Loading [a11y]/accessibility-menu.js
Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2019, Cilt: 7 Sayı: 1, 175 - 183, 24.03.2019
https://doi.org/10.29109/gujsc.468704

Öz

Kaynakça

  • M. A. Abdullah, A. H. M. Yatim, and T. Chee Wei, “A Study of Maximum Power Point Tracking Algorithms for Wind Energy System,” in IEEE Conference on Clean Energy and Technology, 2011, pp. 321–326.
  • R. Saidur, M. R. Islam, N. A. Rahim, and K. H. Solangi, “A review on global wind energy policy,” Renew. Sustain. Energy Rev., vol. 14, no. 7, pp. 1744–1762, 2010.
  • I. Şerban and C. Marinescu, “A sensorless control method for variable-speed small wind turbines,” Renew. Energy, vol. 43, pp. 256–266, 2012.
  • International Energy Agency, “Wind energy technology roadmap.” p. 58, 2009.
  • Z. Ma, “A Sensorless Control Method for Maximum Power Point Tracking of Wind Turbine Generators,” in European Conference on Power Electronics and Applications (EPE 2011), 2011, pp. 1–10.
  • C.-T. Pan and Y.-L. Juan, “A Novel Sensorless MPPT Controller for a High-Efficiency Microscale Wind Power Generation System,” IEEE Trans. Energy Convers., vol. 25, no. 1, pp. 207–216, 2010.
  • H. Fathabadi, “Maximum mechanical power extraction from wind turbines using novel proposed high accuracy single-sensor-based maximum power point tracking technique,” Energy, vol. 113, pp. 1219–1230, 2016.
  • H. Fathabadi, “Novel high efficient speed sensorless controller for maximum power extraction from wind energy conversion systems,” Energy Convers. Manag., vol. 123, pp. 392–401, 2016.
  • C. Lee, P. Chen, and Y. Shen, “Maximum power point tracking (MPPT) system of small wind power generator using RBFNN approach,” Expert Syst. Appl., vol. 38, no. 10, pp. 12058–12065, 2011.
  • X. Yuan, F. Wang, D. Boroyevich, R. Burgos, and Y. Li, “DC-link voltage control of a full power converter for wind generator operating in weak-grid systems,” IEEE Trans. Power Electron., vol. 24, no. 9, pp. 2178–2192, 2009.
  • Y. Xia, K. H. Ahmed, and B. W. Williams, “A New Maximum Power Point Tracking Technique for Permanent Magnet Synchronous Generator Based Wind Energy Conversion System,” IEEE Trans. Power Electron., vol. 26, no. 12, pp. 3609–3620, 2011.
  • Y. Zhu, M. Cheng, W. Hua, and W. Wang, “A Novel Maximum Power Point Tracking Control for Permanent Magnet Direct Drive Wind Energy Conversion Systems,” Energies, vol. 5, no. 12, pp. 1398–1412, 2012.
  • J. Chen, J. Chen, and C. Gong, “Constant-bandwidth maximum power point tracking strategy for variable-speed wind turbines and its design details,” IEEE Trans. Ind. Electron., vol. 60, no. 11, pp. 5050–5058, 2013.
  • S. M. R. Kazmi, H. Goto, H.-J. Guo, and O. Ichinokura, “A Novel Algorithm for Fast and Efficient Speed-Sensorless Maximum Power Point Tracking in Wind Energy Conversion Systems,” IEEE Trans. Ind. Electron., vol. 58, no. 1, pp. 29–36, 2011.
  • I. Kortabarria, J. Andreu, I. Martínez de Alegría, J. Jiménez, J. I. Gárate, and E. Robles, “A novel adaptative maximum power point tracking algorithm for small wind turbines,” Renew. Energy, vol. 63, pp. 785–796, 2014.
  • R. J. Wai, C. Y. Lin, and Y. R. Chang, “Novel maximum-power-extraction algorithm for PMSG wind generation system,” IET Electr. Power Appl., vol. 1, no. 2, pp. 275–283, 2007.
  • H. Camblong, I. M. de Alegria, M. Rodriguez, and G. Abad, “Experimental evaluation of wind turbines maximum power point tracking controllers,” Energy Convers. Manag., vol. 47, no. 18–19, pp. 2846–2858, 2006.
  • P. Tenca, A. A. Rockhill, and T. A. Lipo, “Wind Turbine Current-Source Converter Providing Reactive Power Control and Reduced Harmonics,” IEEE Trans. Ind. Appl., vol. 43, no. 4, pp. 1050–1060, 2007.

