Research Article
BibTex RIS Cite

Year 2025, Volume: 12 Issue: 2, 652 - 664, 30.06.2025
https://doi.org/10.54287/gujsa.1700850

Abstract

References

  • Al-Timemy, A. H., Khushaba, R. N., Bugmann, G., & Escudero, J. (2015). Improving the performance against force variation of EMG controlled multifunctional upper-limb prostheses for transradial amputees. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 24(6), 650-661. https://doi.org/10.1109/TNSRE.2015.2445634
  • Arlot, S., & Celisse, A. (2010). A survey of cross-validation procedures for model selection. Statistics Survey, 4, 40-79. https://doi.org/10.1214/09-SS054
  • Atzori, M., Gijsberts, A., Castellini, C., Caputo, B., Hager, A. G. M., Elsig, S., Giatsidis, G., Bassetto, F., & Müller, H. (2014). Electromyography data for non-invasive naturally-controlled robotic hand prostheses. Scientific Data, 1(1), 1-13. https://doi.org/10.1038/sdata.2014.53
  • Basmajian, J. V. & DeLuca, C. J. (1985). Muscle Alive. Their Functions Revealed by Electromyography (5th ed.). Baltimore, MD: Williams and Wilkins.
  • Boostani, R., & Moradi, M. H. (2003). Evaluation of the forearm EMG signal features for the control of a prosthetic hand. Physiological Measurement, 24(2), 309. https://doi.org/10.1088/0967-3334/24/2/307
  • Brown, S. H., Brookham, R. L., & Dickerson, C. R. (2010). High‐pass filtering surface EMG in an attempt to better represent the signals detected at the intramuscular level. Muscle & Nerve: Official Journal of the American Association of Electrodiagnostic Medicine, 41(2), 234-239. https://doi.org/10.1002/mus.21470
  • Chen, X., Zhang, D., & Zhu, X. (2013). Application of a self-enhancing classification method to electromyography pattern recognition for multifunctional prosthesis control. Journal of Neuroengineering and Rehabilitation, 10, 1-13. https://doi.org/10.1186/1743-0003-10-44
  • Choi, C., Micera, S., Carpaneto, J., & Kim, J. (2009). Development and quantitative performance evaluation of a noninvasive EMG computer interface. IEEE Transactions on Biomedical Engineering, 56(1), 188-191. https://doi.org/10.1109/TBME.2008.2005950
  • Demir, U., Kocaoğlu, S., & Akdoğan, E. (2016). Human impedance parameter estimation using artificial neural network for modelling physiotherapist motion. Biocybernetics and Biomedical Engineering, 36(2), 318-326. https://doi.org/10.1016/j.bbe.2016.01.002
  • Farina, D., Jiang, N., Rehbaum, H., Holobar, A., Graimann, B., Dietl, H., & Aszmann, O. C. (2014). The extraction of neural information from the surface EMG for the control of upper-limb prostheses: emerging avenues and challenges. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 22(4), 797-809. https://doi.org/10.1109/TNSRE.2014.2305111
  • Geethanjali, P. (2016). Myoelectric control of prosthetic hands: state-of-the-art review. Medical Devices: Evidence and Research, 247-255. https://doi.org/10.2147/MDER.S91102
  • Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., Liu, T., Wang, X., Wang, G., Cai, J., & Chen, T. (2018). Recent advances in convolutional neural networks. Pattern Recognition, 77, 354-377. https://doi.org/10.1016/j.patcog.2017.10.013
  • Haig, A. J., Gelblum, J. B., Rechtien, J. J., & Gitter, A. J. (1996). AAEM practice topics: technology assessment: the use of surface EMG in the diagnosis and treatment of nerve and muscle disorders. Muscle & Nerve: Official Journal of the American Association of Electrodiagnostic Medicine, 19(3), 392-395. https://doi.org/10.1002/(sici)1097-4598(199603)19:3%3C392::aid-mus21%3E3.0.co;2-t
