Araştırma Makalesi
BibTex RIS Kaynak Göster

Falling Body Motion in Time Scale Calculus

Yıl 2024, Cilt: 11 Sayı: 1, 210 - 224, 28.03.2024
https://doi.org/10.54287/gujsa.1427944

Öz

The falling body problem for different time scales, such as ℝ, ℤ, hℤ, qℕ0, ℙc,d is the subject of this study. To deal with this problem, we use time-scale calculus. Time scale dynamic equations are used to define the falling body problem. The exponential time scale function is used for the solutions of these problems. The solutions of the falling body problem in each of these time scales are found. Moreover, we also test our mathematical results with numerical simulations.

Kaynakça

  • Akın, E. & Bohner, M. (2003). Miscellaneous Dynamic Equations. Methods and Applications of Analysis, 10(1), pp.11-30. https://dx.doi.org/10.4310/MAA.2003.v10.n1.a2
  • Akın, E., Pelen, N. N., Tiryaki I. U., & Yalcin, F. (2020). Parameter identification for gompertz and logistic dynamic equations. Plos One, 15(4): e0230582. https://doi.org/10.1371/journal.pone.0230582
  • Alanazi, A. M., Ebaid, A., Alhawiti W. M., & Muhiuddin, G. (2020). The Falling Body Problem in Quantum Calculus. Front. Phys., 8, 43. https://doi.org/10.3389/fphy.2020.00043
  • Anderson, D. R. (2005). Time-scale integral inequalities. J. Inequal. Pure Appl. Math., 6(3), 66.
  • Bohner, M., & Peterson, A. (2001). Dynamic Equations on Time Scale: An Introduction with Applications. Birkhauser, Boston, Inc., Boston, MA. https://doi.org/10.1007/978-1-4612-0201-1
  • Elaydi, S. (2005). An Introduction to Difference Equations. Springer SBM. https://doi.org/10.1007/0-387-27602-5
  • Hilger, S. (1988). Ein Maßkettenkalk ̈ul mit Anwendung auf Zentrumsmannigfaltigkeiten. PhD Thesis. Universitat Würzburg
  • Jackson, F. H. (1910). On a q-definite integrals. The Quarterly Journal of Pure and Applied Mathematics, 41, 193-203.
  • Kayar, Z., Kaymakçalan, B., & Pelen, N. N. (2022). Diamond alpha Bennett-Leindler type dynamic inequalities and their applications. Mathematical Methods in the Applied Sciences, 45(5), 2797-2819. https://doi.org/10.1002/mma.7955
  • Kayar, Z., & Kaymakçalan B. (2022a). Applications of the novel diamond alpha Hardy–Copson type dynamic inequalities to half linear difference equations. Journal of Difference Equations and Applications, 28(4), 457-484. https://doi.org/10.1080/10236198.2022.2042522
  • Kayar Z., & Kaymakçalan, B. (2022b). Some new extended nabla and delta Hardy-Copson type inequalities and their applications in oscillation theory. Bulletin of the Iranian Mathematical Society, 48, 2407-2439. https://doi.org/10.1007/s41980-021-00651-2
  • Thornton, S. T., & Marion, J. B. (2004). Classical dynamics of particles and systems, Thomson Brooks/Cole 24.
Yıl 2024, Cilt: 11 Sayı: 1, 210 - 224, 28.03.2024
https://doi.org/10.54287/gujsa.1427944

Öz

Kaynakça

  • Akın, E. & Bohner, M. (2003). Miscellaneous Dynamic Equations. Methods and Applications of Analysis, 10(1), pp.11-30. https://dx.doi.org/10.4310/MAA.2003.v10.n1.a2
  • Akın, E., Pelen, N. N., Tiryaki I. U., & Yalcin, F. (2020). Parameter identification for gompertz and logistic dynamic equations. Plos One, 15(4): e0230582. https://doi.org/10.1371/journal.pone.0230582
  • Alanazi, A. M., Ebaid, A., Alhawiti W. M., & Muhiuddin, G. (2020). The Falling Body Problem in Quantum Calculus. Front. Phys., 8, 43. https://doi.org/10.3389/fphy.2020.00043
  • Anderson, D. R. (2005). Time-scale integral inequalities. J. Inequal. Pure Appl. Math., 6(3), 66.
  • Bohner, M., & Peterson, A. (2001). Dynamic Equations on Time Scale: An Introduction with Applications. Birkhauser, Boston, Inc., Boston, MA. https://doi.org/10.1007/978-1-4612-0201-1
  • Elaydi, S. (2005). An Introduction to Difference Equations. Springer SBM. https://doi.org/10.1007/0-387-27602-5
  • Hilger, S. (1988). Ein Maßkettenkalk ̈ul mit Anwendung auf Zentrumsmannigfaltigkeiten. PhD Thesis. Universitat Würzburg
  • Jackson, F. H. (1910). On a q-definite integrals. The Quarterly Journal of Pure and Applied Mathematics, 41, 193-203.
  • Kayar, Z., Kaymakçalan, B., & Pelen, N. N. (2022). Diamond alpha Bennett-Leindler type dynamic inequalities and their applications. Mathematical Methods in the Applied Sciences, 45(5), 2797-2819. https://doi.org/10.1002/mma.7955
  • Kayar, Z., & Kaymakçalan B. (2022a). Applications of the novel diamond alpha Hardy–Copson type dynamic inequalities to half linear difference equations. Journal of Difference Equations and Applications, 28(4), 457-484. https://doi.org/10.1080/10236198.2022.2042522
  • Kayar Z., & Kaymakçalan, B. (2022b). Some new extended nabla and delta Hardy-Copson type inequalities and their applications in oscillation theory. Bulletin of the Iranian Mathematical Society, 48, 2407-2439. https://doi.org/10.1007/s41980-021-00651-2
  • Thornton, S. T., & Marion, J. B. (2004). Classical dynamics of particles and systems, Thomson Brooks/Cole 24.
Toplam 12 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Uygulamalarda Dinamik Sistemler
Bölüm Matematik
Yazarlar

Neslihan Nesliye Pelen 0000-0003-1853-3959

Zeynep Kayar 0000-0002-8309-7930

Erken Görünüm Tarihi 21 Mart 2024
Yayımlanma Tarihi 28 Mart 2024
Gönderilme Tarihi 29 Ocak 2024
Kabul Tarihi 8 Mart 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 11 Sayı: 1

Kaynak Göster

APA Pelen, N. N., & Kayar, Z. (2024). Falling Body Motion in Time Scale Calculus. Gazi University Journal of Science Part A: Engineering and Innovation, 11(1), 210-224. https://doi.org/10.54287/gujsa.1427944