BibTex RIS Kaynak Göster

NiTi ŞEKIL BELLEKLI ALAŞIM TOZLARINA MEKANIK ALAŞIMLAMA YÖNTEMI KULLANILARAK ELEMENTEL NI VE TI TOZLARININ İLAVESININ MIKROYAPISAL İNCELENMESI

Yıl 2017, Cilt: 5 Sayı: 1, 99 - 106, 20.03.2017
https://doi.org/10.29109/http-gujsc-gazi-edu-tr.303418

Öz

Çalışmada, elementel Ni (10µm) - Ti (20µm) tozları ile Nikelce zengin NiTi şekil bellek alaşım tozları 60 dakika mekanik alaşımlama yöntemi ile öğütülmüştür. Öğütme işleminde ilave edilen Ni ve Ti tozlarının önalaşımlı NiTi şekil bellek alaşım tozlarına etkisi araştırılmıştır. Bu amaçla, önalaşımlı NiTi tozları içerisine sırasıyla %2, %4, %6, %8, %10 oranlarında elementel Ni ve Ti tozları mekanik olarak ilave edildi. Mekanik öğütme işleminde 1:10 toz / bilya oranı kullanıldı. Başlangıç tozları ve öğütülen tozlar X-ray (XRD), element dağılım spektrometresi (EDS), taramalı elektron mikroskobu (SEM) kullanılarak karakterize edilmiştir. Çalışma sonucunda, önalaşımlı NiTi tozları ve elementel Ni/Ti tozlarının mekanik öğütme işleminde Ti tozlarının öğütme işleminin daha etkin olduğu tespit edilmiştir.  

