The Effect of Nanostructured Titanium Surface on Protein Adsorption
Year 2022,
Volume: 9 Issue: 3, 225 - 232, 30.09.2022
Hasret Tolga Şirin
,
Ebru Akdoğan
Abstract
The amount and conformation of bovine serum albumin upon adsorption on titanium (Ti) surfaces containing nanotubes with different pore sizes were investigated. Nanotubes were created on the surfaces via anodization. Protein adsorption behavior on anodized surfaces were compared with the adsorption behavior on smooth and sanded Ti surfaces. The conformational changes in surface adsorbed proteins were evaluated using the second derivative and curve fitting methods applied to the Fourier transform infrared spectra of the surfaces. Results showed that the amount of protein adsorbed on the surfaces increased significantly with increasing surface roughness and a significant change in the conformation of the adsorbed protein occurred on every surface albeit in a different fashion. When anodized samples were considered, it was observed that the changes in the secondary structure seemed to be correlated with to the pore size of the nanotubes rather than the surface roughness.
Supporting Institution
Ankara Hacı Bayram Veli University Scientific Research Projects Coordination Centre
Project Number
(Project No. 01/2020-24
Thanks
SEM imaging have been performed at Hacettepe University, Advanced Technologies Research and Applications Center (HUNITEK). AFM imaging was performed at National Nanotechnology Research Center Institute of Materials Science and Nanotechnology (UNAM). FTIR-ATR analyses were performed at Eastern Anatolia High Technology Application and Research Center (DAYTAM).
References
- Akdoğan, E., & Mutlu, M. (2012). Generation of amphoteric surfaces via glow-discharge technique with single precursor and the behavior of bovine serum albumin at the surface. Colloids and Surfaces B: Biointerfaces, 89, 289-294. doi:10.1016/j.colsurfb.2011.09.005
- Barberi, J. & Spriano, S. (2021). Titanium and protein adsorption: an overview of mechanisms and effects of surface features. Materials, 14(7), 1590. doi:10.3390/ma14071590
- Byler, D. M. & Susi, H. (1986). Examination of the secondary structure of proteins by deconvolved FTIR spectra. Biopolymer, 25(3), 469-487. doi:10.1002/bip.360250307
- Cai, K., Bossert, J., & Jandt, K. D. (2006). Does the nanometre scale topography of titanium influence protein adsorption and cell proliferation?. Colloids and surfaces B: Biointerfaces, 49(2), 136-144. doi:10.1016/j.colsurfb.2006.02.016
- Chen, X., Chen, J., & Huang, N. (2022). The structure, formation, and effect of plasma protein layer on the blood contact materials: A review. Biosurface and Biotribology, 8(1), 1-14. doi:10.1049/bsb2.12029
- Della Porta, V., Bramanti, E., Campanella, B., Tiné, M. R., & Duce, C. (2016). Conformational analysis of bovine serum albumin adsorbed on halloysite nanotubes and kaolinite: A Fourier transform infrared spectroscopy study. RSC Advances, 6(76), 72386-72398. doi:10.1039/C6RA12525E
- Gan, N., Peng, X., Wu, D., Xiang, H., Sun, Q., Yi, B., Suo, Z., Zhang, S., Wang, X., & Li, H. (2022). Effects of Micro or Nano Size on the Biocompatibility of UiO67 from Protein Adsorption Behavior, Hemocompatibility and Histological Toxicity. Journal of Hazardous Materials, 435, 129042. doi:10.1016/j.jhazmat.2022.129042
