This study addresses the anion binding property of Glipizide (GLP), an oral antidiabetic a second-generation drug member of the sulphonylurea (SU) family. GLP effectively interacts with Cl- anion according to 1H-NMR spectroscopic titrations of successive tetrabutylammonium chloride (TBACl) in deuterated chloroform (CDCl3) and dimethyl sulfoxide (d6-DMSO). Upon the addition of TBACl, the change in chemical shift was observed for both N-H protons of SU in CDCl3, whereas it causes a difference in the shift of only one of N-H proton in SU in d6-DMSO. In addition, the data obtained from 1H-NMR spectroscopic titrations was analyzed by DynaFit program to calculate the binding constant (Ka) value between GLP and Cl- anion. It was found that GLP binds Cl- anion in CDCl3 with higher affinity (Ka=77.37 M-1, Fitplot for N-Hh proton at δ=6.47 ppm) than in d6-DMSO (Ka=38.53 M-1, Fitplot for N-Hh proton at δ=6.32 ppm).
Adhikari, L., Jagadev, S., Sahoo, S., Murthy, P. N., & Mishra, U. S. (2012). Devlopement and Validation of UV-Visible Spectrophotometric Method for Simultaneous Determination of pioglitazone Hydrochloride, Metformin Hydrochloride and Glipizide in its Bulk and Pharmaceutical Dosage Form (Tablet). International Journal of Chem Tech Research, 4(2), 625-630.
Aguilar-Bryan, L., Nichols, C. G., Wechsler, S. W., Clement IV, J. P., Boyd III, A. E., González, G., Herrera-Sosa, H., Nguy, K., Bryan, J., & Nelson, D. A. (1995). Cloning of the β Cell High-Affinity Sulfonylurea Receptor: a Regulator of Insulin Secretion. Science, 268(5209), 423-426. doi:10.1126/science.7716547
Ambadekar, S., & Keni, S. (2018). Fast and Economic Spectrophotometric Method for Metformin and Glipizide in Combination Tablet. International Journal of Advances in Science Engineering and Technology, 6(1), 31-35.
Amendola, V., Bergamaschi, G., Boiocchi, M., Fabbrizzi, L., & Milani, M. (2010). The Squaramide versus Urea Contest for Anion Recognition. Chemistry, 16(14), 4368-4380. doi:10.1002/chem.200903190
Anwer, R., AlQumaizi, K. I., Haque, S., Somvanshi, P., Ahmad, N., AlOsaimi, S. M., & Fatma, T. (2021). Unravelling the Interaction of Glipizide with Human Serum Albumin Using Various Spectroscopic Techniques and Molecular Dynamics Studies. Journal of Biomolecular Structure and Dynamics, 39(1), 336-347. doi:10.1080/07391102.2019.1711195
Bao, X., Wu, X., Berry, S. N., Howe, E. N. W., Chang, Y.-T., & Gale, P. A. (2018). Fluorescent squaramides as anion receptors and transmembrane anion transporters. Chemical Communications, 54(11), 1363-1366. doi:10.1039/C7CC08706C
Barišić, D., Cindro, N., Vidović, N., Bregović, N., & Tomišić, V. (2021). Protonation and anion-binding properties of aromatic sulfonylurea derivatives. RSC Advances, 11(39), 23992-24000. doi:10.1039/D1RA04738H
Barišić, D., Lešić, F., Tireli Vlašić, M., Užarević, K., Bregović, N., & Tomišić, V. (2022). Anion Binding by receptors containing NH donating groups – What do anions prefer?. Tetrahedron, 120, 132875-132883. doi:10.1016/j.tet.2022.132875
Best, L., & Benington, S. (1998). Effects of sulphonylureas on the volume-sensitive anion channel in rat pancreatic β-cells. British Journal of Pharmacology, 125(4), 874-878. doi:10.1038/sj.bjp.0702148
Best, L., Davies, S., & Brown, P. D. (2004). Tolbutamide potentiates the volume-regulated anion channel current in rat pancreatic beta cells. Diabetologia, 47(11), 1990-1997. doi:10.1007/s00125-004-1559-4
Bondy, C. R., & Loeb, S. J. (2003). Amide based receptors for anions. Coordination Chemistry Reviews, 240(1-2), 77-99. doi:10.1016/S0010-8545(02)00304-1
Brogden, R. N., Heel, R. C., Pakes, G. E., Speight, T. M., & Avery, G. S. (1979). Glipizide: A Review of its Pharmacological Properties and Therapeutic Use. Drugs, 18(5), 329-353 doi:10.2165/00003495-197918050-00001
Cai, X.-J., Li, Z., & Chen, W.-H. (2018). Synthesis, Anion Recognition and Transmembrane Anion-transport Properties of Squaramides and Their Derivatives. Mini-Reviews in Organic Chemistry, 15(2), 148-156. doi:10.2174/1570193X14666171114115629
Davis, A. P., Sheppard, D. N., & Smith, B. D. (2007). Development of synthetic membrane transporters for anions. Chemical Society Reviews, 36(2), 348-357. doi:10.1039/B512651G
Emami, J., Boushehri, M. S. S., & Varshosaz, J. (2014). Preparation, characterization and optimization of glipizide controlled release nanoparticles. Research in Pharmaceutical Sciences, 9(5), 301-314.
