Abdulrahman, A. F., Abd-Alghafour, N. M., & Ahmed, S. M. (2021). Optimization and characterization of SILAR synthesized ZnO nanorods for UV photodetector sensor. Sensors and Actuators A: Physical, 323, 112656. doi:10.1016/j.sna.2021.112656
Çorlu, T., Karaduman, I., Galioglu, S., Akata, B., Yıldırım, M. A., Ates, A., & Acar, S. (2018). Low level NO gas sensing properties of Cu doped ZnO thin films prepared by SILAR method. Materials Letters, 212, 292-295. doi:10.1016/j.matlet.2017.10.121
Fu, Z.-x., Guo, C.-x., Lin, B.-x., & Liao, G.-h. (1998). Cathodoluminescence of ZnO Films. Chinese Physics Letters, 15(6), 457. doi:10.1088/0256-307X/15/6/025
Gahramanli, L. R., Muradov, M. B., Balayeva, O. O., Eyvazova, G. M., & Mirsultanova, R. M. (2021). Role of temperature in the growth and formation of CdxZn1-xS/PVA nanocomposites through SILAR method. Materials Research Bulletin, 137, 111162. doi:10.1016/j.materresbull.2020.111162
Gujar, T. P., Shinde, V. R., Kim, W.-Y., Jung, K.-D., Lokhande, C. D., & Joo, O.-S. (2008) Formation of CdO films from chemically deposited Cd(OH)2 films as a precursor. Applied Surface Science, 254(13), 3813-3818. doi:10.1016/j.apsusc.2007.12.015
Gurav, K. V., Fulari, V. J., Patil, U. M., Lokhande, C. D., & Joo, O.-S. (2010) Room temperature soft chemical route for nanofibrous wurtzite ZnO thin film synthesis. Applied Surface Science, 256(9), 2680-2685. doi:10.1016/j.apsusc.2009.09.080
Habibi, R., Towfighi Daryan, J., & Rashidi, A. M. (2009). Shape and size-controlled fabrication of ZnO nanostructures using novel templates. Journal of Experimental Nanoscience, 4(1), 35-45 doi:10.1080/17458080802680796
Hammad, A. H., Abdel-wahab, M. Sh., Vattamkandathil, S., &Ansari, A. R. (2018) Structural and optical properties of ZnO thin films prepared by RF sputtering at different thicknesses. Physica B: Condensed Matter, 540, 1-8 doi:10.1016/j.physb.2018.04.017
Irani, M., Mohammadi, T., & Mohebbi, S. (2016). Photocatalytic Degradation of Methylene Blue with ZnO Nanoparticles; a Joint Experimental and Theoretical Study. Journal of The Mexican Chemical Society, 60(4), 218-225. doi:10.29356/jmcs.v60i4.115
Jambure, S. B., Patil, S. J., Deshpande, A. R., & Lokhande, C. D. (2014). A comparative study of physico-chemical properties of CBD and SILAR grown ZnO thin films. Materials Research Bulletin, 49, 420-425. doi:10.1016/j.materresbull.2013.09.007
Karaduman Er, I., Yıldırım, M. A., Örkçü, H. H., Ateş, A. & Acar, S. (2021). Structural, morphological and gas sensing properties of Zn1−xSnxO thin films by SILAR method. Applied Physics A, 127, 230 doi:10.1007/s00339-021-04354-7
Komaraiah, D., Radha, E., Vijayakumar, Y., Sivakumar, J., Reddy, M. V. R., & Sayanna, R. (2016) Optical, Structural and Morphological Properties of Photocatalytic ZnO Thin Films Deposited by Pray Pyrolysis Technique. Modern Research in Catalysis, 5(4), 130-146. doi:10.4236/mrc.2016.54011
Kumar, B., Smita, K., Cumbal, L., & Debut, A. (2014). Green Approach for Fabrication and Applications of Zinc Oxide Nanoparticles. Bioinorganic Chemistry and Applications, 523869. doi:10.1155/2014/523869
Méndez-Vilas, A., Bruque, J. M., & González-Martín, M. L. (2007). Sensitivity of surface roughness parameters to changes in the density of scanning points in multi-scale AFM studies. Application to a biomaterial surface. Ultramicroscopy, 107(8), 617-625. doi:10.1016/j.ultramic.2006.12.002
Radhi Devi, K., Selvan, G., Karunakaran, M., Kasirajan, K., Shkir, M., & AlFaify, S. (2020). A SILAR fabrication of nanostructured ZnO thin films and their characterizations for gas sensing applications: An effect of Ag concentration. Superlattices Microstructure, 143, 106547. doi:10.1016/j.spmi.2020.106547
Raidou, A., Benmalek, F., Sall, T., Aggour, M., Qachaou, A., Laanab, L., & Fahoume, M. (2014). The influence of rinsing period on the structural and optical properties of ZnO thin films. Optical and Quantum Electronics, 46, 171-178. doi:10.1007/s11082-013-9737-6
Rayathulhan, R., Kayode Sodipo, B., & Abdul Aziz, A. (2017). Nucleation and growth of zinc oxide nanorods directly on metal wire by sonochemical method. Ultrasonics Sonochemistry, 35(Part A), 270-275. doi:10.1016/j.ultsonch.2016.10.002