- Giacomelli, C. E., Bremer, M. G., & Norde, W. (1999). ATR-FTIR study of IgG adsorbed on different silica surfaces. Journal of Colloid and Interface Science, 220(1), 13-23. doi:10.1006/jcis.1999.6479
- Hu, B., Liu, R., Liu, Q., Lin, Z., Shi, Y., Li, J., Wang, L., Li, L., Xiao, X., & Wu, Y. (2022). Engineering surface patterns on nanoparticles: New insights on nano-bio interactions. Journal of Materials Chemistry B, 10(14), 2357-2383. doi:10.1039/D1TB02549J
- Qi, H., Shi, M., Ni, Y., Mo, W., Zhang, P., Jiang, S., Zhang, Y., & Deng, X. (2021). Size‐Confined Effects of Nanostructures on Fibronectin‐Induced Macrophage Inflammation on Titanium Implants. Advanced Healthcare Materials, 10(20), 2100994. doi:10.1002/adhm.202100994
- Jia, E., Zhao, X., Lin, Y., & Su, Z. (2020). Protein adsorption on titanium substrates and its effects on platelet adhesion. Applied Surface Science, 529, 146986. doi:10.1016/j.apsusc.2020.146986
- La Verde, V., Dominici, P., & Astegno, A. (2017). Determination of hydrodynamic radius of proteins by size exclusion chromatography. Bio-protocol, 7(8), e2230. doi:10.21769/BioProtoc.2230
- Li, K., Liu, S., Hu, T., Razanau, I., Wu, X., Ao, H., Huang, L., Xie, Y., & Zheng, X. (2020). Optimized nanointerface engineering of micro/nanostructured titanium implants to enhance cell–nanotopography interactions and osseointegration. ACS Biomaterials Science & Engineering, 6(2), 969-983. doi:10.1021/acsbiomaterials.9b01717
- Liu, C., Guo, Y., Hong, Q., Rao, C., Zhang, H., Dong, Y., Huang, L., Lu, X., & Bao, N. (2016). Bovine serum albumin adsorption in mesoporous titanium dioxide: pore size and pore chemistry effect. Langmuir, 32(16), 3995-4003. doi:10.1021/acs.langmuir.5b04496
- Lord, M. S., Foss, M., & Besenbacher, F. (2010). Influence of nanoscale surface topography on protein adsorption and cellular response. Nanotoday, 5(1), 66-78. doi:10.1016/j.nantod.2010.01.001
- Lu, J., Yao, C., Yang, L., & Webster, T. J. (2012). Decreased platelet adhesion and enhanced endothelial cell functions on nano and submicron-rough titanium stents. Tissue Engineering Part A, 18(13-14), 1389-1398. doi:10.1089/ten.tea.2011.0268
- Rockwell, G. P., Lohstreter, L. B., & Dahn, J. R. (2012). Fibrinogen and albumin adsorption on titanium nanoroughness gradients. Colloids and Surfaces B: Biointerfaces, 91, 90-96. doi:10.1016/j.colsurfb.2011.10.045
- Singh, A. V., Vyas, V., Patil, R., Sharma, V., Scopelliti, P. E., Bongiorno, G., Podestà, A., Lenardi, C., Gade, W. N., & Milani, P. (2011). Quantitative characterization of the influence of the nanoscale morphology of nanostructured surfaces on bacterial adhesion and biofilm formation. PloS one, 6(9), e25029. doi:10.1371/journal.pone.0025029
- Sirin, H. T., Vargel, I., Kutsal, T., Korkusuz, P., & Piskin, E. (2016). Ti implants with nanostructured and HA-coated surfaces for improved osseointegration. Artificial Cells, Nanomedicine, and Biotechnology, 44(3), 1023-1030. doi:10.3109/21691401.2015.1008512
