Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2021, Cilt: 8 Sayı: 1, 81 - 93, 29.03.2021

Öz

Kaynakça

  • Bagherpoora, T., & Xuemin, L. (2017). Structural Optimization Design of 2MW Composite wind turbine blade. Energy Procedia 105, 1226-1233.
  • Bhatt, P. (2009). Maximum Marks Maximum Knowledge in Physics Class X, Second Edition. Allied Publishers Private Limited, New Delhi, ISBN: 978-81-8424-444-1.
  • Brain, J. S., & Mark, H. R. (1999) Experimental Modal Analysis. Vibration Technology Inc, Jamestown, California, 95327.
  • Brøndsted, P., & Nijssen, R. (2013). Advances in Wind Turbine Blade Design and Materials. Woodhead Publishing, Oxford, UK, pp. 484.
  • Chaudhari, N. B. (2014). Dynamic Characteristics of Wind Turbine Blade. International Journal of Engineering Research and Technology, 3(8), 1-6.
  • Chen, C. P., & Kam, T. Y. (2011). Failure Analysis of Small Composite Sandwich Turbine Blade Subjected to Extreme Wind Load. Procedia Engineering, 14, 1973-1981.
  • Efe-Ononeme, O. E., Ikpe, A. E., & Ariavie, G. O. (2018). Modal Analysis of Conventional Gas Turbine Blade Materials (UDIMET 500 and IN738) For Industrial Applications. Journal of Engineering Technology and Applied Sciences, 3(2), 119-133.
  • Etuk, E. M., & Ikpe, A. E. (2020a). 3D Modelling of the Wind Flow Trajectories and Its Characteristic Effects on Horizontal Axis Wind Turbine at Different Wind Regimes. Journal of International Environmental Application and Science, 15(2), 68-80.
  • Etuk, E. M., Ikpe, A. E., & Adoh, U. A. (2020b). Design and Analysis of Displacement Models for Modular Horizontal Wind Turbine Blade Structure. Nigerian Journal of Technology, 39(1), 121-130.
  • Garolera, A. C., Madsen, S. F., Nissim, M., Myers, J. D., & Holboell, J. (2016). Lightning Damage to Wind Turbine Blades from Wind Farms in the US. IEEE Transactions on Power Delivery, 31(3), 1043-1049.
  • Higham, N. J., Mackey, D. S., Tisseur, F., & Garvey, S. D. (2008). Scaling, Sensitivity and Stability in the Numerical Solution of Quadratic Eigenvalue Problems. International Journal for Numerical Methods in Engineering, 73, 344-360.
  • Ikpe, A. E., Owunna, I., Ebunilo, P. O., & Ikpe, E. (2016a). Material Selection for High Pressure (HP) Compressor Blade of an Aircraft Engine. International Journal of Advanced Materials Research, 2(4), 59-65.
  • Ikpe, A. E., Owunna, I., Ebunilo, P. O., & Ikpe, E. (2016b). Material Selection for High Pressure (HP) Turbine Blade of Conventional Turbojet Engines. American Journal of Mechanical and Industrial Engineering, 1(1), 1-9.
  • Ikpe, A. E., Efe-Ononeme O. E., & Ariavie, G. O. (2018). Thermo-Structural Analysis of First Stage Gas Turbine Rotor Blade Materials for Optimum Service Performance. International Journal of Engineering and Applied Sciences, 10(2), 118-130.
  • Ikpe, A. E., Ndon, A. E., & Etuk, E. M. (2019). Response Variation of Chladni Patterns on Vibrating Elastic Plate under Electro-Mechanical Oscillation. Nigerian Journal of Technology, 38(3), 540-548.
  • Ivan, B., Marco, A., & Mathias, L. (2014). Physically and Geometrically Non-linear Vibrations of Thin Rectangular Plates. International Journal of Non-Linear Mechanics 58, 30-40.
  • Larsen, G. C., Hansen, M. H., Baumgart, A., & Carlen, I. (2002). Modal Analysis of Wind Turbine Blades. Denmark, Forsknings center Risoe, Risoe-R, 1181, ISBN: 87-550-2697-4.
  • Marulo, F., Petrone, G., Alessandro, V. D., & Lorenzo, E. D. (2014). Operational modal analysis on a wind turbine blade. Proceedings of ISMA2014 and USD2014, 783-798.
  • Mishnaevsky, L., Branner, K., Petersen, H. N., Beauson, J., McGugan, M., & Sørensen, B. F. (2017). Materials for Wind Turbine Blades: An Overview. Materials, 10(1285), 1-24.
  • Mouhsine, S. E., Oukassou, K., Ichenial, M. M., Kharbouch, B., & Hajraoui, A. (2018). Aerodynamics and Structural Analysis of Wind Turbine Blade. Procedia Manufacturing, 22, 747-756.
  • Okokpujie, I. P., Okonkwo, U. C., Bolu, C. A., Ohunakin, O. S., Agboola, M. G., & Atayero, A. A. (2020). Implementation of multi-criteria decision method for selection of suitable material for development of horizontal wind turbine blade for sustainable energy generation. Heliyon, 6, e03142.
  • Owunna, I., Ikpe, A. E., Satope, P., & Ikpe E. E. (2016). Experimental Modal Analysis of a Flat Plate Subjected to Vibration. American Journal of Engineering Research, 5(6), 30-37.
  • Pedersen, H. B., & Kristensen, O. J. D. (2003). Applied modal analysis of wind turbine blades: Modal analysis on loaded and unloaded blade, Denmark. Forsknings center Risoe, Risoe-R, 1388(7), 41-46.
  • Tartibu, L. K., Kilfoil, M., & Vandermerwe, A. J. (2012). Vibration Analysis of a Variable Length Blade Wind Turbine. International Journal of Advances in Engineering and Technology, 4(1), 630-639.
  • Taware, G. B., Mankar, S. H., Ghagare, V. B., Bharambe, G. P., & Kale, S. A. (2016). Vibration Analysis of a Small Wind Turbine Blade. International Journal of Engineering and Technology, 8(5), 2121-2126.
  • Soriano, L. A., Yu, W., & Rubio, J. J. (2013). Modelling and Control of Wind Turbine. Mathematical Problems in Engineering, 982597, 1-13.
  • Vermeer, L., Sorensen, J., & Crespo, A. (2003). Wind Turbine Wake Aerodynamics. Progress in Aerospace Sciences, 39, 467-510.
  • Yasuda, Y., Yokoyama, S., Minowa, M., & Satoh, T. (2012). Classification of Lightning Damage to Wind Turbine Blades. IEEE J. Trans, 7, 559-566.

