal of Science 36, no. 2 (June 2023): 660-73. https://doi.org/10.35378/gujs.1063289.
EndNote Dimililer K, Sekeroglu B (June 1, 2023) Skin Lesion Classification Using CNN-based Transfer Learning Model. Gazi University Journal of Science 36 2 660–673.
IEEE K. Dimililer and B. Sekeroglu, “Skin Lesion Classification Using CNN-based Transfer Learning Model”, Gazi University Journal of Science, vol. 36, no. 2, pp. 660–673, 2023, doi: 10.35378/gujs.1063289.
ISNAD Dimililer, Kamil - Sekeroglu, Boran. “Skin Lesion Classification Using CNN-Based Transfer Learning Model”. Gazi University Journal of Science 36/2 (June 2023), 660-673. https://doi.org/10.35378/gujs.1063289.
JAMA Dimililer K, Sekeroglu B. Skin Lesion Classification Using CNN-based Transfer Learning Model. Gazi University Journal of Science. 2023;36:660–673.
MLA Dimililer, Kamil and Boran Sekeroglu. “Skin Lesion Classification Using CNN-Based Transfer Learning Model”. Gazi University Journal of Science, vol. 36, no. 2, 2023, pp. 660-73, doi:10.35378/gujs.1063289.
Vancouver Dimililer K, Sekeroglu B. Skin Lesion Classification Using CNN-based Transfer Learning Model. Gazi University Journal of Science. 2023;36(2):660-73.