Research Article
BibTex RIS Cite

Design of 8-Elements Linear Dipole Antenna Array to Suppress Sidelobe Signals by Using Genetic Optimization

Year 2025, Volume: 12 Issue: 1, 307 - 318, 26.03.2025
https://doi.org/10.54287/gujsa.1559050

Abstract

High sidelobe levels can result in unwanted interference or "noise" from signals arriving from directions other than the desired main lobe. These signals can degrade the overall performance of a system by reducing the signal-to-noise ratio, making it more difficult to distinguish the intended signal from background noise. In systems like radar or satellite communication, sidelobes can cause interference to other users or systems operating in adjacent frequency bands or directions. Suppressing the sidelobes helps minimize this cross-talk and interference. When the sidelobes are suppressed, more of the transmitted power is concentrated in the main lobe, improving the efficiency of power usage. This is important in communication systems where conserving power is essential, such as in satellites or mobile devices. In environments where signals may bounce off objects (such as in urban areas for wireless communication or radar), sidelobes can pick up signals reflected from various surfaces. By suppressing sidelobes, the system becomes less susceptible to multipath interference, which can degrade signal quality and accuracy. To sum up, sidelobe suppression is crucial for ensuring the efficiency, accuracy, and reliability of many systems, particularly in radar and communications. It minimizes interference, reduces false detections, improves directional sensitivity, and ensures that resources (e.g., power and bandwidth) are used effectively. In this paper, 8-element linear dipole antenna array designed to suppress sidelobe signals, which causes interference on the communication system. One of the key parameter is the distance between the each antenna. In this simulation, we defined the distance between each antenna as 0.6*lambda, for 3GHz operating frequency. Another optimization parameter is the magnitude of each antenna element, aimed to optimize magnitudes of each antenna element's sidelobe levels by using Genetic Algorithm (GA), where theta angle between 40-60 degrees. The antenna array design done in CST Studio environment, but amplitude tuning with GA performed using MATLAB. We compared our design results for each simulation, observed the change of directivity for antenna array by using GA. As a result, the sidelobe level between the desired theta 40 and 60 degrees suppressed from -17dB to -28.2dB but it observed that the directivity of the main antenna radiation pattern decreased from 13dBi to 10dBi.