Ganesh, K., Nikitha, G., Sireesha, D., & Vasudha, B. (2016). Development and Validation of UV Spectrophotometric Method for Simultaneous Estimation of Metformin and Glipizide in Tablet Dosage Form. International Journal of Applied Pharmaceutical Sciences and Research, 1(2), 56-59. doi:10.21477/ijapsr.v1i2.10176
Gribble, F. M., & Reimann, F. (2002). Pharmacological modulation of KATP channels. Biochemical Society Transactions, 30(2), 333-339. doi:10.1042/bst0300333
Hasanah, A. N., Pessagno, F., Kartasasmita, R. E., Ibrahim, S., & Manesiotis, P. (2015). Tetrabutylammonium methacrylate as a novel receptor for selective extraction of sulphonylurea drugs from biological fluids using molecular imprinting. Journal of Materials Chemistry B, 3(43), 8577-8583. doi:10.1039/C5TB01512J
Hosogi, S., Kusuzaki, K., Inui, T., Wang, X., & Marunaka, Y. (2014). Cytosolic chloride ion is a key factor in lysosomal acidification and function of autophagy in human gastric cancer cell. Journal of Cellular and Molecular Medicine, 18(6), 1124-1133. doi:10.1111/jcmm.12257
Huggins, M. T., Butler, T., Barber, P., & Hunt, J. (2009). Synthesis and molecular recognition studies of pyrrole sulfonamides. Chemical Communications, (35), 5254-5256. doi:10.1039/B911985J
Hussan, K. P. S., Rahoof, K. A. A., Medammal, Z., Thayyil, M. S., & Babu, T. D. (2022). Theoretical insights into the radical scavenging activity of glipizide: DFT and molecular docking studies. Free Radical Research, 56(1), 53-62. doi:10.1080/10715762.2022.2034803
Jena, B. R., Swain, S., Babu, S. M., Pradhan, D. P., & Sasikanth, K. (2017). UV spectrophotometric Method Development and Quantitative Estimation of Glipizide in Bulk and Pharmaceutical Dosage Forms. International Journal of Drug Research and Technology, 7(3), 112-122.
