Research Article
BibTex RIS Cite
Year 2022, Volume: 9 Issue: 3, 233 - 250, 30.09.2022
https://doi.org/10.54287/gujsa.1135609

Abstract

References

  • Akkurt, A. (2004). Waterjet cutting systems and assesment of their industrial applications. Journal of Polytechnic, 7(2), 129-139
  • Bhamare, S., Ramakrishnan, G., Mannava, S. R., Langer, K., Vasudevan, V. K., & Qian, D. (2013). Simulation-based optimization of laser shock peening process for improved bending fatigue life of Ti–6Al–2Sn–4Zr–2Mo alloy. Surface and Coatings Technology, 232, 464-474. doi:10.1016/j.surfcoat.2013.06.003
  • Chen, M., Zhang, S., Zeng, J., Chen, B., Xue, J., & Ji, L. (2019). Correcting shape error on external corners caused by the cut-in/cut-out process in abrasive water jet cutting. The International Journal of Advanced Manufacturing Technology, 103, 849-859. doi:10.1007/s00170-019-03564-x
  • Ergür, H. S. (2009). Theoretical analysis of abrasive waterjet and modelling with artificial neural network. Journal of Engineering and Architecture Faculty of Eskişehir Osmangazi University, 22(2), 179-197
  • Fleißner-Rieger, C., Pfeifer, T., Turk, C., & Clemens, H. (2022) Optimization of the post-process heat treatment strategy for a near-α titanium base alloy produced by laser powder bed fusion. Materials, 15(3), 1032. doi:10.3390/ma15031032
  • Hashish, M. (2014). Waterjet Machining Process. In: A. Nee (Eds.), Handbook of Manufacturing Engineering and Technology (pp. 1-30). Springer. doi:10.1007/978-1-4471-4976-7_75-1
  • Iqbal, A., Dar, N. U., & Hussain, G. O. (2011). Optimization of abrasive water jet cutting of ductile materials. Journal of Wuhan University of Technology - Materals Science Edition, 26, 88-92. doi:10.1007/s11595-011-0174-8
  • Johnston, C. E. (1989). Waterjet/Abrasive Waterjet Machining. In: ASM Handbook, 16, Machining (pp. 520-527). ASM International. doi:10.31399/asm.hb.v16.a0002158
  • Karakurt, İ., Aydın, G., Yıldırım, F., & Kaya, S. (2019, April 16-19). Current technological developments in cutting applications by abrasive waterjet. In: 26th International Mining Congress and Exhibition of Turkey (pp. 1334-1339).
  • Kartal, F. (2017). A review of the current state of abrasive water-jet turning machining method. International Journal of Advanced Manufacturing Technology, 88, 495-505. doi:10.1007/s00170-016-8777-z
  • Maduekwe, V. C., & Oke, S. A. (2022). The application of the EDAS method in the parametric selection scheme for maintenance plan in the Nigerian food industry. Journal Rekayasa Sistem Industri, 11(1), 1-22. doi:10.26593/jrsi.v11i1.4349.1-22
  • Marya, M., & Edwards, G. R. (2002). An analytical model for the optimization of the laser bending of titanium Ti–6Al–2Sn–4Zr–2Mo.Journal of Materials Processing Technology, 124(3), 337-344. doi:10.1016/S0924-0136(02)00223-6
  • Miao, X., Qiang, Z., Wu, M., Song, L., & Ye, F. (2018). The optimal cutting times of multipass abrasive water jet cutting. The International Journal of Advanced Manufacturing Technology, 97, 1779-1786. doi:10.1007/s00170-018-2011-0
  • Muthuramalingam, T., Vasanth, S., Vinothkumar, P., Geethapriyan, T., & Rabik, M. M. (2018). Multi criteria decision making of abrasive flow oriented process parameters in abrasive water jet machining using taguchi–DEAR Methodology. Silicon, 10, 2015-2021. doi:10.1007/s12633-017-9715-x
  • Okponyia, K.O., & Oke, S.A. (2021). Novel EDAS-Taguchi and EDAS-Taguchi-Pareto methods for wire EDM process parametric selection of Ni55.8Ti (nitinol) shape memory alloy. International Journal of Industrial Engineering and Engineering Management, 3(2), 105-122. doi:10.24002/ijieem.v3i2.4998
  • Perec, A., & Musial, W. (2021). Multiple Criteria Optimization of Abrasive Water Jet Cutting Using Entropy-VIKOR Approach. In: S. Hloch, D. Klichová, F. Pude, G. M. Krolczyk & S. Chattopadhyaya (Eds.), Advances in Manufacturing Engineering and Materials II (pp. 50-62). Springer. doi:10.1007/978-3-030-71956-2_5
  • Perec, A., Musial, W., Prazmo, J., Sobczak, R., Radomska-Zalas, A., Fajdek-Bieda, A., Nagnajewicz, S., & Pude, F. (2021). Multi-criteria Optimization of the Abrasive Waterjet Cutting Process for the High-Strength and Wear-Resistant Steel Hardox®500. In: D. Klichová, L. Sitek, S. Hloch & J. Valentinčič (Eds.), Advances in Water Jetting (pp. 145-154). Springer. doi:10.1007/978-3-030-53491-2_16
  • Perumal, A., Azhagurajan, A., Kumar, S.S., Kailasanathan, C., Rajan, R.P., Rajan, A.J., Venkatesan, G., & Rajkumar, P.R. (2020). Experimental investigation on surface morphology and parametric optimization of Ti-6Al-2Sn-4Zr-2Mo alpha beta alloy through AWJM.Tierarztliche Praxis, 40, 1681-1702.
  • Perumal, A., Azhagurajan, A., Kumar, S. S., Prithivirajan, R., Baskaran, S., Rajkumar, P. R., Kailasanathan C., & Venkatesan, G. (2021). Influence of optimization techniques on wire electrical discharge machining of Ti–6Al–2Sn–4Zr–2Mo alloy using modeling approach. Journal of Inorganic and Organometallic Polymers and Materials, 31, 3272-3289. doi:10.1007/s10904-021-01953-y
  • Perumal, A., Kailasanathan, C., Stalin, B., Kumar, S. S., Rajkumar, P. R., Gangadharan, T., Venkatesan, G., Nagaprasad, N., Dhinakaran, V., & Krishnaraj, R. (2022). Multiresponse optimization of wire electrical discharge machining parameters for Ti-6Al-2Sn-4Zr-2Mo (α-β) alloy using taguchi-grey relational approach. Advances in Materials Science and Engineering, 2022, 6905239. doi:10.1155/2022/6905239
  • Pradhan, S., & Maity, K. (2018). Optimization of machining parameter characteristics during turning of Ti-6Al-4V using desirability function analysis. Materials Today: Proceedings, 5(11-3), 25740-25749. doi:10.1016/j.matpr.2018.11.094
  • Singh, H., Bhoi, N.K., & Jain, P.K. (2021). Developments in abrasive water jet machining process-from 1980-2020. In: K. Gupta & A. Pramanik (Eds.), Advanced Machining and Finishing, Handbooks in Advanced Manufacturing (pp. 217-252). doi:10.1016/B978-0-12-817452-4.00011-7
  • Sitek, L., Hlaváček, P., Foldyna, J., Jarchau, M., & Foldyna, V. (2021). Pulsating abrasive water jet cutting using a standard abrasive injection cutting head – preliminary tests. In: D. Klichová, L. Sitek, S. Hloch & J. Valentinčič (Eds.), Advances in Water Jetting (pp. 186-196). Springer. doi:10.1007/978-3-030-53491-2_20
  • Ulutas, A. (2017) Sewing machine selection for a textile workshop by using EDAS method. Journal of Business Research Turk, 9(2), 169-183.
  • Wang, S., Yang, F., Hu, D., Tang, C., & Lin, P. (2021). Modelling and analysis of abrasive water jet cutting front profile. The International Journal of Advanced Manufacturing Technology, 114, 2829-2837. doi:10.1007/s00170-021-07014-5
  • Zohoor, M., & Nourian, S.H. (2012). Development of an algorithm for optimum control process to compensate the nozzle wear effect in cutting the hard and tough material using abrasive water jet cutting process. The International Journal of Advanced Manufacturing Technology, 61, 1019-1028. doi:10.1007/s00170-011-3761-0