  • Hermens, H. J., Freriks, B., Merletti, R., Stegeman, D., Blok, J., Rau, G., Disselhorst-Klug, C., & Hägg, G. (1999). European recommendations for surface electromyography. Roessingh Research and Development, 8(2), 13-54. https://doi.org/10.1016/S1050-6411(00)00027-4
  • Hudgins, B., Parker, P., & Scott, R. N. (1993). A new strategy for multifunction myoelectric control. IEEE Transactions on Biomedical Engineering, 40(1), 82-94. https://doi.org/10.1109/10.204774
  • Jahani Fariman, H., Ahmad, S. A., Hamiruce Marhaban, M., Alijan Ghasab, M., & Chappell, P. H. (2016). Hand movements classification for myoelectric control system using adaptive resonance theory. Australasian Physical & Engineering Sciences in Medicine, 39, 85-102. https://doi.org/10.1007/s13246-015-0399-5
  • Joshi, D. C., Kumar, P., Joshi, R. C., & Mitra, S. (2024). AI-Enhanced Analysis to Investigate the Feasibility of EMG Signals for Prosthetic Hand Force Control Incorporating Anthropometric Measures. Prosthesis, 6(6). https://doi.org/10.3390/prosthesis6060106
  • Kamavuako, E. N., Farina, D., Yoshida, K., & Jensen, W. (2009). Relationship between grasping force and features of single-channel intramuscular EMG signals. Journal of Neuroscience Methods, 185(1), 143-150. https://doi.org/10.1016/j.jneumeth.2009.09.006
  • Kamavuako, E. N., Rosenvang, J. C., Bøg, M. F., Smidstrup, A., Erkocevic, E., Niemeier, M. J., Jensen, W., & Farina, D. (2013). Influence of the feature space on the estimation of hand grasping force from intramuscular EMG. Biomedical Signal Processing and Control, 8(1), 1-5. https://doi.org/10.1016/j.bspc.2012.05.002
  • Kundu, A. S., Mazumder, O., Lenka, P. K., & Bhaumik, S. (2018). Hand gesture recognition based omnidirectional wheelchair control using IMU and EMG sensors. Journal of Intelligent & Robotic Systems, 91, 529-541. https://doi.org/10.1007/s10846-017-0725-0
  • Micera, S., Carpaneto, J., & Raspopovic, S. (2010). Control of hand prostheses using peripheral information. IEEE Reviews in Biomedical Engineering, 3, 48-68. https://doi.org/10.1109/RBME.2010.2085429
  • Ni, S., Al-qaness, M. A., Hawbani, A., Al-Alimi, D., Abd Elaziz, M., & Ewees, A. A. (2024). A survey on hand gesture recognition based on surface electromyography: Fundamentals, methods, applications, challenges and future trends. Applied Soft Computing, 112235. https://doi.org/10.1016/j.asoc.2024.112235
  • Noce, E., Bellingegni, A. D., Ciancio, A. L., Sacchetti, R., Davalli, A., Guglielmelli, E., & Zollo, L. (2019). EMG and ENG-envelope pattern recognition for prosthetic hand control. Journal of Neuroscience Methods, 311, 38-46. https://doi.org/10.1016/j.jneumeth.2018.10.004
  • Oskoei, M. A., & Hu, H. (2007). Myoelectric control systems—A survey. Biomedical Signal Processing and Control, 2(4), 275-294. https://doi.org/10.1016/j.bspc.2007.07.009
  • Onay, F., & Mert, A. (2020). Phasor represented EMG feature extraction against varying contraction level of prosthetic control. Biomedical Signal Processing and Control, 59, 101881. https://doi.org/10.1016/j.bspc.2020.101881
  • Parajuli, N., Sreenivasan, N., Bifulco, P., Cesarelli, M., Savino, S., Niola, V., Esposito, D., Hamilton, T. J., Naik, G. N., Gunawardana, U., & Gargiulo, G. D. (2019). Real-time EMG based pattern recognition control for hand prostheses: A review on existing methods, challenges and future implementation. Sensors, 19(20), 4596. https://doi.org/10.3390/s19204596
  • Phinyomark, A., Phukpattaranont, P., & Limsakul, C. (2012). Feature reduction and selection for EMG signal classification. Expert Systems with Applications, 39(8), 7420-7431. https://doi.org/10.1016/j.eswa.2012.01.102