Kang, S. O., Begum, R. A., & Bowman-James, K. (2006). Amide-Based Ligands for Anion Coordination. Angewandte Chemie International Edition, 45(47), 7882-7894. doi:10.1002/anie.200602006
Kinard, T. A., & Satin, L. S. (1995). An ATP-Sensitive Cl- Channel Current That Is Activated by Cell Swelling, cAMP, and Glyburide in Insulin-Secreting Cells. Diabetes, 44(12), 1461-1466. doi:10.2337/diab.44.12.1461
Kumawat, L. K., Wynne, C., Cappello, E., Fisher, P., Brennan, L. E., Strofaldi, A., McManus, J. J., Hawes, C. S., Jolliffe, K. A., Gunnlaugsson, T., & Elmes, R. B. P. (2021). Squaramide-Based Self-Associating Amphiphiles for Anion Recognition. ChemPlusChem, 86(8), 1058-1068. doi:10.1002/cplu.202100275
Kuzmič, P. (2009). DynaFit-A Software Package for Enzymology. In: M. L. Johnson, & L. Brand (Eds.), Computer Methods Part B (Methods in Enzymology book series, vol. 467), (pp. 247-280). doi:10.1016/S0076-6879(09)67010-5
Lebovitz, H. E., & Feinglos, M. N. (1983). Mechanism of Action of the Second-Generation Sulfonylurea Glipizide. The American Journal of Medicine, 75(5), 46-54. doi:10.1016/0002-9343(83)90253-X
Li, A.-F., Wang, J.-H., Wang, F., & Jiang, Y.-B. (2010). Anion complexation and sensing using modified urea and thiourea-based receptors. Chemical Society Reviews, 39(10), 3729-3745. doi:10.1039/B926160P
Marchetti, L. A., Kumawat, L. K., Mao, N., Stephens, J. C., & Elmes, R. B. P. (2019). The Versatility of Squaramides: From Supramolecular Chemistry to Chemical Biology. Chem, 5(6), 1398-1485. doi:10.1016/j.chempr.2019.02.027
Martin, S. L., Saint-Criq, V., Hwang, T.-C., & Csanády, L. (2018). Ion channels as targets to treat cystic fibrosis lung disease. Journal of Cystic Fibrosis, 17(2), S22-S27. doi:10.1016/j.jcf.2017.10.006
Mercurio, J. M., Caballero, A., Cookson, J., & Beer, P. D. (2015). A halogen- and hydrogen-bonding [2]catenane for anion recognition and sensing. RSC Advances, 5(12), 9298-9306. doi:10.1039/C4RA15380D
Ming, X., Qi, Z.-C., Lian, H.-Z., & Wang, S.-K. (2008). Spectral Data Analyses and Structure Elucidation of Hypoglycemic Drug Glipizide. Instrumentation Science & Technology, 36(5), 503-514. doi:10.1080/10739140802234956
Norris, E. (1979). Glipizide, a new second-generation sulfonylurea. In: R. A. Camerini-Davalos, B. Hanover (Eds.), Treatment of EARLY DIABETES (Advances in Experimental Medicine and Biology book series, vol.119), (pp. 427-434). doi:10.1007/978-1-4615-9110-8_62
Pahwa, R., Bohra, P., Sharma, P. C., Kumar, V., & Dureja, H. (2010). Glipizide: Some Analytical, Clinical and Therapeutic Vistas. International Journal of Chemical Sciences, 8(1), 59-80.
Pessagno, F., Hasanah, A. N., & Manesiotis, P. (2018). Molecularly imprinted 'traps' for sulfonylureas prepared using polymerisable ion pairs. RSC Advances, 8(26), 14212-14220. doi:10.1039/C8RA01135D
Picci, G., Kubicki, M., Garau, A., Lippolis, V., Mocci, R., Porcheddu, A., Quesada, R., Ricci, P. C., Scorciapino, M. A., & Caltagirone, C. (2020). Simple squaramide receptors for highly efficient anion binding in aqueous media and transmembrane transport. Chemical Communications, 56(75), 11066-11069. doi:10.1039/D0CC04090H
Prakash, O., & Iqbal, S. A. (2015). FTIR, 1H NMR, mass spectral, XRD and thermal characterization studies of NdIII and SmIII complexes of glipizide: An oral antidiabetic drug. Journal of Indian Chemical Society, 92(1), 51-63. doi:10.5281/zenodo.5602962