Shaba, E. Y., Jacob, J. O., Tijani, J. O., & Suleiman, M. A. T. (2021). A critical review of synthesis parameters affecting the properties of zinc oxide nanoparticle and its application in wastewater treatment. Applied Water Science, 11, 48. doi:10.1007/s13201-021-01370-z
Şahin, B., Aydin, R., Soylu, S., Türkmen, M., Kara, M., Akkaya, A., Çetin, H., & Ayyıldız, E. (2022). The effect of thymus syriacus plant extract on the main physical and antibacterial activities of ZnO nanoparticles synthesized by SILAR method. Inorganic Chemistry Communications, 135, 109088. doi:10.1016/j.inoche.2021.109088
Vaizoğullar, A. İ. (2018). Comparing Photocatalytic Activity of ZnO and Nanospherical ZnO/Bentonite Catalyst: Preparation, Structural Characterization and their Photocatalytic Performances using Oxytetracycline Antibiotic in Aqueous Solution. Journal of The Mexican Chemical Society, 62(1), 1-17. doi:10.29356/jmcs.v62i1.578
Yıldırım, M. A., & Ates, A. (2010). Influence of films thickness and structure on the photo-response of ZnO films. Optics Communications, 283(7), 1370-1377. doi:10.1016/j.optcom.2009.12.009
Zheng, Z., Peng, Z., Yu, Z., Lan, H., Wang, S., Zhang, M., Li, L., Liang, H., & Su, H. (2022) Thickness-dependent optical response and ultrafast carrier dynamics of PtSe2 films. Results in Physics, 42, 106012. doi:10.1016/j.rinp.2022.106012
Influence of the Hot Water Parameter on the Structural and Optical Properties of SILAR-Deposited ZnO Samples
In this study, ZnO thin films were grown by the Successive Ionic Layer Adsorption and Reaction (SILAR) method. The SILAR method is a chemical solution-based method consisting of 4 steps: solution, hot water, air and deionized water. Our main goal is to examine the changes in SILAR method production by changing the hot water parameter from these steps. It is widely known that chemical synthesis methods and their relative parameters have a crucial effect on the size of the produced thin films, surface area/volume ratio, porosity as well as defects in the film which in turn affect the morphology. All parameters were kept the same and changes were made in the hot water step, in addition to the classic 90°C hot water step, constant temperature ultrasonic cleaner at 40 ºC, an ultrasonic cleaner at room temperature, and an ultrasonic breaker at room temperature are used instead of the hot water step. For this purpose, alternative devices such as ultrasonic cleaner and ultrasonic breaker were used to break the unwanted weak bonds at lower temperatures during production. The structural, morphological, optical and electrical properties were characterized and the results were investigated in detail.
Abdulrahman, A. F., Abd-Alghafour, N. M., & Ahmed, S. M. (2021). Optimization and characterization of SILAR synthesized ZnO nanorods for UV photodetector sensor. Sensors and Actuators A: Physical, 323, 112656. doi:10.1016/j.sna.2021.112656
Çorlu, T., Karaduman, I., Galioglu, S., Akata, B., Yıldırım, M. A., Ates, A., & Acar, S. (2018). Low level NO gas sensing properties of Cu doped ZnO thin films prepared by SILAR method. Materials Letters, 212, 292-295. doi:10.1016/j.matlet.2017.10.121
Fu, Z.-x., Guo, C.-x., Lin, B.-x., & Liao, G.-h. (1998). Cathodoluminescence of ZnO Films. Chinese Physics Letters, 15(6), 457. doi:10.1088/0256-307X/15/6/025
Gahramanli, L. R., Muradov, M. B., Balayeva, O. O., Eyvazova, G. M., & Mirsultanova, R. M. (2021). Role of temperature in the growth and formation of CdxZn1-xS/PVA nanocomposites through SILAR method. Materials Research Bulletin, 137, 111162. doi:10.1016/j.materresbull.2020.111162
Gujar, T. P., Shinde, V. R., Kim, W.-Y., Jung, K.-D., Lokhande, C. D., & Joo, O.-S. (2008) Formation of CdO films from chemically deposited Cd(OH)2 films as a precursor. Applied Surface Science, 254(13), 3813-3818. doi:10.1016/j.apsusc.2007.12.015
Gurav, K. V., Fulari, V. J., Patil, U. M., Lokhande, C. D., & Joo, O.-S. (2010) Room temperature soft chemical route for nanofibrous wurtzite ZnO thin film synthesis. Applied Surface Science, 256(9), 2680-2685. doi:10.1016/j.apsusc.2009.09.080
Habibi, R., Towfighi Daryan, J., & Rashidi, A. M. (2009). Shape and size-controlled fabrication of ZnO nanostructures using novel templates. Journal of Experimental Nanoscience, 4(1), 35-45 doi:10.1080/17458080802680796