  • Phinyomark, A., Quaine, F., Charbonnier, S., Serviere, C., Tarpin-Bernard, F., & Laurillau, Y. (2014). Feature extraction of the first difference of EMG time series for EMG pattern recognition. Computer Methods and Programs in Biomedicine, 117(2), 247-256. https://doi.org/10.1016/j.cmpb.2014.06.013
  • Phinyomark, A., N. Khushaba, R., & Scheme, E. (2018). Feature extraction and selection for myoelectric control based on wearable EMG sensors. Sensors, 18(5), 1615. https://doi.org/10.3390/s18051615
  • Prakash, A., Sharma, S., & Sharma, N. (2019). A compact-sized surface EMG sensor for myoelectric hand prosthesis. Biomedical Engineering Letters, 9(4), 467-479. https://doi.org/10.1007/s13534-019-00130-y
  • Saikia, A., Mazumdar, S., Sahai, N., Paul, S., & Bhatia, D. (2022). Performance analysis of artificial neural network for hand movement detection from EMG signals. IETE Journal of Research, 68(2), 1074-1083. https://doi.org/10.1080/03772063.2019.1638316
  • Shin, J., Miah, A. S. M., Kabir, M. H., Rahim, M. A., & Al Shiam, A. (2024). A methodological and structural review of hand gesture recognition across diverse data modalities. IEEE Access. https://doi.org/10.1109/ACCESS.2024.3456436
  • Sims, T., Donovan-Hall, M., & Metcalf, C. (2020). Children’s and adolescents’ views on upper limb prostheses in relation to their daily occupations. British Journal of Occupational Therapy, 83(4), 237-245. https://doi.org/10.1177/0308022619865179
  • Soylu, A. R., & Arpinar-Avsar, P. (2010). Detection of surface electromyography recording time interval without muscle fatigue effect for biceps brachii muscle during maximum voluntary contraction. Journal of Electromyography and Kinesiology, 20(4), 773-776. https://doi.org/10.1016/j.jelekin.2010.02.006
  • Tkach, D., Huang, H., & Kuiken, T. A. (2010). Study of stability of time-domain features for electromyographic pattern recognition. Journal of Neuroengineering and Rehabilitation, 7, 1-13. https://doi.org/10.1186/1743-0003-7-21
  • Vásconez, J. P., López, L. I. B., Caraguay, Á. L. V., & Benalcázar, M. E. (2023). A comparison of EMG-based hand gesture recognition systems based on supervised and reinforcement learning. Engineering Applications of Artificial Intelligence, 123, 106327. https://doi.org/10.1016/j.engappai.2023.106327
  • Veer, K., & Sharma, T. (2016). A novel feature extraction for robust EMG pattern recognition. Journal of Medical Engineering & Technology, 40(4), 149-154. https://doi.org/10.3109/03091902.2016.1153739
  • Waris, A., Niazi, I. K., Jamil, M., Englehart, K., Jensen, W., & Kamavuako, E. N. (2018). Multiday evaluation of techniques for EMG-based classification of hand motions. IEEE Journal of Bbiomedical and Health Informatics, 23(4), 1526-1534. https://doi.org/10.1109/JBHI.2018.2864335
  • Wu, Y., Liang, S., Yan, T., Ao, J., Zhou, Z., & Li, X. (2022). Classification and simulation of process of linear change for grip force at different grip speeds by using supervised learning based on sEMG. Expert Systems with Applications, 206, 117785. https://doi.org/10.1016/j.eswa.2022.117785
  • Zecca, M., Micera, S., Carrozza, M. C., & Dario, P. (2002). Control of multifunctional prosthetic hands by processing the electromyographic signal. Critical Reviews™ in Biomedical Engineering, 30(4-6). https://doi.org/10.1615/CritRevBiomedEng.v30.i456.80
  • Zhang, S., Guo, S., Gao, B., Huang, Q., Pang, M., Hirata, H., & Ishihara, H. (2016). Muscle strength assessment system using sEMG-based force prediction method for wrist joint. Journal of Medical and Biological Engineering, 36, 121-131. https://doi.org/10.1007/s40846-016-0112-5
  • Zhang, L., Liu, G., Han, B., Wang, Z., & Zhang, T. (2019). sEMG based human motion intention recognition. Journal of Robotics, 2019(1), 3679174. https://doi.org/10.1155/2019/3679174