Prasad, N., Issarani, R., & Nagori, B. P. (2013). Ultraviolet Spectrophotometric Method for Determination of Glipizide in Presence of Liposomal/Proliposomal Turbidity. Journal of Spectroscopy, 2013, 836372. doi:10.1155/2013/836372
Qi, C., Zhou, Q., Li, B., Yang, Y., Cao, L., Ye, Y., Li, J., Ding, Y., Wang, H., Wang, J., He, X., Zhang, Q., Lan, T., Ka Ho Lee, K., Li, W., Song, X., Zhou, J., Yang, X., & Wang, L. (2014). Glipizide, an antidiabetic drug, suppresses tumor growth and metastasis by inhibiting angiogenesis. Oncotarget, 5(20), 9966-9979. doi:10.18632/oncotarget.2483
Ramalingam, V., Domaradzki, M. E., Jang, S., & Muthyala, R. S. (2008). Carbonyl Groups as Molecular Valves to Regulate Chloride Binding to Squaramides. Organic Letters, 10(15), 3315-3318. doi:10.1021/ol801204s
Renström, E., Barg, S., Thévenod, F., & Rorsman, P. (2002). Sulfonylurea-Mediated Stimulation of Insulin Exocytosis via an ATP-sensitive K+ Channel-Independent Action. Diabetes, 51(1), S33-S36. doi:10.2337/diabetes.51.2007.S33
Rowe, S. M., Miller, S., & Sorscher, E. J. (2005). Cystic Fibrosis. New England Journal of Medicine, 352(19), 1992-2001. doi:10.1056/NEJMra043184
Sehlin, J. (1981). Are Cl- Mechanisms in Mouse Pancreatic Islets involved in Insulin Release?. Upsala Journal of Medical Sciences, 86(2), 177-182. doi:10.3109/03009738109179226
Shuman, C. R. (1983). Glipizide: An Overview. The American Journal of Medicine, 75(5), 55-59. doi:10.1016/0002-9343(83)90254-1
Thordarson, P. (2011). Determining association constants from titration experiments in supramolecular chemistry. Chemical Society Reviews, 40(3), 1305-1323 doi:10.1039/C0CS00062K
Ulatowski, F., Dabrowa, K., Balakier, T., & Jurczak, J. (2016). Recognizing the Limited Applicability of Job Plots in Studying Host-Guest Interactions in Supramolecular Chemistry. The Journal of Organic Chemistry, 81(5), 1746-1756. doi:10.1021/acs.joc.5b02909
Valdivieso, A. G., & Santa-Coloma, T. A. (2019). The chloride anion as a signaling effector. Biological Reviews, 94(5), 1839-1856. doi:10.1111/brv.12536
Zapata, F., Benítez-Benítez, S. J., Sabater, P., Caballero, A., & Molina, P. (2017). Modulation of the Selectivity in Anions Recognition Processes by Combining Hydrogen- and Halogen-Bonding Interactions. Molecules, 22(12), 2273. doi:10.3390/molecules22122273
Adhikari, L., Jagadev, S., Sahoo, S., Murthy, P. N., & Mishra, U. S. (2012). Devlopement and Validation of UV-Visible Spectrophotometric Method for Simultaneous Determination of pioglitazone Hydrochloride, Metformin Hydrochloride and Glipizide in its Bulk and Pharmaceutical Dosage Form (Tablet). International Journal of Chem Tech Research, 4(2), 625-630.
Aguilar-Bryan, L., Nichols, C. G., Wechsler, S. W., Clement IV, J. P., Boyd III, A. E., González, G., Herrera-Sosa, H., Nguy, K., Bryan, J., & Nelson, D. A. (1995). Cloning of the β Cell High-Affinity Sulfonylurea Receptor: a Regulator of Insulin Secretion. Science, 268(5209), 423-426. doi:10.1126/science.7716547
Ambadekar, S., & Keni, S. (2018). Fast and Economic Spectrophotometric Method for Metformin and Glipizide in Combination Tablet. International Journal of Advances in Science Engineering and Technology, 6(1), 31-35.