Hammad, A. H., Abdel-wahab, M. Sh., Vattamkandathil, S., &Ansari, A. R. (2018) Structural and optical properties of ZnO thin films prepared by RF sputtering at different thicknesses. Physica B: Condensed Matter, 540, 1-8 doi:10.1016/j.physb.2018.04.017
Irani, M., Mohammadi, T., & Mohebbi, S. (2016). Photocatalytic Degradation of Methylene Blue with ZnO Nanoparticles; a Joint Experimental and Theoretical Study. Journal of The Mexican Chemical Society, 60(4), 218-225. doi:10.29356/jmcs.v60i4.115
Jambure, S. B., Patil, S. J., Deshpande, A. R., & Lokhande, C. D. (2014). A comparative study of physico-chemical properties of CBD and SILAR grown ZnO thin films. Materials Research Bulletin, 49, 420-425. doi:10.1016/j.materresbull.2013.09.007
Karaduman Er, I., Yıldırım, M. A., Örkçü, H. H., Ateş, A. & Acar, S. (2021). Structural, morphological and gas sensing properties of Zn1−xSnxO thin films by SILAR method. Applied Physics A, 127, 230 doi:10.1007/s00339-021-04354-7
Komaraiah, D., Radha, E., Vijayakumar, Y., Sivakumar, J., Reddy, M. V. R., & Sayanna, R. (2016) Optical, Structural and Morphological Properties of Photocatalytic ZnO Thin Films Deposited by Pray Pyrolysis Technique. Modern Research in Catalysis, 5(4), 130-146. doi:10.4236/mrc.2016.54011
Kumar, B., Smita, K., Cumbal, L., & Debut, A. (2014). Green Approach for Fabrication and Applications of Zinc Oxide Nanoparticles. Bioinorganic Chemistry and Applications, 523869. doi:10.1155/2014/523869
Méndez-Vilas, A., Bruque, J. M., & González-Martín, M. L. (2007). Sensitivity of surface roughness parameters to changes in the density of scanning points in multi-scale AFM studies. Application to a biomaterial surface. Ultramicroscopy, 107(8), 617-625. doi:10.1016/j.ultramic.2006.12.002
Radhi Devi, K., Selvan, G., Karunakaran, M., Kasirajan, K., Shkir, M., & AlFaify, S. (2020). A SILAR fabrication of nanostructured ZnO thin films and their characterizations for gas sensing applications: An effect of Ag concentration. Superlattices Microstructure, 143, 106547. doi:10.1016/j.spmi.2020.106547
Raidou, A., Benmalek, F., Sall, T., Aggour, M., Qachaou, A., Laanab, L., & Fahoume, M. (2014). The influence of rinsing period on the structural and optical properties of ZnO thin films. Optical and Quantum Electronics, 46, 171-178. doi:10.1007/s11082-013-9737-6
Rayathulhan, R., Kayode Sodipo, B., & Abdul Aziz, A. (2017). Nucleation and growth of zinc oxide nanorods directly on metal wire by sonochemical method. Ultrasonics Sonochemistry, 35(Part A), 270-275. doi:10.1016/j.ultsonch.2016.10.002
Shaba, E. Y., Jacob, J. O., Tijani, J. O., & Suleiman, M. A. T. (2021). A critical review of synthesis parameters affecting the properties of zinc oxide nanoparticle and its application in wastewater treatment. Applied Water Science, 11, 48. doi:10.1007/s13201-021-01370-z
Şahin, B., Aydin, R., Soylu, S., Türkmen, M., Kara, M., Akkaya, A., Çetin, H., & Ayyıldız, E. (2022). The effect of thymus syriacus plant extract on the main physical and antibacterial activities of ZnO nanoparticles synthesized by SILAR method. Inorganic Chemistry Communications, 135, 109088. doi:10.1016/j.inoche.2021.109088
Vaizoğullar, A. İ. (2018). Comparing Photocatalytic Activity of ZnO and Nanospherical ZnO/Bentonite Catalyst: Preparation, Structural Characterization and their Photocatalytic Performances using Oxytetracycline Antibiotic in Aqueous Solution. Journal of The Mexican Chemical Society, 62(1), 1-17. doi:10.29356/jmcs.v62i1.578
Yıldırım, M. A., & Ates, A. (2010). Influence of films thickness and structure on the photo-response of ZnO films. Optics Communications, 283(7), 1370-1377. doi:10.1016/j.optcom.2009.12.009
Zheng, Z., Peng, Z., Yu, Z., Lan, H., Wang, S., Zhang, M., Li, L., Liang, H., & Su, H. (2022) Thickness-dependent optical response and ultrafast carrier dynamics of PtSe2 films. Results in Physics, 42, 106012. doi:10.1016/j.rinp.2022.106012
Akyürekli, S., Çorlu, T., Karaduman Er, İ., Acar, S. (2022). Influence of the Hot Water Parameter on the Structural and Optical Properties of SILAR-Deposited ZnO Samples. Gazi University Journal of Science Part A: Engineering and Innovation, 9(4), 439-451. https://doi.org/10.54287/gujsa.1180316