Kaynakça

  • Cengiz E., Özkendir O.M., Kaya M., Tirasoglu E., Karahan I.H., Kimura S. and Hajiri T., “Alloying Effect on K-shell Fluorescence Parameters of Porous NiTi Shape Memory Alloys”, Journal of Electron Spectroscopy and Related Phenomena, 192, pp. 55–60, (2014).
  • Ota A., Yazaki Y., Yokoyama K. and Sakai J., “Hydrogen Absorption and Thermal Desorption Behavior of Ni-Ti Superelastic Alloy Immersed in Neutral NaCl and NaF Solutions under Applied Potential”, Materials Transactions, 50(7), pp. 1843 – 1849, (2009).
  • Tosun G., Ozler L., Kaya M. and Orhan N.A., “Study on Microstructure and Porosity of NiTi Alloy Implants Produced by SHS”. Journal of Alloys and Compounds,487, pp. 605–611, (2009).
  • Elahinia M.H., Hashemi M., Tabesh M. and Bhaduri S.B., “Manufacturing and Processing of NiTi Implants”, Prog. Mater Sci., 57, pp. 911–946. (2012).
  • Thier M., Hühner M., Kobus E., Drescher D. And Bourauel C., “Microstructure of As-cast NiTi Alloy”, Materials Characterization, 27(3), pp. 133-140, (1991).
  • Yokoyama K., Kaneko K. and Moriyama. “Hydrogen Embrittlement of Ni-Ti Superelastic Alloy in Fluoride Solution”, J. Biomed. Mater. Res. A, 65A, pp. 182–187, (2003).
  • Yokoyama K., Kaneko K., Moriyama K., Asaoka K., Sakai J. and Nagumo M., “Delayed Fracture of Ni-Ti Superelastic Alloys in Acidic and Neutral Fluoride Solutions”, J. Biomed. Mater. Res. A, 69A, pp. 105–113, (2004).
  • Yokoyama K., Ogawa T., Asaoka K., Sakai J. and Nagumo M., “Degradation of Tensile Strength of Ni–Ti Superelastic Alloy due to Hydrogen Absorption in Methanol Solution Containing Hydrochloric Acid”, Mater. Sci. Eng. A, 360, pp. 153–159, (2003).
  • Ogawa T., Yokoyama K., Asaoka K. and Sakai J., “Hydrogen Embrittlement of Ni–Ti Superelastic Alloy in Ethanol Solution Containing Hydrochloric Acid”, Mater. Sci. Eng. A, 393, pp. 239–246, (2005).
  • Yeh C.L. and Sung W.Y., “Synthesis of NiTi intermetallics by self-propagating combustion”, Journal of Alloys and Compounds, 376, pp, 79–88.
  • Chu C.L., Chung C.Y., Lin P.H. and Wang S.D., “Fabrication of Porous NiTi Shape Memory Alloy for Hard Tissue Implants by Combustion Synthesis”, Materials Science and Engineering A, 366, pp. 114–119. (2004).
  • Krone L., Schüller E., Bram M., Hamed O.,.Buchkremer H.P. and Stöver D., “Mechanical Behaviour of NiTi Parts Prepared by Powder Metallurgical Methods”, Materials Science and Engineering A, 378, pp. 185–190, (2004).
  • Biswas A., “Porous NiTi by Thermal Explosion mode of SHS: Processing, Mechanism and Generation of Single Phase Microstructure”, ActaMaterialia, 53, pp. 1415–1425, (2005).
  • Shearwood C., Fu Y.Q., Yu L. and Khor K.A., “Spark Plasma Sintering of TiNi Nano Powder”, Scripta Materialia. 52, pp. 455–460, (2006).
  • Johnson W.A., Domingue J.A. and Reichman S.H., “P/M Processing and Characterization of Controlled Transformation Temperature NiTi”, J Phys Colloques, 43(4), pp. 285–290, (1982).
  • Wipf H., Dietz M., Aslanisdis D., Serneels A., Mooreleghem W.V., “International Conference on Shape Memory and Superelasticity Technologies”, Antwerp, Belgium, 375, (1999).
  • Shuilin W., Chung C.Y., Xiangmei L., Chu P.K., Ho J.P.Y., Chu C.L., Chan Y.L., Yeung K.W.K., Lu W.W., Cheung K.M.C. and Luk K.D.K., Acta Materialia, 55, pp. 3437–3451, (2007).
  • Aksöz S. and Bostan B., “Characteric Properties of NiTi Shape Memory Alloy Powders with Powder Injection Molding”, International Multidisciplinary Microscopy Congress, Springer Proceedings in Physics Switzerland, Springer International Publishing Switzerland, 18 : 129-142, (2014).