Utilization of Electromyographic Signal Classification for Predicting Hand Gestures and Grasping Forces Through Artificial Neural Networks

Year 2025, Volume: 12 Issue: 2, 652 - 664, 30.06.2025
https://doi.org/10.54287/gujsa.1700850

Abstract

Electromyographic (EMG) signals have gained significant recognition for their potential applications in various fields, particularly in the classification of hand gestures and grasping force prediction. These signals provide critical information that can be utilized to develop systems capable of interpreting human intentions, making them indispensable in areas such as assistive technology and human-computer interaction. The primary objective of this study was to assess the effectiveness of different time-domain features extracted from EMG signals in predicting hand gestures and grasping force simultaneously. The study specifically tested features such as Root Mean Square (RMS), Variance of EMG (VAR), Waveform Length (WL), Integrated EMG (IEMG), Difference Absolute Standard Deviation Value (DASDV), and Difference Absolute Mean Value (DAMV), employing an artificial neural network (ANN) to evaluate their ability to predict hand movements and grasping force. EMG data were collected from the flexor carpi radialis muscle, which plays a significant role in hand movement control. After extracting the relevant time-domain features from the EMG signals, these were input into an ANN for further analysis. The results demonstrated that the RMS feature provided the highest accuracy for both prediction of hand gesture (success rate 90.0% for resting position, 93.3% for wrist flexion, and 86.7% for hand pronation) and grasping force (0.09 RMSD and 0.89 PCC values for resting position, 0.15 RMSD and 0.85 PCC for wrist position). These findings underscore the potential application of these EMG-derived features in practical systems, particularly in the development of myoelectric-controlled prostheses. Such advancements hold promise for enhancing the functionality and intuitiveness of prosthetic devices, offering users more efficient and effective control, and thus improving their overall quality of life in assistive technology contexts.