- Wu, B., Tang, Y., Wang, K., Zhou, X., & Xiang, L. (2022). Nanostructured Titanium Implant Surface Facilitating Osseointegration from Protein Adsorption to Osteogenesis: The Example of TiO2 NTAs. International Journal of Nanomedicine, 17, 1865-1879. doi:10.2147/IJN.S362720
- Yang, Y., Yu, M., Böke, F., Qin, Q., Hübner, R., Knust, S., Schwiderek, S., Grundmeier, G., Fischer, H., & Keller, A. (2021). Effect of nanoscale surface topography on the adsorption of globular proteins. Applied Surface Science, 535, 147671. doi:10.1016/j.apsusc.2020.147671
- Zhao, F. H., Chen, Y. M., Hu, Y., Lu, X. G., Xiong, S. B., Wu, B. Y., Guo, Y. Q., Huang, P., & Yang, B. C. (2020). Conformation changes of albumin and lysozyme on electrospun TiO2 nanofibers and its effects on MSC behaviors. Colloids and Surfaces B: Biointerfaces, 185, 110604. doi:10.1016/j.colsurfb.2019.110604
Year 2022,
Volume: 9 Issue: 3, 225 - 232, 30.09.2022
Hasret Tolga Şirin
,
Ebru Akdoğan
Project Number
(Project No. 01/2020-24
References
- Akdoğan, E., & Mutlu, M. (2012). Generation of amphoteric surfaces via glow-discharge technique with single precursor and the behavior of bovine serum albumin at the surface. Colloids and Surfaces B: Biointerfaces, 89, 289-294. doi:10.1016/j.colsurfb.2011.09.005
- Barberi, J. & Spriano, S. (2021). Titanium and protein adsorption: an overview of mechanisms and effects of surface features. Materials, 14(7), 1590. doi:10.3390/ma14071590
- Byler, D. M. & Susi, H. (1986). Examination of the secondary structure of proteins by deconvolved FTIR spectra. Biopolymer, 25(3), 469-487. doi:10.1002/bip.360250307
- Cai, K., Bossert, J., & Jandt, K. D. (2006). Does the nanometre scale topography of titanium influence protein adsorption and cell proliferation?. Colloids and surfaces B: Biointerfaces, 49(2), 136-144. doi:10.1016/j.colsurfb.2006.02.016
- Chen, X., Chen, J., & Huang, N. (2022). The structure, formation, and effect of plasma protein layer on the blood contact materials: A review. Biosurface and Biotribology, 8(1), 1-14. doi:10.1049/bsb2.12029
- Della Porta, V., Bramanti, E., Campanella, B., Tiné, M. R., & Duce, C. (2016). Conformational analysis of bovine serum albumin adsorbed on halloysite nanotubes and kaolinite: A Fourier transform infrared spectroscopy study. RSC Advances, 6(76), 72386-72398. doi:10.1039/C6RA12525E
- Gan, N., Peng, X., Wu, D., Xiang, H., Sun, Q., Yi, B., Suo, Z., Zhang, S., Wang, X., & Li, H. (2022). Effects of Micro or Nano Size on the Biocompatibility of UiO67 from Protein Adsorption Behavior, Hemocompatibility and Histological Toxicity. Journal of Hazardous Materials, 435, 129042. doi:10.1016/j.jhazmat.2022.129042
- Giacomelli, C. E., Bremer, M. G., & Norde, W. (1999). ATR-FTIR study of IgG adsorbed on different silica surfaces. Journal of Colloid and Interface Science, 220(1), 13-23. doi:10.1006/jcis.1999.6479
- Hu, B., Liu, R., Liu, Q., Lin, Z., Shi, Y., Li, J., Wang, L., Li, L., Xiao, X., & Wu, Y. (2022). Engineering surface patterns on nanoparticles: New insights on nano-bio interactions. Journal of Materials Chemistry B, 10(14), 2357-2383. doi:10.1039/D1TB02549J
- Qi, H., Shi, M., Ni, Y., Mo, W., Zhang, P., Jiang, S., Zhang, Y., & Deng, X. (2021). Size‐Confined Effects of Nanostructures on Fibronectin‐Induced Macrophage Inflammation on Titanium Implants. Advanced Healthcare Materials, 10(20), 2100994. doi:10.1002/adhm.202100994