  • Suryanarayana C., “Mechanical alloying and milling”, Prog. Mater. Sci. 46 1–184, (2001).
  • Aksöz S., Özdemir A.T, Bostan B., “High Speed Milling of 2014 Aluminium Powders Together With 2% Graphite and Process in Micro-structure During Long Term Annealing After Cold Composition”, 6th International Powder Metallurgy Conference & Exhibition, Middle East Technical University Ankara, Turkey, p. 666-670, October 05-09, (2011).
  • Aksöz S., Özdemir A.T, BOSTAN B., “Research on Carbon Additing in AA2014 Aluminium Alloy and Features of the Products After Mechanical Milling And Spex, 6th International Powder Metallurgy Conference & Exhibition, Middle East Technical Univesity Ankara, Turkey, p. 826-830, October 05-09, (2011).
  • Aksöz S. and friends. “Alloyed AA2014 Aluminium Powders Synthesised With Carbon and Determined Properties” J. Fac. Eng. Arch. Gazi Univ., Vol 27., No 1, 109-115, (2012).
  • L.L. Ye, Z.G.Liu, K.Raviprasad, M.X. Quan, M.Umemoto and Z.Q. Hu, “Consolidation of MA Amorphous NiTi Powders by Spark Plasma Sintering”, Mater. Sci. Eng. A, 241, pp. 290 – 293, (1998).
  • Mousavi T., Karimzadeh F. and Abbasi M.H., “Synthesis and Characterization of Nanocrystalline NiTi Intermetallic by mechanical alloying”, Mater. Sci. Eng. A,487, pp. 46 – 51, (2008).
  • Jiang X., Liu Q. and Zhang L., “Electrochemical Hydrogen Storage Property of NiTi Alloys with Different Ti Content Prepared by Mechanical Alloying”, Rare Met., 30, pp. 63 – 67, (2011).
  • Takasaki A., “Mechanical Alloying of the Ti-Ni System”, Phys. Stat. Sol., 169A, pp. 183 – 191, (1998).
  • Ghadimi M., Shokuhfar A., Rostami H.R. and Ghaffari M., Effects of Milling and Annealing on Formation and Structural Characterization of Nanocrystalline Intermetallic Compounds from Ni-Ti Elemental Powders. Mater. Lett., 80, pp. 181 – 183, (2012).
  • Y.Terunuma, and M. Nagumo, Structural Relaxation in Amorphous Ni50Ti50 Alloy Prepared by Mechanical Alloying, Mater. Trans. e JIM, 36(7), pp. 842-847, (1995).
  • Y. Makifuchi, Y. Terunuma and M. Nagumo, Structural Relaxation in Amorphous Ni-Ti Alloys Prepared by Mechanical Alloying, Mater. Sci. Eng. A, pp. 226 – 228, 312 – 316, (1997).
  • Y.W. Gu, C.W. Goh, L.S. Goi., C.S. Lim, , A.E.W. Jarfors.B.Y. Tay and M.S. Yong, Solid State Synthesis of Nanocrystalline and/or Amorphous 50Ni-50Ti Alloy, Mater. Sci. Eng. A, 392, pp. 222 – 228, (2005).
  • German R.M., “Reviews in Particulate Materials”, Vol. 1, pp. 109-160, MPIF, Princeton, New Jersey, (1993).
  • Chen J., Xiao J., Zhang L., Du Y., “Interdiffusion in fcc Ni–X (X = Rh, Ta, W, Re and Ir) alloys”, Journal of Alloys and Compounds, 657: 457–463., (2016).
  • Wu H., Zhang C., Fan G., Geng L., Wang G., “Origin of reduced anisotropic deformation in hexagonal close packed Ti-Al alloy”, Materials & Design, 111: 119–125 (2016).
  • Aksöz S., Bostan B., Gökmeşe H., Ada H., “Fabrication and Characterization by Mechanical Alloying Technique of Prealloyed NiTi and Ni powders”, International Multidisciplinary Congres of Eurasia 2016, 11st-13th July, Ukraine, 151-157, (2016).
  • Aksöz S., Bostan B., Gökmeşe H., Ada H., “Characterisation Of NiTi - Ti Powders Processed By Mechanical Alloying Technique”, ICAT 2016 International Conference On Advances Technology and Science, KONYA, 1: 1200-1204, (2016).
  • Callister W.D., Rethwisch D.G., “Materials Science and Engineering”, 9th edition, p.258-259, ISBN: 978-1-118-31922-2, ASIA, (2011).
Yıl 2017, Cilt: 5 Sayı: 1, 99 - 106, 20.03.2017
https://doi.org/10.29109/http-gujsc-gazi-edu-tr.303418