References

  • Al-Timemy, A. H., Khushaba, R. N., Bugmann, G., & Escudero, J. (2015). Improving the performance against force variation of EMG controlled multifunctional upper-limb prostheses for transradial amputees. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 24(6), 650-661. https://doi.org/10.1109/TNSRE.2015.2445634
  • Arlot, S., & Celisse, A. (2010). A survey of cross-validation procedures for model selection. Statistics Survey, 4, 40-79. https://doi.org/10.1214/09-SS054
  • Atzori, M., Gijsberts, A., Castellini, C., Caputo, B., Hager, A. G. M., Elsig, S., Giatsidis, G., Bassetto, F., & Müller, H. (2014). Electromyography data for non-invasive naturally-controlled robotic hand prostheses. Scientific Data, 1(1), 1-13. https://doi.org/10.1038/sdata.2014.53
  • Basmajian, J. V. & DeLuca, C. J. (1985). Muscle Alive. Their Functions Revealed by Electromyography (5th ed.). Baltimore, MD: Williams and Wilkins.
  • Boostani, R., & Moradi, M. H. (2003). Evaluation of the forearm EMG signal features for the control of a prosthetic hand. Physiological Measurement, 24(2), 309. https://doi.org/10.1088/0967-3334/24/2/307
  • Brown, S. H., Brookham, R. L., & Dickerson, C. R. (2010). High‐pass filtering surface EMG in an attempt to better represent the signals detected at the intramuscular level. Muscle & Nerve: Official Journal of the American Association of Electrodiagnostic Medicine, 41(2), 234-239. https://doi.org/10.1002/mus.21470
  • Chen, X., Zhang, D., & Zhu, X. (2013). Application of a self-enhancing classification method to electromyography pattern recognition for multifunctional prosthesis control. Journal of Neuroengineering and Rehabilitation, 10, 1-13. https://doi.org/10.1186/1743-0003-10-44
  • Choi, C., Micera, S., Carpaneto, J., & Kim, J. (2009). Development and quantitative performance evaluation of a noninvasive EMG computer interface. IEEE Transactions on Biomedical Engineering, 56(1), 188-191. https://doi.org/10.1109/TBME.2008.2005950
  • Demir, U., Kocaoğlu, S., & Akdoğan, E. (2016). Human impedance parameter estimation using artificial neural network for modelling physiotherapist motion. Biocybernetics and Biomedical Engineering, 36(2), 318-326. https://doi.org/10.1016/j.bbe.2016.01.002
  • Farina, D., Jiang, N., Rehbaum, H., Holobar, A., Graimann, B., Dietl, H., & Aszmann, O. C. (2014). The extraction of neural information from the surface EMG for the control of upper-limb prostheses: emerging avenues and challenges. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 22(4), 797-809. https://doi.org/10.1109/TNSRE.2014.2305111
  • Geethanjali, P. (2016). Myoelectric control of prosthetic hands: state-of-the-art review. Medical Devices: Evidence and Research, 247-255. https://doi.org/10.2147/MDER.S91102
  • Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., Liu, T., Wang, X., Wang, G., Cai, J., & Chen, T. (2018). Recent advances in convolutional neural networks. Pattern Recognition, 77, 354-377. https://doi.org/10.1016/j.patcog.2017.10.013
  • Haig, A. J., Gelblum, J. B., Rechtien, J. J., & Gitter, A. J. (1996). AAEM practice topics: technology assessment: the use of surface EMG in the diagnosis and treatment of nerve and muscle disorders. Muscle & Nerve: Official Journal of the American Association of Electrodiagnostic Medicine, 19(3), 392-395. https://doi.org/10.1002/(sici)1097-4598(199603)19:3%3C392::aid-mus21%3E3.0.co;2-t
  • Hermens, H. J., Freriks, B., Merletti, R., Stegeman, D., Blok, J., Rau, G., Disselhorst-Klug, C., & Hägg, G. (1999). European recommendations for surface electromyography. Roessingh Research and Development, 8(2), 13-54. https://doi.org/10.1016/S1050-6411(00)00027-4
  • Hudgins, B., Parker, P., & Scott, R. N. (1993). A new strategy for multifunction myoelectric control. IEEE Transactions on Biomedical Engineering, 40(1), 82-94. https://doi.org/10.1109/10.204774