Modal Analysis of Horizontal Axis Wind Turbine Rotor Blade with Distinct Configurations under Aerodynamic Loading Cycle

Yıl 2021, Cilt: 8 Sayı: 1, 81 - 93, 29.03.2021

Öz

Q-Blade simulation tool was employed in modal analysis of horizontal axis wind turbine blade with three distinct configurations (with spar, no spar and solid) to determine the configuration with adequate structural integrity under aerodynamic loading conditions. The blade configurations were analysed in four different modes based on the flapwise and edgewise response of the blade to aerodynamic loads/forces, and the corresponding modal eigenfrequencies were evaluated. Bending due to combined effects of flapwise and edgewise modal frequencies on the blade were also evaluated at different rotor blade speeds ranging from 2-8m/s. It was observed that the solid blade configuration had the least modal eigenfrequencies for both flapwise and edgewise response in all the four modes as follows: 22.03 and 62.60 Hz in mode 1, 58.0 and 212.8 Hz in mode 2, 122.6 and 600.6 Hz in mode 3, 194.4 and 1118.9 Hz in mode 4. The rotor blade configuration with No spar had the highest modal eigenfrequencies for both flapwise and edgewise response in all the four modes followed by the blade configuration with spar. Bending of the rotor blade due to combined effects of flapwise and edgewise modal frequencies at the aforementioned blade speeds were also highest in blade configuration with No spar and lowest in the solid blade configuration. The low modal eigenfrequencies and low bending values on the solid blade configuration imply high stiffness and strength but with additional mass, which is why 6000 series aluminium was selected in order to minimize the extra weight.