Optimal Cutting Conditions of Abrasive Waterjet Cutting for Ti-6Al-2Sn-2Mo Alpha-Beta Alloy Using EDAS and DFA Methods

Year 2022, Volume: 9 Issue: 3, 233 - 250, 30.09.2022
https://doi.org/10.54287/gujsa.1135609

Abstract

Abrasive waterjet machining (AWJM), a known metal cutting process in manufacturing, is likely to be improved with the selection and use of the most influential parameters in machining decision-making. This work illustrates the development of two multicriteria indicators to optimize parameters for the abrasive waterjet machining process, providing optimization information for the surface morphology problem. The evaluation based on the distance from average solution (EDAS) method was used as the first indicator while the desirability function analysis (DFA) method reflects the second indicator. The results demonstrate a huge promise of both indicators, EDAS and DFA, to develop procedures for optimizing the parameters of Ti-6Al-2Sn-4Zr-2Mo alpha-beta alloy through the abrasive waterjet machining process. For the EDAS method, experimental trial 7 provided the best results with the water jet pressure of 220 bar, traverse speed of 40mm/min, and standoff distance of 1mm. The corresponding material removal rate is 151.667mm3/min while the roughness average is 2.76mm. The DFA method also provided the same results as those of the EDAS method. The present study is evidence of optimization of the parameters of Ti-6Al-2Sn-4Zr-2Mo alpha-beta alloy using the AWJM process. This warrants an intervention to enhance productivity and the economic gains of the company.