References

  • Amaireh, A. A., Al-Zoubi, A. Sh., & Dib, N. I. (2019). Sidelobe-Level Suppression for Circular Antenna Array via New Hybrid Optimization Algorithm Based on Antlion and Grasshopper Optimization Algorithms. Progress in Electromagnetics Research C, 93. 49-63. https://doi.org/10.2528/PIERC19040909
  • Aydin, E., & Erdem Aykac, R. (2023). The Effect of Antenna Spacing on Active S-Parameters in Planar Array Antennas. The Eurasia Proceedings of Science Technology Engineering and Mathematics, 24, 29-36. https://doi.org/10.55549/epstem.1406213
  • Dhiman, G., & Kaur, A. (2019). STOA: A bio-inspired based optimization algorithm for industrial engineering problems. Engineering Applications of Artificial Intelligence, 82, 148-174. https://doi.org/10.1016/j.engappai.2019.03.021
  • Durmus, A., & Kurban, R. (2022). Optimal synthesis of concentric circular antenna arrays using political optimizer. IETE Journal of Research, 68(1), 768-777. https://doi.org/10.1080/03772063.2021.1902871
  • Katoch, S., Chauhan, S. S., & Kumar, V. (2021). A review on genetic algorithm: past, present, and future, Multimedia Tools and Applications 80.5: 8091-8126. https://doi.org/10.1007/s11042-020-10139-6
  • Lambora, A., Gupta, K., & Chopra, K. (2019) Kriti Chopra. Genetic Algorithm—A Literature Review. 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon), Faridabad, 14-16 February 2019, 380-384. https://doi.org/10.1109/COMITCon.2019.8862255
  • Liang, S., Feng, T., & Sun, G. (2017). Sidelobe‐level suppression for linear and circular antenna arrays via the cuckoo search–chicken swarm optimisation algorithm. IET Microwaves, Antennas & Propagation, 11(2), 209-218. https://doi.org/10.1049/iet-map.2016.0083
  • Liang, S. Fang, Z. Sun, G. Liu, Y. Qu, G. & Zhang, Y. (2020). Sidelobe reductions of antenna arrays via an improved chicken swarm optimization approach. IEEE Access, 8, 37664-37683. https://doi.org/10.1109/ACCESS.2020.2976127
  • Liu, J., Zhao, Z., Yang, K., & Liu, Q. H. (2014). A hybrid optimization for pattern synthesis of large antenna arrays. Progress In Electromagnetics Research, 145, 81-91. http://doi.org/10.2528/PIER13121606
  • Ma, Y., Yang, S., Chen, Y., Qu, S. W., & Hu, J. (2019). Pattern synthesis of 4-D irregular antenna arrays based on maximum-entropy model. IEEE transactions on antennas and propagation, 67(5), 3048-3057. https://doi.org/10.1109/TAP.2019.2896730
  • Nie, Y., Liu, Y., Zhao, W., & Li, J. (2024, May). Optimizing Linear Antenna Arrays with The Chaotic Gold Rush Optimizer. In 2024 IEEE 14th International Conference on Electronics Information and Emergency Communication (ICEIEC), 31-34. IEEE. https://doi.org/10.1109/ICEIEC61773.2024.10561817
  • Panduro, M. A., Mendez, A. L., Dominguez, R., & Romero, G. (2006). Design of non-uniform circular antenna arrays for side lobe reduction using the method of genetic algorithms. AEU-International Journal of Electronics and Communications, 60.10: 713-717. https://doi.org/10.1016/j.aeue.2006.03.006
  • Satılmış, G. (2022). Genetik Algoritma Kullanarak Dipol Dizi Antenlerde Yan Lob Bastırma. Muş Alparslan Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 3(2), 50-56.
  • Singh, H., Mittal, N., Singh, U., & Salgotra, R. (2022). Synthesis of non-uniform circular antenna array for low side lobe level and high directivity using self-adaptive Cuckoo search algorithm. Arabian Journal for Science and Engineering, 47(3), 3105-3118. https://doi.org/10.1007/s13369-021-06059-8
  • Taylor, T. T. (1955). Design o Line Source Antennas for Narrow Beamwidth and Low Sidelobe, IRE Trans. Antennas Propag., 3, 16-28. http://doi.org/10.1109/TPGAP.1955.5720407
  • Xiang, L., Pei, F., & Klein, A. (2024). Joint Optimization of Beamforming and 3D Array Steering for Multi-Antenna UAV Communications, IEEE Wireless Communications and Networking Conference (WCNC), Dubai, United Arab Emirates, 1-6, https://doi.org/10.1109/WCNC57260.2024.10570943
  • Yang, G., Zhang, Y., & Zhang, S. (2021). Wide-band and wide-angle scanning phased array antenna for mobile communication system. IEEE Open Journal of Antennas and Propagation, 2, 203-212. https://doi.org/10.1109/OJAP.2021.3057062
  • Zhang, J., & Li, J. (2023). Cognitive engine design based on artificial intelligence. Spatial Cognitive Engine Technology, Academic Press, 51-63. https://doi.org/10.1016/B978-0-323-95107-4.00009-3
Year 2025, Volume: 12 Issue: 1, 307 - 318, 26.03.2025
https://doi.org/10.54287/gujsa.1559050