Öz

Kaynakça

  • Cengiz E., Özkendir O.M., Kaya M., Tirasoglu E., Karahan I.H., Kimura S. and Hajiri T., “Alloying Effect on K-shell Fluorescence Parameters of Porous NiTi Shape Memory Alloys”, Journal of Electron Spectroscopy and Related Phenomena, 192, pp. 55–60, (2014).
  • Ota A., Yazaki Y., Yokoyama K. and Sakai J., “Hydrogen Absorption and Thermal Desorption Behavior of Ni-Ti Superelastic Alloy Immersed in Neutral NaCl and NaF Solutions under Applied Potential”, Materials Transactions, 50(7), pp. 1843 – 1849, (2009).
  • Tosun G., Ozler L., Kaya M. and Orhan N.A., “Study on Microstructure and Porosity of NiTi Alloy Implants Produced by SHS”. Journal of Alloys and Compounds,487, pp. 605–611, (2009).
  • Elahinia M.H., Hashemi M., Tabesh M. and Bhaduri S.B., “Manufacturing and Processing of NiTi Implants”, Prog. Mater Sci., 57, pp. 911–946. (2012).
  • Thier M., Hühner M., Kobus E., Drescher D. And Bourauel C., “Microstructure of As-cast NiTi Alloy”, Materials Characterization, 27(3), pp. 133-140, (1991).
  • Yokoyama K., Kaneko K. and Moriyama. “Hydrogen Embrittlement of Ni-Ti Superelastic Alloy in Fluoride Solution”, J. Biomed. Mater. Res. A, 65A, pp. 182–187, (2003).
  • Yokoyama K., Kaneko K., Moriyama K., Asaoka K., Sakai J. and Nagumo M., “Delayed Fracture of Ni-Ti Superelastic Alloys in Acidic and Neutral Fluoride Solutions”, J. Biomed. Mater. Res. A, 69A, pp. 105–113, (2004).
  • Yokoyama K., Ogawa T., Asaoka K., Sakai J. and Nagumo M., “Degradation of Tensile Strength of Ni–Ti Superelastic Alloy due to Hydrogen Absorption in Methanol Solution Containing Hydrochloric Acid”, Mater. Sci. Eng. A, 360, pp. 153–159, (2003).
  • Ogawa T., Yokoyama K., Asaoka K. and Sakai J., “Hydrogen Embrittlement of Ni–Ti Superelastic Alloy in Ethanol Solution Containing Hydrochloric Acid”, Mater. Sci. Eng. A, 393, pp. 239–246, (2005).
  • Yeh C.L. and Sung W.Y., “Synthesis of NiTi intermetallics by self-propagating combustion”, Journal of Alloys and Compounds, 376, pp, 79–88.
  • Chu C.L., Chung C.Y., Lin P.H. and Wang S.D., “Fabrication of Porous NiTi Shape Memory Alloy for Hard Tissue Implants by Combustion Synthesis”, Materials Science and Engineering A, 366, pp. 114–119. (2004).
  • Krone L., Schüller E., Bram M., Hamed O.,.Buchkremer H.P. and Stöver D., “Mechanical Behaviour of NiTi Parts Prepared by Powder Metallurgical Methods”, Materials Science and Engineering A, 378, pp. 185–190, (2004).
  • Biswas A., “Porous NiTi by Thermal Explosion mode of SHS: Processing, Mechanism and Generation of Single Phase Microstructure”, ActaMaterialia, 53, pp. 1415–1425, (2005).
  • Shearwood C., Fu Y.Q., Yu L. and Khor K.A., “Spark Plasma Sintering of TiNi Nano Powder”, Scripta Materialia. 52, pp. 455–460, (2006).
  • Johnson W.A., Domingue J.A. and Reichman S.H., “P/M Processing and Characterization of Controlled Transformation Temperature NiTi”, J Phys Colloques, 43(4), pp. 285–290, (1982).
  • Wipf H., Dietz M., Aslanisdis D., Serneels A., Mooreleghem W.V., “International Conference on Shape Memory and Superelasticity Technologies”, Antwerp, Belgium, 375, (1999).
  • Shuilin W., Chung C.Y., Xiangmei L., Chu P.K., Ho J.P.Y., Chu C.L., Chan Y.L., Yeung K.W.K., Lu W.W., Cheung K.M.C. and Luk K.D.K., Acta Materialia, 55, pp. 3437–3451, (2007).
  • Aksöz S. and Bostan B., “Characteric Properties of NiTi Shape Memory Alloy Powders with Powder Injection Molding”, International Multidisciplinary Microscopy Congress, Springer Proceedings in Physics Switzerland, Springer International Publishing Switzerland, 18 : 129-142, (2014).
  • Suryanarayana C., “Mechanical alloying and milling”, Prog. Mater. Sci. 46 1–184, (2001).
  • Aksöz S., Özdemir A.T, Bostan B., “High Speed Milling of 2014 Aluminium Powders Together With 2% Graphite and Process in Micro-structure During Long Term Annealing After Cold Composition”, 6th International Powder Metallurgy Conference & Exhibition, Middle East Technical University Ankara, Turkey, p. 666-670, October 05-09, (2011).