Otonom bir Rüzgâr Enerji Sistemi için Örnek Test Düzeneğinin Gerçeklenmesi

Yıl 2019, Cilt: 7 Sayı: 1, 175 - 183, 24.03.2019
https://doi.org/10.29109/gujsc.468704

Öz

Rüzgâr enerjisinin elektrik enerjisine dönüştürülerek kullanılması ile
bu alanda mekanik ve elektriksel olarak birçok geliştirme çalışmaları
yapılmıştır. Mekanik çalışmalar genel olarak rüzgâr türbini ve özel tip makine
tasarımları olurken elektriksel çalışmalar ise güç dönüştürücü biriminde olan
güç elektroniği devreleri, şebeke entegrasyonu ve maksimum güç noktasının
takibi konusunda yapılan çalışmalardır. Elektriksel çalışmaların yapılabilmesi
için eğer gerçek bir rüzgâr enerji santralinde çalışma imkânı yoksa rüzgâr
enerji sisteminin gerçek zamanlı modelinin laboratuvar ortamında oluşturulması
gerekmektedir.
Rüzgâr enerji dönüşüm sistemleri (REDS) birçok
farklı topolojide olabilmektedir. Ancak, genel olarak; rüzgâr türbini/rüzgâr
türbini emülatörü, generatör ve güç dönüştürücü birimlerinden oluşmaktadır. Bu
konuda literatürde oldukça fazla çalışma yapılmış olmasına rağmen, kurulan
gerçek zamanlı sistem modeli hakkında detaylı bilgi elde edebilmek çoğunlukla
mümkün gözükmemektedir.
Bu
çalışmada, bu amaç göz önüne alınarak gerçek zamanlı rüzgâr enerji sisteminin deneysel
ortamda oluşturulması detaylı olarak ele alınmış ve
bu alanda çalışma yapacak araştırmacılara ışık tutması amaçlanmıştır. Kurulan gerçek zamanlı deney
düzeneğinde maksimum güç çalışması için gerekli olan performans katsayısına
ilişkin grafik elde edilmiş ve böylece kurulan deney düzeneğinin gerçek rüzgar
türbini ile aynı olduğu gösterilmiştir. Bunun yanı sıra sabit bir rüzgar hızı
için kontrol algoritması koşturularak sistemin maksimum güç noktasında işletimi
sağlanmıştır.