Amendola, V., Bergamaschi, G., Boiocchi, M., Fabbrizzi, L., & Milani, M. (2010). The Squaramide versus Urea Contest for Anion Recognition. Chemistry, 16(14), 4368-4380. doi:10.1002/chem.200903190
Anwer, R., AlQumaizi, K. I., Haque, S., Somvanshi, P., Ahmad, N., AlOsaimi, S. M., & Fatma, T. (2021). Unravelling the Interaction of Glipizide with Human Serum Albumin Using Various Spectroscopic Techniques and Molecular Dynamics Studies. Journal of Biomolecular Structure and Dynamics, 39(1), 336-347. doi:10.1080/07391102.2019.1711195
Bao, X., Wu, X., Berry, S. N., Howe, E. N. W., Chang, Y.-T., & Gale, P. A. (2018). Fluorescent squaramides as anion receptors and transmembrane anion transporters. Chemical Communications, 54(11), 1363-1366. doi:10.1039/C7CC08706C
Barišić, D., Cindro, N., Vidović, N., Bregović, N., & Tomišić, V. (2021). Protonation and anion-binding properties of aromatic sulfonylurea derivatives. RSC Advances, 11(39), 23992-24000. doi:10.1039/D1RA04738H
Barišić, D., Lešić, F., Tireli Vlašić, M., Užarević, K., Bregović, N., & Tomišić, V. (2022). Anion Binding by receptors containing NH donating groups – What do anions prefer?. Tetrahedron, 120, 132875-132883. doi:10.1016/j.tet.2022.132875
Best, L., & Benington, S. (1998). Effects of sulphonylureas on the volume-sensitive anion channel in rat pancreatic β-cells. British Journal of Pharmacology, 125(4), 874-878. doi:10.1038/sj.bjp.0702148
Best, L., Davies, S., & Brown, P. D. (2004). Tolbutamide potentiates the volume-regulated anion channel current in rat pancreatic beta cells. Diabetologia, 47(11), 1990-1997. doi:10.1007/s00125-004-1559-4
Bondy, C. R., & Loeb, S. J. (2003). Amide based receptors for anions. Coordination Chemistry Reviews, 240(1-2), 77-99. doi:10.1016/S0010-8545(02)00304-1
Brogden, R. N., Heel, R. C., Pakes, G. E., Speight, T. M., & Avery, G. S. (1979). Glipizide: A Review of its Pharmacological Properties and Therapeutic Use. Drugs, 18(5), 329-353 doi:10.2165/00003495-197918050-00001
Cai, X.-J., Li, Z., & Chen, W.-H. (2018). Synthesis, Anion Recognition and Transmembrane Anion-transport Properties of Squaramides and Their Derivatives. Mini-Reviews in Organic Chemistry, 15(2), 148-156. doi:10.2174/1570193X14666171114115629
Davis, A. P., Sheppard, D. N., & Smith, B. D. (2007). Development of synthetic membrane transporters for anions. Chemical Society Reviews, 36(2), 348-357. doi:10.1039/B512651G
Emami, J., Boushehri, M. S. S., & Varshosaz, J. (2014). Preparation, characterization and optimization of glipizide controlled release nanoparticles. Research in Pharmaceutical Sciences, 9(5), 301-314.
Ganesh, K., Nikitha, G., Sireesha, D., & Vasudha, B. (2016). Development and Validation of UV Spectrophotometric Method for Simultaneous Estimation of Metformin and Glipizide in Tablet Dosage Form. International Journal of Applied Pharmaceutical Sciences and Research, 1(2), 56-59. doi:10.21477/ijapsr.v1i2.10176
Gribble, F. M., & Reimann, F. (2002). Pharmacological modulation of KATP channels. Biochemical Society Transactions, 30(2), 333-339. doi:10.1042/bst0300333
Hasanah, A. N., Pessagno, F., Kartasasmita, R. E., Ibrahim, S., & Manesiotis, P. (2015). Tetrabutylammonium methacrylate as a novel receptor for selective extraction of sulphonylurea drugs from biological fluids using molecular imprinting. Journal of Materials Chemistry B, 3(43), 8577-8583. doi:10.1039/C5TB01512J
Hosogi, S., Kusuzaki, K., Inui, T., Wang, X., & Marunaka, Y. (2014). Cytosolic chloride ion is a key factor in lysosomal acidification and function of autophagy in human gastric cancer cell. Journal of Cellular and Molecular Medicine, 18(6), 1124-1133. doi:10.1111/jcmm.12257
Huggins, M. T., Butler, T., Barber, P., & Hunt, J. (2009). Synthesis and molecular recognition studies of pyrrole sulfonamides. Chemical Communications, (35), 5254-5256. doi:10.1039/B911985J
Hussan, K. P. S., Rahoof, K. A. A., Medammal, Z., Thayyil, M. S., & Babu, T. D. (2022). Theoretical insights into the radical scavenging activity of glipizide: DFT and molecular docking studies. Free Radical Research, 56(1), 53-62. doi:10.1080/10715762.2022.2034803
Jena, B. R., Swain, S., Babu, S. M., Pradhan, D. P., & Sasikanth, K. (2017). UV spectrophotometric Method Development and Quantitative Estimation of Glipizide in Bulk and Pharmaceutical Dosage Forms. International Journal of Drug Research and Technology, 7(3), 112-122.
