Microhardness and Microstructure of In-Situ Formed Fe-50%TiC Composites by Different Heating Methods
Year 2022,
Volume: 9 Issue: 4, 421 - 428, 31.12.2022
Melih Koçyiğit
,
Hasan Erdem Çamurlu
Abstract
The aim of this study is to fabricate in-situ TiC particle reinforced Fe matrix composites via volume combustion synthesis (VCS) through heating by two different sources. One group of reactant pellets was ignited by heating in an induction furnace (IF). The other group was ignited via heating by using a tungsten inert gas (TIG) torch. Thus, the differences in the microhardness and microstructure of the obtained composites could be compared. Fe, C and Ti elemental powders were used to obtain composites that contained 50 vol. % TiC in the Fe matrix. In the repeated experiments, the ignition temperatures of the IF pellets were found to be in 1164-1184 oC range. The formation of composites was verified by X-ray diffraction (XRD) analyses, where it was seen that the products were composed of TiC and Fe with trace impurity phase. Scanning electron microscope (SEM) examinations showed that the in-situ formed TiC particles were regularly distributed in matrix in both series. The TiC particles obtained by TIG heating were about 5 times larger than the particles obtained by induction heating. Microhardness values of the samples were higher in IF series as compared to TIG series. It was shown that 50 vol. % TiC particle reinforced Fe matrix composites could be obtained by both heating methods. TIG was found to be a much practical method, when compared to conducting VCS in a furnace.
Supporting Institution
Akdeniz Üniversitesi
Project Number
FDK-2021-5762.
Thanks
Authors thank to Akdeniz University Scientific Research Projects Coordination Unit for supporting this study with Project No: FDK-2021-5762.
References
- Choi, Y., Mullins, M. E., Wijayatilleke, K., & Lee, J. K. (1992). Fabrication of metal matrix composites of TiC-Al through self-propagating synthesis reaction. Metallurgical and Materials Transactions A, 23(9), 2387-2392. doi:10.1007/BF02658041
- Emamian, A., Corbin, S. F., & Khajepour, A. (2011). The influence of combined laser parameters on in-situ formed TiC morphology during laser cladding. Surface and Coatings Technology, 206(1), 124-131. doi:10.1016/j.surfcoat.2011.06.062
- Fan, Q., Chai, H., & Jin, Z. (1999). Mechanism of combustion synthesis of TiC–Fe cermet. Journal of Materials Science, 34(1), 115-122. doi:10.1023/A:1004430028260
- Jing, W., & Yisan, W. (2007). In-situ production of Fe–TiC composite. Materials Letters, 61(22), 4393-4395. doi:10.1016/j.matlet.2007.02.011
- Koczak, M. J., Khatri, S. C., Allison, J. E., & Bader, M. G. (1993). Metal-matrix composites for ground vehicle, aerospace, and Industrial applications. In: S. Suresh, A. Mortensen, & A. Needleman (Eds.), Fundamentals of Metal Matrix Composites (pp. 297-326). Stoneham, USA. doi:10.1016/B978-0-08-052371-2.50020-1
- Kocyigit, M., & Camurlu, H. E. (2022, June 17-19). Comparison of microstructure and microhardness of boride and carbide reinforced iron matrix composites. In: A. Unsal (Eds.), Proceedings of 2. International Cappadocia Scientific Research Congress, Nevşehir, Türkiye, (pp. 796-802).
- Kocyigit, M., & Camurlu, H. E. (2023). Volume Combustion Synthesis in Fe–Ti–C and Fe–Ti Systems. Metallurgical and Materials Transactions A, 54(1), 320-332. doi:10.1007/s11661-022-06880-2
- Murray, J. L. (1981). The Fe− Ti (iron-titanium) system. Bulletin of Alloy Phase Diagrams, 2(3), 320-334. doi:10.1007/BF02868286
- Rahimi-Vahedi, A., Adeli, M., & Saghafian, H. (2018). Formation of Fe-TiC composite clad layers on steel using the combustion synthesis process. Surface and Coatings Technology, 347, 217-224. doi:10.1016/j.surfcoat.2018.04.086
- Rogachev, A. S. (2017). Fundamentals: Theory. In: I. P. Borovinskaya, A. A. Gromov, E. A. Levashov, Y. M. Maksimov, A. S. Mukasyan, & A. S. Rogachev (Eds.). Concise Encyclopedia of Self-Propagating High-Temperature Synthesis (pp. 140-141). Elsevier. doi:10.1016/B978-0-12-804173-4.00062-4
- Tjong, S. C., & Ma, Z. Y. (2000). Microstructural and mechanical characteristics of in situ metal matrix composites. Materials Science and Engineering: R: Reports, 29(3-4), 49-113. doi:10.1016/S0927-796X(00)00024-3
- Xinhong, W., Lin, C., Min, Z., & Zengda, Z. (2009). Fabrication of multiple carbide particles reinforced Fe-based surface hardfacing layer produced by gas tungsten arc welding process. Surface and Coatings Technology, 203(8), 976-980. doi:10.1016/j.surfcoat.2008.09.020
- Zhao, Z., Li, J., Bai, P., Qu, H., Liang, M., Liao, H., Wu, L., Huo, P., Liu, H., & Zhang, J. (2019). Microstructure and mechanical properties of TiC-reinforced 316L stainless steel composites fabricated using selective laser melting. Metals, 9(2), 267. doi:10.3390/met9020267
Year 2022,
Volume: 9 Issue: 4, 421 - 428, 31.12.2022
Melih Koçyiğit
,
Hasan Erdem Çamurlu
Project Number
FDK-2021-5762.