- Jia, E., Zhao, X., Lin, Y., & Su, Z. (2020). Protein adsorption on titanium substrates and its effects on platelet adhesion. Applied Surface Science, 529, 146986. doi:10.1016/j.apsusc.2020.146986
- La Verde, V., Dominici, P., & Astegno, A. (2017). Determination of hydrodynamic radius of proteins by size exclusion chromatography. Bio-protocol, 7(8), e2230. doi:10.21769/BioProtoc.2230
- Li, K., Liu, S., Hu, T., Razanau, I., Wu, X., Ao, H., Huang, L., Xie, Y., & Zheng, X. (2020). Optimized nanointerface engineering of micro/nanostructured titanium implants to enhance cell–nanotopography interactions and osseointegration. ACS Biomaterials Science & Engineering, 6(2), 969-983. doi:10.1021/acsbiomaterials.9b01717
- Liu, C., Guo, Y., Hong, Q., Rao, C., Zhang, H., Dong, Y., Huang, L., Lu, X., & Bao, N. (2016). Bovine serum albumin adsorption in mesoporous titanium dioxide: pore size and pore chemistry effect. Langmuir, 32(16), 3995-4003. doi:10.1021/acs.langmuir.5b04496
- Lord, M. S., Foss, M., & Besenbacher, F. (2010). Influence of nanoscale surface topography on protein adsorption and cellular response. Nanotoday, 5(1), 66-78. doi:10.1016/j.nantod.2010.01.001
- Lu, J., Yao, C., Yang, L., & Webster, T. J. (2012). Decreased platelet adhesion and enhanced endothelial cell functions on nano and submicron-rough titanium stents. Tissue Engineering Part A, 18(13-14), 1389-1398. doi:10.1089/ten.tea.2011.0268
- Rockwell, G. P., Lohstreter, L. B., & Dahn, J. R. (2012). Fibrinogen and albumin adsorption on titanium nanoroughness gradients. Colloids and Surfaces B: Biointerfaces, 91, 90-96. doi:10.1016/j.colsurfb.2011.10.045
- Singh, A. V., Vyas, V., Patil, R., Sharma, V., Scopelliti, P. E., Bongiorno, G., Podestà, A., Lenardi, C., Gade, W. N., & Milani, P. (2011). Quantitative characterization of the influence of the nanoscale morphology of nanostructured surfaces on bacterial adhesion and biofilm formation. PloS one, 6(9), e25029. doi:10.1371/journal.pone.0025029
- Sirin, H. T., Vargel, I., Kutsal, T., Korkusuz, P., & Piskin, E. (2016). Ti implants with nanostructured and HA-coated surfaces for improved osseointegration. Artificial Cells, Nanomedicine, and Biotechnology, 44(3), 1023-1030. doi:10.3109/21691401.2015.1008512
- Wu, B., Tang, Y., Wang, K., Zhou, X., & Xiang, L. (2022). Nanostructured Titanium Implant Surface Facilitating Osseointegration from Protein Adsorption to Osteogenesis: The Example of TiO2 NTAs. International Journal of Nanomedicine, 17, 1865-1879. doi:10.2147/IJN.S362720
- Yang, Y., Yu, M., Böke, F., Qin, Q., Hübner, R., Knust, S., Schwiderek, S., Grundmeier, G., Fischer, H., & Keller, A. (2021). Effect of nanoscale surface topography on the adsorption of globular proteins. Applied Surface Science, 535, 147671. doi:10.1016/j.apsusc.2020.147671
- Zhao, F. H., Chen, Y. M., Hu, Y., Lu, X. G., Xiong, S. B., Wu, B. Y., Guo, Y. Q., Huang, P., & Yang, B. C. (2020). Conformation changes of albumin and lysozyme on electrospun TiO2 nanofibers and its effects on MSC behaviors. Colloids and Surfaces B: Biointerfaces, 185, 110604. doi:10.1016/j.colsurfb.2019.110604