  • Jahani Fariman, H., Ahmad, S. A., Hamiruce Marhaban, M., Alijan Ghasab, M., & Chappell, P. H. (2016). Hand movements classification for myoelectric control system using adaptive resonance theory. Australasian Physical & Engineering Sciences in Medicine, 39, 85-102. https://doi.org/10.1007/s13246-015-0399-5
  • Joshi, D. C., Kumar, P., Joshi, R. C., & Mitra, S. (2024). AI-Enhanced Analysis to Investigate the Feasibility of EMG Signals for Prosthetic Hand Force Control Incorporating Anthropometric Measures. Prosthesis, 6(6). https://doi.org/10.3390/prosthesis6060106
  • Kamavuako, E. N., Farina, D., Yoshida, K., & Jensen, W. (2009). Relationship between grasping force and features of single-channel intramuscular EMG signals. Journal of Neuroscience Methods, 185(1), 143-150. https://doi.org/10.1016/j.jneumeth.2009.09.006
  • Kamavuako, E. N., Rosenvang, J. C., Bøg, M. F., Smidstrup, A., Erkocevic, E., Niemeier, M. J., Jensen, W., & Farina, D. (2013). Influence of the feature space on the estimation of hand grasping force from intramuscular EMG. Biomedical Signal Processing and Control, 8(1), 1-5. https://doi.org/10.1016/j.bspc.2012.05.002
  • Kundu, A. S., Mazumder, O., Lenka, P. K., & Bhaumik, S. (2018). Hand gesture recognition based omnidirectional wheelchair control using IMU and EMG sensors. Journal of Intelligent & Robotic Systems, 91, 529-541. https://doi.org/10.1007/s10846-017-0725-0
  • Micera, S., Carpaneto, J., & Raspopovic, S. (2010). Control of hand prostheses using peripheral information. IEEE Reviews in Biomedical Engineering, 3, 48-68. https://doi.org/10.1109/RBME.2010.2085429
  • Ni, S., Al-qaness, M. A., Hawbani, A., Al-Alimi, D., Abd Elaziz, M., & Ewees, A. A. (2024). A survey on hand gesture recognition based on surface electromyography: Fundamentals, methods, applications, challenges and future trends. Applied Soft Computing, 112235. https://doi.org/10.1016/j.asoc.2024.112235
  • Noce, E., Bellingegni, A. D., Ciancio, A. L., Sacchetti, R., Davalli, A., Guglielmelli, E., & Zollo, L. (2019). EMG and ENG-envelope pattern recognition for prosthetic hand control. Journal of Neuroscience Methods, 311, 38-46. https://doi.org/10.1016/j.jneumeth.2018.10.004
  • Oskoei, M. A., & Hu, H. (2007). Myoelectric control systems—A survey. Biomedical Signal Processing and Control, 2(4), 275-294. https://doi.org/10.1016/j.bspc.2007.07.009
  • Onay, F., & Mert, A. (2020). Phasor represented EMG feature extraction against varying contraction level of prosthetic control. Biomedical Signal Processing and Control, 59, 101881. https://doi.org/10.1016/j.bspc.2020.101881
  • Parajuli, N., Sreenivasan, N., Bifulco, P., Cesarelli, M., Savino, S., Niola, V., Esposito, D., Hamilton, T. J., Naik, G. N., Gunawardana, U., & Gargiulo, G. D. (2019). Real-time EMG based pattern recognition control for hand prostheses: A review on existing methods, challenges and future implementation. Sensors, 19(20), 4596. https://doi.org/10.3390/s19204596
  • Phinyomark, A., Phukpattaranont, P., & Limsakul, C. (2012). Feature reduction and selection for EMG signal classification. Expert Systems with Applications, 39(8), 7420-7431. https://doi.org/10.1016/j.eswa.2012.01.102
  • Phinyomark, A., Quaine, F., Charbonnier, S., Serviere, C., Tarpin-Bernard, F., & Laurillau, Y. (2014). Feature extraction of the first difference of EMG time series for EMG pattern recognition. Computer Methods and Programs in Biomedicine, 117(2), 247-256. https://doi.org/10.1016/j.cmpb.2014.06.013
  • Phinyomark, A., N. Khushaba, R., & Scheme, E. (2018). Feature extraction and selection for myoelectric control based on wearable EMG sensors. Sensors, 18(5), 1615. https://doi.org/10.3390/s18051615
  • Prakash, A., Sharma, S., & Sharma, N. (2019). A compact-sized surface EMG sensor for myoelectric hand prosthesis. Biomedical Engineering Letters, 9(4), 467-479. https://doi.org/10.1007/s13534-019-00130-y