References
- Choi, Y., Mullins, M. E., Wijayatilleke, K., & Lee, J. K. (1992). Fabrication of metal matrix composites of TiC-Al through self-propagating synthesis reaction. Metallurgical and Materials Transactions A, 23(9), 2387-2392. doi:10.1007/BF02658041
- Emamian, A., Corbin, S. F., & Khajepour, A. (2011). The influence of combined laser parameters on in-situ formed TiC morphology during laser cladding. Surface and Coatings Technology, 206(1), 124-131. doi:10.1016/j.surfcoat.2011.06.062
- Fan, Q., Chai, H., & Jin, Z. (1999). Mechanism of combustion synthesis of TiC–Fe cermet. Journal of Materials Science, 34(1), 115-122. doi:10.1023/A:1004430028260
- Jing, W., & Yisan, W. (2007). In-situ production of Fe–TiC composite. Materials Letters, 61(22), 4393-4395. doi:10.1016/j.matlet.2007.02.011
- Koczak, M. J., Khatri, S. C., Allison, J. E., & Bader, M. G. (1993). Metal-matrix composites for ground vehicle, aerospace, and Industrial applications. In: S. Suresh, A. Mortensen, & A. Needleman (Eds.), Fundamentals of Metal Matrix Composites (pp. 297-326). Stoneham, USA. doi:10.1016/B978-0-08-052371-2.50020-1
- Kocyigit, M., & Camurlu, H. E. (2022, June 17-19). Comparison of microstructure and microhardness of boride and carbide reinforced iron matrix composites. In: A. Unsal (Eds.), Proceedings of 2. International Cappadocia Scientific Research Congress, Nevşehir, Türkiye, (pp. 796-802).
- Kocyigit, M., & Camurlu, H. E. (2023). Volume Combustion Synthesis in Fe–Ti–C and Fe–Ti Systems. Metallurgical and Materials Transactions A, 54(1), 320-332. doi:10.1007/s11661-022-06880-2
- Murray, J. L. (1981). The Fe− Ti (iron-titanium) system. Bulletin of Alloy Phase Diagrams, 2(3), 320-334. doi:10.1007/BF02868286
- Rahimi-Vahedi, A., Adeli, M., & Saghafian, H. (2018). Formation of Fe-TiC composite clad layers on steel using the combustion synthesis process. Surface and Coatings Technology, 347, 217-224. doi:10.1016/j.surfcoat.2018.04.086
- Rogachev, A. S. (2017). Fundamentals: Theory. In: I. P. Borovinskaya, A. A. Gromov, E. A. Levashov, Y. M. Maksimov, A. S. Mukasyan, & A. S. Rogachev (Eds.). Concise Encyclopedia of Self-Propagating High-Temperature Synthesis (pp. 140-141). Elsevier. doi:10.1016/B978-0-12-804173-4.00062-4
- Tjong, S. C., & Ma, Z. Y. (2000). Microstructural and mechanical characteristics of in situ metal matrix composites. Materials Science and Engineering: R: Reports, 29(3-4), 49-113. doi:10.1016/S0927-796X(00)00024-3
- Xinhong, W., Lin, C., Min, Z., & Zengda, Z. (2009). Fabrication of multiple carbide particles reinforced Fe-based surface hardfacing layer produced by gas tungsten arc welding process. Surface and Coatings Technology, 203(8), 976-980. doi:10.1016/j.surfcoat.2008.09.020
- Zhao, Z., Li, J., Bai, P., Qu, H., Liang, M., Liao, H., Wu, L., Huo, P., Liu, H., & Zhang, J. (2019). Microstructure and mechanical properties of TiC-reinforced 316L stainless steel composites fabricated using selective laser melting. Metals, 9(2), 267. doi:10.3390/met9020267