References

  • Akkurt, A. (2004). Waterjet cutting systems and assesment of their industrial applications. Journal of Polytechnic, 7(2), 129-139
  • Bhamare, S., Ramakrishnan, G., Mannava, S. R., Langer, K., Vasudevan, V. K., & Qian, D. (2013). Simulation-based optimization of laser shock peening process for improved bending fatigue life of Ti–6Al–2Sn–4Zr–2Mo alloy. Surface and Coatings Technology, 232, 464-474. doi:10.1016/j.surfcoat.2013.06.003
  • Chen, M., Zhang, S., Zeng, J., Chen, B., Xue, J., & Ji, L. (2019). Correcting shape error on external corners caused by the cut-in/cut-out process in abrasive water jet cutting. The International Journal of Advanced Manufacturing Technology, 103, 849-859. doi:10.1007/s00170-019-03564-x
  • Ergür, H. S. (2009). Theoretical analysis of abrasive waterjet and modelling with artificial neural network. Journal of Engineering and Architecture Faculty of Eskişehir Osmangazi University, 22(2), 179-197
  • Fleißner-Rieger, C., Pfeifer, T., Turk, C., & Clemens, H. (2022) Optimization of the post-process heat treatment strategy for a near-α titanium base alloy produced by laser powder bed fusion. Materials, 15(3), 1032. doi:10.3390/ma15031032
  • Hashish, M. (2014). Waterjet Machining Process. In: A. Nee (Eds.), Handbook of Manufacturing Engineering and Technology (pp. 1-30). Springer. doi:10.1007/978-1-4471-4976-7_75-1
  • Iqbal, A., Dar, N. U., & Hussain, G. O. (2011). Optimization of abrasive water jet cutting of ductile materials. Journal of Wuhan University of Technology - Materals Science Edition, 26, 88-92. doi:10.1007/s11595-011-0174-8
  • Johnston, C. E. (1989). Waterjet/Abrasive Waterjet Machining. In: ASM Handbook, 16, Machining (pp. 520-527). ASM International. doi:10.31399/asm.hb.v16.a0002158
  • Karakurt, İ., Aydın, G., Yıldırım, F., & Kaya, S. (2019, April 16-19). Current technological developments in cutting applications by abrasive waterjet. In: 26th International Mining Congress and Exhibition of Turkey (pp. 1334-1339).
  • Kartal, F. (2017). A review of the current state of abrasive water-jet turning machining method. International Journal of Advanced Manufacturing Technology, 88, 495-505. doi:10.1007/s00170-016-8777-z
  • Maduekwe, V. C., & Oke, S. A. (2022). The application of the EDAS method in the parametric selection scheme for maintenance plan in the Nigerian food industry. Journal Rekayasa Sistem Industri, 11(1), 1-22. doi:10.26593/jrsi.v11i1.4349.1-22
  • Marya, M., & Edwards, G. R. (2002). An analytical model for the optimization of the laser bending of titanium Ti–6Al–2Sn–4Zr–2Mo.Journal of Materials Processing Technology, 124(3), 337-344. doi:10.1016/S0924-0136(02)00223-6
  • Miao, X., Qiang, Z., Wu, M., Song, L., & Ye, F. (2018). The optimal cutting times of multipass abrasive water jet cutting. The International Journal of Advanced Manufacturing Technology, 97, 1779-1786. doi:10.1007/s00170-018-2011-0
  • Muthuramalingam, T., Vasanth, S., Vinothkumar, P., Geethapriyan, T., & Rabik, M. M. (2018). Multi criteria decision making of abrasive flow oriented process parameters in abrasive water jet machining using taguchi–DEAR Methodology. Silicon, 10, 2015-2021. doi:10.1007/s12633-017-9715-x
  • Okponyia, K.O., & Oke, S.A. (2021). Novel EDAS-Taguchi and EDAS-Taguchi-Pareto methods for wire EDM process parametric selection of Ni55.8Ti (nitinol) shape memory alloy. International Journal of Industrial Engineering and Engineering Management, 3(2), 105-122. doi:10.24002/ijieem.v3i2.4998
  • Perec, A., & Musial, W. (2021). Multiple Criteria Optimization of Abrasive Water Jet Cutting Using Entropy-VIKOR Approach. In: S. Hloch, D. Klichová, F. Pude, G. M. Krolczyk & S. Chattopadhyaya (Eds.), Advances in Manufacturing Engineering and Materials II (pp. 50-62). Springer. doi:10.1007/978-3-030-71956-2_5