Kaynakça

  • Bagherpoora, T., & Xuemin, L. (2017). Structural Optimization Design of 2MW Composite wind turbine blade. Energy Procedia 105, 1226-1233.
  • Bhatt, P. (2009). Maximum Marks Maximum Knowledge in Physics Class X, Second Edition. Allied Publishers Private Limited, New Delhi, ISBN: 978-81-8424-444-1.
  • Brain, J. S., & Mark, H. R. (1999) Experimental Modal Analysis. Vibration Technology Inc, Jamestown, California, 95327.
  • Brøndsted, P., & Nijssen, R. (2013). Advances in Wind Turbine Blade Design and Materials. Woodhead Publishing, Oxford, UK, pp. 484.
  • Chaudhari, N. B. (2014). Dynamic Characteristics of Wind Turbine Blade. International Journal of Engineering Research and Technology, 3(8), 1-6.
  • Chen, C. P., & Kam, T. Y. (2011). Failure Analysis of Small Composite Sandwich Turbine Blade Subjected to Extreme Wind Load. Procedia Engineering, 14, 1973-1981.
  • Efe-Ononeme, O. E., Ikpe, A. E., & Ariavie, G. O. (2018). Modal Analysis of Conventional Gas Turbine Blade Materials (UDIMET 500 and IN738) For Industrial Applications. Journal of Engineering Technology and Applied Sciences, 3(2), 119-133.
  • Etuk, E. M., & Ikpe, A. E. (2020a). 3D Modelling of the Wind Flow Trajectories and Its Characteristic Effects on Horizontal Axis Wind Turbine at Different Wind Regimes. Journal of International Environmental Application and Science, 15(2), 68-80.
  • Etuk, E. M., Ikpe, A. E., & Adoh, U. A. (2020b). Design and Analysis of Displacement Models for Modular Horizontal Wind Turbine Blade Structure. Nigerian Journal of Technology, 39(1), 121-130.
  • Garolera, A. C., Madsen, S. F., Nissim, M., Myers, J. D., & Holboell, J. (2016). Lightning Damage to Wind Turbine Blades from Wind Farms in the US. IEEE Transactions on Power Delivery, 31(3), 1043-1049.
  • Higham, N. J., Mackey, D. S., Tisseur, F., & Garvey, S. D. (2008). Scaling, Sensitivity and Stability in the Numerical Solution of Quadratic Eigenvalue Problems. International Journal for Numerical Methods in Engineering, 73, 344-360.
  • Ikpe, A. E., Owunna, I., Ebunilo, P. O., & Ikpe, E. (2016a). Material Selection for High Pressure (HP) Compressor Blade of an Aircraft Engine. International Journal of Advanced Materials Research, 2(4), 59-65.
  • Ikpe, A. E., Owunna, I., Ebunilo, P. O., & Ikpe, E. (2016b). Material Selection for High Pressure (HP) Turbine Blade of Conventional Turbojet Engines. American Journal of Mechanical and Industrial Engineering, 1(1), 1-9.
  • Ikpe, A. E., Efe-Ononeme O. E., & Ariavie, G. O. (2018). Thermo-Structural Analysis of First Stage Gas Turbine Rotor Blade Materials for Optimum Service Performance. International Journal of Engineering and Applied Sciences, 10(2), 118-130.
  • Ikpe, A. E., Ndon, A. E., & Etuk, E. M. (2019). Response Variation of Chladni Patterns on Vibrating Elastic Plate under Electro-Mechanical Oscillation. Nigerian Journal of Technology, 38(3), 540-548.