  • Aksöz S., Özdemir A.T, BOSTAN B., “Research on Carbon Additing in AA2014 Aluminium Alloy and Features of the Products After Mechanical Milling And Spex, 6th International Powder Metallurgy Conference & Exhibition, Middle East Technical Univesity Ankara, Turkey, p. 826-830, October 05-09, (2011).
  • Aksöz S. and friends. “Alloyed AA2014 Aluminium Powders Synthesised With Carbon and Determined Properties” J. Fac. Eng. Arch. Gazi Univ., Vol 27., No 1, 109-115, (2012).
  • L.L. Ye, Z.G.Liu, K.Raviprasad, M.X. Quan, M.Umemoto and Z.Q. Hu, “Consolidation of MA Amorphous NiTi Powders by Spark Plasma Sintering”, Mater. Sci. Eng. A, 241, pp. 290 – 293, (1998).
  • Mousavi T., Karimzadeh F. and Abbasi M.H., “Synthesis and Characterization of Nanocrystalline NiTi Intermetallic by mechanical alloying”, Mater. Sci. Eng. A,487, pp. 46 – 51, (2008).
  • Jiang X., Liu Q. and Zhang L., “Electrochemical Hydrogen Storage Property of NiTi Alloys with Different Ti Content Prepared by Mechanical Alloying”, Rare Met., 30, pp. 63 – 67, (2011).
  • Takasaki A., “Mechanical Alloying of the Ti-Ni System”, Phys. Stat. Sol., 169A, pp. 183 – 191, (1998).
  • Ghadimi M., Shokuhfar A., Rostami H.R. and Ghaffari M., Effects of Milling and Annealing on Formation and Structural Characterization of Nanocrystalline Intermetallic Compounds from Ni-Ti Elemental Powders. Mater. Lett., 80, pp. 181 – 183, (2012).
  • Y.Terunuma, and M. Nagumo, Structural Relaxation in Amorphous Ni50Ti50 Alloy Prepared by Mechanical Alloying, Mater. Trans. e JIM, 36(7), pp. 842-847, (1995).
  • Y. Makifuchi, Y. Terunuma and M. Nagumo, Structural Relaxation in Amorphous Ni-Ti Alloys Prepared by Mechanical Alloying, Mater. Sci. Eng. A, pp. 226 – 228, 312 – 316, (1997).
  • Y.W. Gu, C.W. Goh, L.S. Goi., C.S. Lim, , A.E.W. Jarfors.B.Y. Tay and M.S. Yong, Solid State Synthesis of Nanocrystalline and/or Amorphous 50Ni-50Ti Alloy, Mater. Sci. Eng. A, 392, pp. 222 – 228, (2005).
  • German R.M., “Reviews in Particulate Materials”, Vol. 1, pp. 109-160, MPIF, Princeton, New Jersey, (1993).
  • Chen J., Xiao J., Zhang L., Du Y., “Interdiffusion in fcc Ni–X (X = Rh, Ta, W, Re and Ir) alloys”, Journal of Alloys and Compounds, 657: 457–463., (2016).
  • Wu H., Zhang C., Fan G., Geng L., Wang G., “Origin of reduced anisotropic deformation in hexagonal close packed Ti-Al alloy”, Materials & Design, 111: 119–125 (2016).
  • Aksöz S., Bostan B., Gökmeşe H., Ada H., “Fabrication and Characterization by Mechanical Alloying Technique of Prealloyed NiTi and Ni powders”, International Multidisciplinary Congres of Eurasia 2016, 11st-13th July, Ukraine, 151-157, (2016).
  • Aksöz S., Bostan B., Gökmeşe H., Ada H., “Characterisation Of NiTi - Ti Powders Processed By Mechanical Alloying Technique”, ICAT 2016 International Conference On Advances Technology and Science, KONYA, 1: 1200-1204, (2016).
  • Callister W.D., Rethwisch D.G., “Materials Science and Engineering”, 9th edition, p.258-259, ISBN: 978-1-118-31922-2, ASIA, (2011).
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Bölüm Makaleler
Yazarlar

Sinan Aksöz

Ümit Demir Bu kişi benim

Hakan Ada Bu kişi benim

Hakan Gökmeşe Bu kişi benim

Bülent Bostan

Yayımlanma Tarihi 20 Mart 2017
Gönderilme Tarihi 16 Ocak 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 5 Sayı: 1

Kaynak Göster

APA Aksöz, S., Demir, Ü., Ada, H., Gökmeşe, H., vd. (2017). NiTi ŞEKIL BELLEKLI ALAŞIM TOZLARINA MEKANIK ALAŞIMLAMA YÖNTEMI KULLANILARAK ELEMENTEL NI VE TI TOZLARININ İLAVESININ MIKROYAPISAL İNCELENMESI. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 5(1), 99-106. https://doi.org/10.29109/http-gujsc-gazi-edu-tr.303418

                                     16168      16167     16166     21432        logo.png   


    e-ISSN:2147-9526