  • Perec, A., Musial, W., Prazmo, J., Sobczak, R., Radomska-Zalas, A., Fajdek-Bieda, A., Nagnajewicz, S., & Pude, F. (2021). Multi-criteria Optimization of the Abrasive Waterjet Cutting Process for the High-Strength and Wear-Resistant Steel Hardox®500. In: D. Klichová, L. Sitek, S. Hloch & J. Valentinčič (Eds.), Advances in Water Jetting (pp. 145-154). Springer. doi:10.1007/978-3-030-53491-2_16
  • Perumal, A., Azhagurajan, A., Kumar, S.S., Kailasanathan, C., Rajan, R.P., Rajan, A.J., Venkatesan, G., & Rajkumar, P.R. (2020). Experimental investigation on surface morphology and parametric optimization of Ti-6Al-2Sn-4Zr-2Mo alpha beta alloy through AWJM.Tierarztliche Praxis, 40, 1681-1702.
  • Perumal, A., Azhagurajan, A., Kumar, S. S., Prithivirajan, R., Baskaran, S., Rajkumar, P. R., Kailasanathan C., & Venkatesan, G. (2021). Influence of optimization techniques on wire electrical discharge machining of Ti–6Al–2Sn–4Zr–2Mo alloy using modeling approach. Journal of Inorganic and Organometallic Polymers and Materials, 31, 3272-3289. doi:10.1007/s10904-021-01953-y
  • Perumal, A., Kailasanathan, C., Stalin, B., Kumar, S. S., Rajkumar, P. R., Gangadharan, T., Venkatesan, G., Nagaprasad, N., Dhinakaran, V., & Krishnaraj, R. (2022). Multiresponse optimization of wire electrical discharge machining parameters for Ti-6Al-2Sn-4Zr-2Mo (α-β) alloy using taguchi-grey relational approach. Advances in Materials Science and Engineering, 2022, 6905239. doi:10.1155/2022/6905239
  • Pradhan, S., & Maity, K. (2018). Optimization of machining parameter characteristics during turning of Ti-6Al-4V using desirability function analysis. Materials Today: Proceedings, 5(11-3), 25740-25749. doi:10.1016/j.matpr.2018.11.094
  • Singh, H., Bhoi, N.K., & Jain, P.K. (2021). Developments in abrasive water jet machining process-from 1980-2020. In: K. Gupta & A. Pramanik (Eds.), Advanced Machining and Finishing, Handbooks in Advanced Manufacturing (pp. 217-252). doi:10.1016/B978-0-12-817452-4.00011-7
  • Sitek, L., Hlaváček, P., Foldyna, J., Jarchau, M., & Foldyna, V. (2021). Pulsating abrasive water jet cutting using a standard abrasive injection cutting head – preliminary tests. In: D. Klichová, L. Sitek, S. Hloch & J. Valentinčič (Eds.), Advances in Water Jetting (pp. 186-196). Springer. doi:10.1007/978-3-030-53491-2_20
  • Ulutas, A. (2017) Sewing machine selection for a textile workshop by using EDAS method. Journal of Business Research Turk, 9(2), 169-183.
  • Wang, S., Yang, F., Hu, D., Tang, C., & Lin, P. (2021). Modelling and analysis of abrasive water jet cutting front profile. The International Journal of Advanced Manufacturing Technology, 114, 2829-2837. doi:10.1007/s00170-021-07014-5
  • Zohoor, M., & Nourian, S.H. (2012). Development of an algorithm for optimum control process to compensate the nozzle wear effect in cutting the hard and tough material using abrasive water jet cutting process. The International Journal of Advanced Manufacturing Technology, 61, 1019-1028. doi:10.1007/s00170-011-3761-0
There are 26 citations in total.

Details

Primary Language English
Journal Section Mechanical Engineering
Authors

Ugochukwu Sixtus Nwankiti 0000-0003-4186-9346

Sunday Oke 0000-0002-0914-8146

Publication Date September 30, 2022
Submission Date June 27, 2022
Published in Issue Year 2022 Volume: 9 Issue: 3

Cite

APA Nwankiti, U. S., & Oke, S. (2022). Optimal Cutting Conditions of Abrasive Waterjet Cutting for Ti-6Al-2Sn-2Mo Alpha-Beta Alloy Using EDAS and DFA Methods. Gazi University Journal of Science Part A: Engineering and Innovation, 9(3), 233-250. https://doi.org/10.54287/gujsa.1135609