  • Saikia, A., Mazumdar, S., Sahai, N., Paul, S., & Bhatia, D. (2022). Performance analysis of artificial neural network for hand movement detection from EMG signals. IETE Journal of Research, 68(2), 1074-1083. https://doi.org/10.1080/03772063.2019.1638316
  • Shin, J., Miah, A. S. M., Kabir, M. H., Rahim, M. A., & Al Shiam, A. (2024). A methodological and structural review of hand gesture recognition across diverse data modalities. IEEE Access. https://doi.org/10.1109/ACCESS.2024.3456436
  • Sims, T., Donovan-Hall, M., & Metcalf, C. (2020). Children’s and adolescents’ views on upper limb prostheses in relation to their daily occupations. British Journal of Occupational Therapy, 83(4), 237-245. https://doi.org/10.1177/0308022619865179
  • Soylu, A. R., & Arpinar-Avsar, P. (2010). Detection of surface electromyography recording time interval without muscle fatigue effect for biceps brachii muscle during maximum voluntary contraction. Journal of Electromyography and Kinesiology, 20(4), 773-776. https://doi.org/10.1016/j.jelekin.2010.02.006
  • Tkach, D., Huang, H., & Kuiken, T. A. (2010). Study of stability of time-domain features for electromyographic pattern recognition. Journal of Neuroengineering and Rehabilitation, 7, 1-13. https://doi.org/10.1186/1743-0003-7-21
  • Vásconez, J. P., López, L. I. B., Caraguay, Á. L. V., & Benalcázar, M. E. (2023). A comparison of EMG-based hand gesture recognition systems based on supervised and reinforcement learning. Engineering Applications of Artificial Intelligence, 123, 106327. https://doi.org/10.1016/j.engappai.2023.106327
  • Veer, K., & Sharma, T. (2016). A novel feature extraction for robust EMG pattern recognition. Journal of Medical Engineering & Technology, 40(4), 149-154. https://doi.org/10.3109/03091902.2016.1153739
  • Waris, A., Niazi, I. K., Jamil, M., Englehart, K., Jensen, W., & Kamavuako, E. N. (2018). Multiday evaluation of techniques for EMG-based classification of hand motions. IEEE Journal of Bbiomedical and Health Informatics, 23(4), 1526-1534. https://doi.org/10.1109/JBHI.2018.2864335
  • Wu, Y., Liang, S., Yan, T., Ao, J., Zhou, Z., & Li, X. (2022). Classification and simulation of process of linear change for grip force at different grip speeds by using supervised learning based on sEMG. Expert Systems with Applications, 206, 117785. https://doi.org/10.1016/j.eswa.2022.117785
  • Zecca, M., Micera, S., Carrozza, M. C., & Dario, P. (2002). Control of multifunctional prosthetic hands by processing the electromyographic signal. Critical Reviews™ in Biomedical Engineering, 30(4-6). https://doi.org/10.1615/CritRevBiomedEng.v30.i456.80
  • Zhang, S., Guo, S., Gao, B., Huang, Q., Pang, M., Hirata, H., & Ishihara, H. (2016). Muscle strength assessment system using sEMG-based force prediction method for wrist joint. Journal of Medical and Biological Engineering, 36, 121-131. https://doi.org/10.1007/s40846-016-0112-5
  • Zhang, L., Liu, G., Han, B., Wang, Z., & Zhang, T. (2019). sEMG based human motion intention recognition. Journal of Robotics, 2019(1), 3679174. https://doi.org/10.1155/2019/3679174
There are 42 citations in total.

Details

Primary Language English
Subjects Biomechanic
Journal Section Research Article
Authors

Derya Karabulut 0000-0002-1903-9525

Suzan Cansel Doğru 0000-0002-6198-0861

Early Pub Date June 30, 2025
Publication Date June 30, 2025
Submission Date May 16, 2025
Acceptance Date June 23, 2025
Published in Issue Year 2025 Volume: 12 Issue: 2

Cite

APA Karabulut, D., & Doğru, S. C. (2025). Utilization of Electromyographic Signal Classification for Predicting Hand Gestures and Grasping Forces Through Artificial Neural Networks. Gazi University Journal of Science Part A: Engineering and Innovation, 12(2), 652-664. https://doi.org/10.54287/gujsa.1700850