Kang, S. O., Begum, R. A., & Bowman-James, K. (2006). Amide-Based Ligands for Anion Coordination. Angewandte Chemie International Edition, 45(47), 7882-7894. doi:10.1002/anie.200602006
Kinard, T. A., & Satin, L. S. (1995). An ATP-Sensitive Cl- Channel Current That Is Activated by Cell Swelling, cAMP, and Glyburide in Insulin-Secreting Cells. Diabetes, 44(12), 1461-1466. doi:10.2337/diab.44.12.1461
Kumawat, L. K., Wynne, C., Cappello, E., Fisher, P., Brennan, L. E., Strofaldi, A., McManus, J. J., Hawes, C. S., Jolliffe, K. A., Gunnlaugsson, T., & Elmes, R. B. P. (2021). Squaramide-Based Self-Associating Amphiphiles for Anion Recognition. ChemPlusChem, 86(8), 1058-1068. doi:10.1002/cplu.202100275
Kuzmič, P. (2009). DynaFit-A Software Package for Enzymology. In: M. L. Johnson, & L. Brand (Eds.), Computer Methods Part B (Methods in Enzymology book series, vol. 467), (pp. 247-280). doi:10.1016/S0076-6879(09)67010-5
Lebovitz, H. E., & Feinglos, M. N. (1983). Mechanism of Action of the Second-Generation Sulfonylurea Glipizide. The American Journal of Medicine, 75(5), 46-54. doi:10.1016/0002-9343(83)90253-X
Li, A.-F., Wang, J.-H., Wang, F., & Jiang, Y.-B. (2010). Anion complexation and sensing using modified urea and thiourea-based receptors. Chemical Society Reviews, 39(10), 3729-3745. doi:10.1039/B926160P
Marchetti, L. A., Kumawat, L. K., Mao, N., Stephens, J. C., & Elmes, R. B. P. (2019). The Versatility of Squaramides: From Supramolecular Chemistry to Chemical Biology. Chem, 5(6), 1398-1485. doi:10.1016/j.chempr.2019.02.027
Martin, S. L., Saint-Criq, V., Hwang, T.-C., & Csanády, L. (2018). Ion channels as targets to treat cystic fibrosis lung disease. Journal of Cystic Fibrosis, 17(2), S22-S27. doi:10.1016/j.jcf.2017.10.006
Mercurio, J. M., Caballero, A., Cookson, J., & Beer, P. D. (2015). A halogen- and hydrogen-bonding [2]catenane for anion recognition and sensing. RSC Advances, 5(12), 9298-9306. doi:10.1039/C4RA15380D
Ming, X., Qi, Z.-C., Lian, H.-Z., & Wang, S.-K. (2008). Spectral Data Analyses and Structure Elucidation of Hypoglycemic Drug Glipizide. Instrumentation Science & Technology, 36(5), 503-514. doi:10.1080/10739140802234956
Norris, E. (1979). Glipizide, a new second-generation sulfonylurea. In: R. A. Camerini-Davalos, B. Hanover (Eds.), Treatment of EARLY DIABETES (Advances in Experimental Medicine and Biology book series, vol.119), (pp. 427-434). doi:10.1007/978-1-4615-9110-8_62
Pahwa, R., Bohra, P., Sharma, P. C., Kumar, V., & Dureja, H. (2010). Glipizide: Some Analytical, Clinical and Therapeutic Vistas. International Journal of Chemical Sciences, 8(1), 59-80.