Abstract

References

  • Amaireh, A. A., Al-Zoubi, A. Sh., & Dib, N. I. (2019). Sidelobe-Level Suppression for Circular Antenna Array via New Hybrid Optimization Algorithm Based on Antlion and Grasshopper Optimization Algorithms. Progress in Electromagnetics Research C, 93. 49-63. https://doi.org/10.2528/PIERC19040909
  • Aydin, E., & Erdem Aykac, R. (2023). The Effect of Antenna Spacing on Active S-Parameters in Planar Array Antennas. The Eurasia Proceedings of Science Technology Engineering and Mathematics, 24, 29-36. https://doi.org/10.55549/epstem.1406213
  • Dhiman, G., & Kaur, A. (2019). STOA: A bio-inspired based optimization algorithm for industrial engineering problems. Engineering Applications of Artificial Intelligence, 82, 148-174. https://doi.org/10.1016/j.engappai.2019.03.021
  • Durmus, A., & Kurban, R. (2022). Optimal synthesis of concentric circular antenna arrays using political optimizer. IETE Journal of Research, 68(1), 768-777. https://doi.org/10.1080/03772063.2021.1902871
  • Katoch, S., Chauhan, S. S., & Kumar, V. (2021). A review on genetic algorithm: past, present, and future, Multimedia Tools and Applications 80.5: 8091-8126. https://doi.org/10.1007/s11042-020-10139-6
  • Lambora, A., Gupta, K., & Chopra, K. (2019) Kriti Chopra. Genetic Algorithm—A Literature Review. 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon), Faridabad, 14-16 February 2019, 380-384. https://doi.org/10.1109/COMITCon.2019.8862255
  • Liang, S., Feng, T., & Sun, G. (2017). Sidelobe‐level suppression for linear and circular antenna arrays via the cuckoo search–chicken swarm optimisation algorithm. IET Microwaves, Antennas & Propagation, 11(2), 209-218. https://doi.org/10.1049/iet-map.2016.0083
  • Liang, S. Fang, Z. Sun, G. Liu, Y. Qu, G. & Zhang, Y. (2020). Sidelobe reductions of antenna arrays via an improved chicken swarm optimization approach. IEEE Access, 8, 37664-37683. https://doi.org/10.1109/ACCESS.2020.2976127
  • Liu, J., Zhao, Z., Yang, K., & Liu, Q. H. (2014). A hybrid optimization for pattern synthesis of large antenna arrays. Progress In Electromagnetics Research, 145, 81-91. http://doi.org/10.2528/PIER13121606
  • Ma, Y., Yang, S., Chen, Y., Qu, S. W., & Hu, J. (2019). Pattern synthesis of 4-D irregular antenna arrays based on maximum-entropy model. IEEE transactions on antennas and propagation, 67(5), 3048-3057. https://doi.org/10.1109/TAP.2019.2896730
  • Nie, Y., Liu, Y., Zhao, W., & Li, J. (2024, May). Optimizing Linear Antenna Arrays with The Chaotic Gold Rush Optimizer. In 2024 IEEE 14th International Conference on Electronics Information and Emergency Communication (ICEIEC), 31-34. IEEE. https://doi.org/10.1109/ICEIEC61773.2024.10561817
  • Panduro, M. A., Mendez, A. L., Dominguez, R., & Romero, G. (2006). Design of non-uniform circular antenna arrays for side lobe reduction using the method of genetic algorithms. AEU-International Journal of Electronics and Communications, 60.10: 713-717. https://doi.org/10.1016/j.aeue.2006.03.006
  • Satılmış, G. (2022). Genetik Algoritma Kullanarak Dipol Dizi Antenlerde Yan Lob Bastırma. Muş Alparslan Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 3(2), 50-56.
  • Singh, H., Mittal, N., Singh, U., & Salgotra, R. (2022). Synthesis of non-uniform circular antenna array for low side lobe level and high directivity using self-adaptive Cuckoo search algorithm. Arabian Journal for Science and Engineering, 47(3), 3105-3118. https://doi.org/10.1007/s13369-021-06059-8
  • Taylor, T. T. (1955). Design o Line Source Antennas for Narrow Beamwidth and Low Sidelobe, IRE Trans. Antennas Propag., 3, 16-28. http://doi.org/10.1109/TPGAP.1955.5720407
  • Xiang, L., Pei, F., & Klein, A. (2024). Joint Optimization of Beamforming and 3D Array Steering for Multi-Antenna UAV Communications, IEEE Wireless Communications and Networking Conference (WCNC), Dubai, United Arab Emirates, 1-6, https://doi.org/10.1109/WCNC57260.2024.10570943
  • Yang, G., Zhang, Y., & Zhang, S. (2021). Wide-band and wide-angle scanning phased array antenna for mobile communication system. IEEE Open Journal of Antennas and Propagation, 2, 203-212. https://doi.org/10.1109/OJAP.2021.3057062
  • Zhang, J., & Li, J. (2023). Cognitive engine design based on artificial intelligence. Spatial Cognitive Engine Technology, Academic Press, 51-63. https://doi.org/10.1016/B978-0-323-95107-4.00009-3
There are 18 citations in total.

Details

Primary Language English
Subjects Antennas and Propagation
Journal Section Communications Engineering
Authors

Emirhan Aydin 0009-0007-7703-7054

Publication Date March 26, 2025
Submission Date October 1, 2024
Acceptance Date December 30, 2024
Published in Issue Year 2025 Volume: 12 Issue: 1

Cite

APA Aydin, E. (2025). Design of 8-Elements Linear Dipole Antenna Array to Suppress Sidelobe Signals by Using Genetic Optimization. Gazi University Journal of Science Part A: Engineering and Innovation, 12(1), 307-318. https://doi.org/10.54287/gujsa.1559050