  • Ivan, B., Marco, A., & Mathias, L. (2014). Physically and Geometrically Non-linear Vibrations of Thin Rectangular Plates. International Journal of Non-Linear Mechanics 58, 30-40.
  • Larsen, G. C., Hansen, M. H., Baumgart, A., & Carlen, I. (2002). Modal Analysis of Wind Turbine Blades. Denmark, Forsknings center Risoe, Risoe-R, 1181, ISBN: 87-550-2697-4.
  • Marulo, F., Petrone, G., Alessandro, V. D., & Lorenzo, E. D. (2014). Operational modal analysis on a wind turbine blade. Proceedings of ISMA2014 and USD2014, 783-798.
  • Mishnaevsky, L., Branner, K., Petersen, H. N., Beauson, J., McGugan, M., & Sørensen, B. F. (2017). Materials for Wind Turbine Blades: An Overview. Materials, 10(1285), 1-24.
  • Mouhsine, S. E., Oukassou, K., Ichenial, M. M., Kharbouch, B., & Hajraoui, A. (2018). Aerodynamics and Structural Analysis of Wind Turbine Blade. Procedia Manufacturing, 22, 747-756.
  • Okokpujie, I. P., Okonkwo, U. C., Bolu, C. A., Ohunakin, O. S., Agboola, M. G., & Atayero, A. A. (2020). Implementation of multi-criteria decision method for selection of suitable material for development of horizontal wind turbine blade for sustainable energy generation. Heliyon, 6, e03142.
  • Owunna, I., Ikpe, A. E., Satope, P., & Ikpe E. E. (2016). Experimental Modal Analysis of a Flat Plate Subjected to Vibration. American Journal of Engineering Research, 5(6), 30-37.
  • Pedersen, H. B., & Kristensen, O. J. D. (2003). Applied modal analysis of wind turbine blades: Modal analysis on loaded and unloaded blade, Denmark. Forsknings center Risoe, Risoe-R, 1388(7), 41-46.
  • Tartibu, L. K., Kilfoil, M., & Vandermerwe, A. J. (2012). Vibration Analysis of a Variable Length Blade Wind Turbine. International Journal of Advances in Engineering and Technology, 4(1), 630-639.
  • Taware, G. B., Mankar, S. H., Ghagare, V. B., Bharambe, G. P., & Kale, S. A. (2016). Vibration Analysis of a Small Wind Turbine Blade. International Journal of Engineering and Technology, 8(5), 2121-2126.
  • Soriano, L. A., Yu, W., & Rubio, J. J. (2013). Modelling and Control of Wind Turbine. Mathematical Problems in Engineering, 982597, 1-13.
  • Vermeer, L., Sorensen, J., & Crespo, A. (2003). Wind Turbine Wake Aerodynamics. Progress in Aerospace Sciences, 39, 467-510.
  • Yasuda, Y., Yokoyama, S., Minowa, M., & Satoh, T. (2012). Classification of Lightning Damage to Wind Turbine Blades. IEEE J. Trans, 7, 559-566.
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Makine Mühendisliği
Yazarlar

Aniekan Ikpe 0000-0001-9069-9676

Ekom Etuk 0000-0002-1866-9349

Akanu-ıbiam Ndon 0000-0002-2637-6546

Yayımlanma Tarihi 29 Mart 2021
Gönderilme Tarihi 10 Ağustos 2020
Yayımlandığı Sayı Yıl 2021 Cilt: 8 Sayı: 1

Kaynak Göster

APA Ikpe, A., Etuk, E., & Ndon, A.-ı. (2021). Modal Analysis of Horizontal Axis Wind Turbine Rotor Blade with Distinct Configurations under Aerodynamic Loading Cycle. Gazi University Journal of Science Part A: Engineering and Innovation, 8(1), 81-93.