Pessagno, F., Hasanah, A. N., & Manesiotis, P. (2018). Molecularly imprinted 'traps' for sulfonylureas prepared using polymerisable ion pairs. RSC Advances, 8(26), 14212-14220. doi:10.1039/C8RA01135D
Picci, G., Kubicki, M., Garau, A., Lippolis, V., Mocci, R., Porcheddu, A., Quesada, R., Ricci, P. C., Scorciapino, M. A., & Caltagirone, C. (2020). Simple squaramide receptors for highly efficient anion binding in aqueous media and transmembrane transport. Chemical Communications, 56(75), 11066-11069. doi:10.1039/D0CC04090H
Prakash, O., & Iqbal, S. A. (2015). FTIR, 1H NMR, mass spectral, XRD and thermal characterization studies of NdIII and SmIII complexes of glipizide: An oral antidiabetic drug. Journal of Indian Chemical Society, 92(1), 51-63. doi:10.5281/zenodo.5602962
Prasad, N., Issarani, R., & Nagori, B. P. (2013). Ultraviolet Spectrophotometric Method for Determination of Glipizide in Presence of Liposomal/Proliposomal Turbidity. Journal of Spectroscopy, 2013, 836372. doi:10.1155/2013/836372
Qi, C., Zhou, Q., Li, B., Yang, Y., Cao, L., Ye, Y., Li, J., Ding, Y., Wang, H., Wang, J., He, X., Zhang, Q., Lan, T., Ka Ho Lee, K., Li, W., Song, X., Zhou, J., Yang, X., & Wang, L. (2014). Glipizide, an antidiabetic drug, suppresses tumor growth and metastasis by inhibiting angiogenesis. Oncotarget, 5(20), 9966-9979. doi:10.18632/oncotarget.2483
Ramalingam, V., Domaradzki, M. E., Jang, S., & Muthyala, R. S. (2008). Carbonyl Groups as Molecular Valves to Regulate Chloride Binding to Squaramides. Organic Letters, 10(15), 3315-3318. doi:10.1021/ol801204s
Renström, E., Barg, S., Thévenod, F., & Rorsman, P. (2002). Sulfonylurea-Mediated Stimulation of Insulin Exocytosis via an ATP-sensitive K+ Channel-Independent Action. Diabetes, 51(1), S33-S36. doi:10.2337/diabetes.51.2007.S33
Rowe, S. M., Miller, S., & Sorscher, E. J. (2005). Cystic Fibrosis. New England Journal of Medicine, 352(19), 1992-2001. doi:10.1056/NEJMra043184
Sehlin, J. (1981). Are Cl- Mechanisms in Mouse Pancreatic Islets involved in Insulin Release?. Upsala Journal of Medical Sciences, 86(2), 177-182. doi:10.3109/03009738109179226
Shuman, C. R. (1983). Glipizide: An Overview. The American Journal of Medicine, 75(5), 55-59. doi:10.1016/0002-9343(83)90254-1
Thordarson, P. (2011). Determining association constants from titration experiments in supramolecular chemistry. Chemical Society Reviews, 40(3), 1305-1323 doi:10.1039/C0CS00062K
Ulatowski, F., Dabrowa, K., Balakier, T., & Jurczak, J. (2016). Recognizing the Limited Applicability of Job Plots in Studying Host-Guest Interactions in Supramolecular Chemistry. The Journal of Organic Chemistry, 81(5), 1746-1756. doi:10.1021/acs.joc.5b02909
Valdivieso, A. G., & Santa-Coloma, T. A. (2019). The chloride anion as a signaling effector. Biological Reviews, 94(5), 1839-1856. doi:10.1111/brv.12536
Zapata, F., Benítez-Benítez, S. J., Sabater, P., Caballero, A., & Molina, P. (2017). Modulation of the Selectivity in Anions Recognition Processes by Combining Hydrogen- and Halogen-Bonding Interactions. Molecules, 22(12), 2273. doi:10.3390/molecules22122273
Mert, S. (2023). Investigation of Chloride Anion Binding Properties of Glipizide Drug. Gazi University Journal of Science Part A: Engineering and Innovation, 10(3), 262-277. https://doi.org/10.54287/gujsa.1281246