Kaynakça

  • M. A. Abdullah, A. H. M. Yatim, and T. Chee Wei, “A Study of Maximum Power Point Tracking Algorithms for Wind Energy System,” in IEEE Conference on Clean Energy and Technology, 2011, pp. 321–326.
  • R. Saidur, M. R. Islam, N. A. Rahim, and K. H. Solangi, “A review on global wind energy policy,” Renew. Sustain. Energy Rev., vol. 14, no. 7, pp. 1744–1762, 2010.
  • I. Şerban and C. Marinescu, “A sensorless control method for variable-speed small wind turbines,” Renew. Energy, vol. 43, pp. 256–266, 2012.
  • International Energy Agency, “Wind energy technology roadmap.” p. 58, 2009.
  • Z. Ma, “A Sensorless Control Method for Maximum Power Point Tracking of Wind Turbine Generators,” in European Conference on Power Electronics and Applications (EPE 2011), 2011, pp. 1–10.
  • C.-T. Pan and Y.-L. Juan, “A Novel Sensorless MPPT Controller for a High-Efficiency Microscale Wind Power Generation System,” IEEE Trans. Energy Convers., vol. 25, no. 1, pp. 207–216, 2010.
  • H. Fathabadi, “Maximum mechanical power extraction from wind turbines using novel proposed high accuracy single-sensor-based maximum power point tracking technique,” Energy, vol. 113, pp. 1219–1230, 2016.
  • H. Fathabadi, “Novel high efficient speed sensorless controller for maximum power extraction from wind energy conversion systems,” Energy Convers. Manag., vol. 123, pp. 392–401, 2016.
  • C. Lee, P. Chen, and Y. Shen, “Maximum power point tracking (MPPT) system of small wind power generator using RBFNN approach,” Expert Syst. Appl., vol. 38, no. 10, pp. 12058–12065, 2011.
  • X. Yuan, F. Wang, D. Boroyevich, R. Burgos, and Y. Li, “DC-link voltage control of a full power converter for wind generator operating in weak-grid systems,” IEEE Trans. Power Electron., vol. 24, no. 9, pp. 2178–2192, 2009.
  • Y. Xia, K. H. Ahmed, and B. W. Williams, “A New Maximum Power Point Tracking Technique for Permanent Magnet Synchronous Generator Based Wind Energy Conversion System,” IEEE Trans. Power Electron., vol. 26, no. 12, pp. 3609–3620, 2011.
  • Y. Zhu, M. Cheng, W. Hua, and W. Wang, “A Novel Maximum Power Point Tracking Control for Permanent Magnet Direct Drive Wind Energy Conversion Systems,” Energies, vol. 5, no. 12, pp. 1398–1412, 2012.
  • J. Chen, J. Chen, and C. Gong, “Constant-bandwidth maximum power point tracking strategy for variable-speed wind turbines and its design details,” IEEE Trans. Ind. Electron., vol. 60, no. 11, pp. 5050–5058, 2013.
  • S. M. R. Kazmi, H. Goto, H.-J. Guo, and O. Ichinokura, “A Novel Algorithm for Fast and Efficient Speed-Sensorless Maximum Power Point Tracking in Wind Energy Conversion Systems,” IEEE Trans. Ind. Electron., vol. 58, no. 1, pp. 29–36, 2011.
  • I. Kortabarria, J. Andreu, I. Martínez de Alegría, J. Jiménez, J. I. Gárate, and E. Robles, “A novel adaptative maximum power point tracking algorithm for small wind turbines,” Renew. Energy, vol. 63, pp. 785–796, 2014.
  • R. J. Wai, C. Y. Lin, and Y. R. Chang, “Novel maximum-power-extraction algorithm for PMSG wind generation system,” IET Electr. Power Appl., vol. 1, no. 2, pp. 275–283, 2007.
  • H. Camblong, I. M. de Alegria, M. Rodriguez, and G. Abad, “Experimental evaluation of wind turbines maximum power point tracking controllers,” Energy Convers. Manag., vol. 47, no. 18–19, pp. 2846–2858, 2006.
  • P. Tenca, A. A. Rockhill, and T. A. Lipo, “Wind Turbine Current-Source Converter Providing Reactive Power Control and Reduced Harmonics,” IEEE Trans. Ind. Appl., vol. 43, no. 4, pp. 1050–1060, 2007.
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Tasarım ve Teknoloji
Yazarlar

Ersagun Kürşat Yaylacı 0000-0003-0358-5617

İrfan Yazıcı 0000-0003-3603-7051

Yayımlanma Tarihi 24 Mart 2019
Gönderilme Tarihi 9 Ekim 2018
Yayımlandığı Sayı Yıl 2019 Cilt: 7 Sayı: 1

Kaynak Göster

APA Yaylacı, E. K., & Yazıcı, İ. (2019). Otonom bir Rüzgâr Enerji Sistemi için Örnek Test Düzeneğinin Gerçeklenmesi. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 7(1), 175-183. https://doi.org/10.29109/gujsc.468704

                                     16168      16167     16166     21432        logo.png   


    e-ISSN:2147-9526