Araştırma Makalesi
BibTex RIS Kaynak Göster

Elektrodepolama ile Üretilen CoNi Alaşım İnce Film Kaplamaların Yapısal ve Manyetik Özellikleri Üzerine Ek Katkı Maddelerinin Etkisi

Yıl 2019, Cilt: 7 Sayı: 3, 661 - 675, 27.09.2019
https://doi.org/10.29109/gujsc.569110

Öz

Metallerin ve alaşımların elektrodepolanması bir veya daha
fazla organik veya inorganik ek katkı maddeleri içerebilir. Ek katkılar; depolanan
ince film kaplamaların yüzey morfolojisine, tane büyüklüğüne ve kristal
yapısına etki etmektedir. Bu çalışmada CoNi alaşım ince film kaplamalar, katkı
madde olmadan ve ek katkı maddeleri (organik kumarin ve tiyoüre) kullanılarak
elektrodepolamayla üretildi. Ek katkısız depolanan CoNi alaşım ince film
kaplamanın; kristal yapısının yüzey merkezli kübik (fcc) ve kaplama
içeriğindeki kobalt miktarının % 67.94 olduğu bulundu. Banyo kompozisyonuna,
kumarin katıldığında film içeriğindeki kobaltın % 43.82’ye, tiyoüre
katıldığında %34.33’e düştüğü ve her iki filmin amorf özellik gösterdiği
belirlendi. Uygulanan manyetik alan, -75000 Oe ile +75000 Oe arasında değiştirilerek,
manyetizasyon değerleri ölçüldü ve histerezis eğrileri elde edildi. Katkı
maddelerinin alaşım film içerisindeki madde miktarına, kristal yapıya ve
manyetik özelliklere büyük etki ettiği görüldü.

Destekleyen Kurum

KİLİS 7 ARALIK ÜNİVERSİTESİ BİLİMSEL ARAŞTIRMALAR BİRİMİ

Proje Numarası

BAP-2014/02/LTP/05

Kaynakça

  • [1] F.Z. Bouzit, A. Nemamcha, H. Moumeni, J.L. Rehspringer, “Morphology and Rietveld analysis of nano structured Co-Ni electrodeposited thin films obtained at different current densities,” Surface & Coatings Technology, vol.315, pp. 172-180, 2017.
  • [2] L. Wang, X. Lu, Y. Ye, L. Sun, Y. Song, “Nickel-cobalt nanostructures coated reduced graphene oxide nano composite electrode for nonenzymatic glucose,” Electrochimica Acta, vol.114, pp. 484-493, 2013.
  • [3] X. Sun, Q. Yuan, D. Fang, H. Zhang, “Electrodeposition and characterization of CoNiMnP permanent magnet arrays for MEMS sensors and actuators,” Sensors and Actuators A, vol. 188, pp. 190-197, 2012.
  • [4] C. Xu, D. Nie, H. Chen, Y. Wang, Y. Liu, “Template-free synthesis of magnetic CoNi nanoparticles via a solvo thermal method,” Materials Letters, vol 138, pp. 158–161, 2015.
  • [5] A. Karpuz, H. Kockar, M. Alper, “The effect of different chemical compositions caused by the variation of deposition potential on properties of Ni–Co films,” Applied Surface Science, vol. 257, pp. 3632–3635, 2011.
  • [6] F. Noori, A. Ramazani, M.A. Kashi, “Controlling structural and magnetic properties in CoNi and CoNiFe nanowire arrays by fine-tuning of Fe content,” Journal of Alloys and Compounds, vol. 756, pp. 193–201, 2018.
  • [7] N.S. Nguyen, G. Das, H.H. Yoon, “Nickel/cobalt oxide-decorated 3D graphene nano composite electrode for enhanced electrochemical detection of urea,” Biosensors and Bioelectronics, vol. 77, pp. 372–377, 2016.
  • [8] W. Yan, D. Wang, G.G. Botte, “Nickel and cobalt bimetallic hydroxide catalysts for urea electro-oxidation,” Electrochimica Acta, vol. 61, pp. 25–30, 2012.
  • [9] D. Kim, R. Shanmugam, M.R. Choi, B. Yoo, “Formation of CoNi alloy thin films on silicon by electroless deposition,” Electrochimica Acta, vol. 75, pp. 42–48, 2012.
  • [10] J S. Temel, M. Nebi, D. Peker, Sol-gel döndürerek kaplama tekniği ile saydam iletken ZnO ince filmlerin üretilmesi ve karakterizasyonu, Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 5(3): p. 51-59, 2017.
  • [11] R. Özdemir, C.A. Korkmaz, İ.H. Karahan, “Investigation of the structural and magnetic properties of the cobalt-nickel alloys fabricated in various electrolyte solutions,” Acta Physica Polonica A, vol. 132 (3), pp. 1045–1049, 2017.
  • [12] S. Yıldırım, Sol-Gel Döner Kaplama Yöntemiyle Oluşturulmuş Ta2O5 İnce Film Kondansatörün Düşük Sıcaklık Bölgesi Dielektrik Özellikleri ve AC İletkenlik Davranışı, Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, vol. 6(4), p.851-861, 2018.
  • [13] M.Y. Rafique, L. Pan, A. Farid, “From nano-dendrite to nano-sphere of Co1001-xNix alloy: Composition dependent morphology, structure and magnetic properties,” Journal of Alloys and Compounds, vol. 656, pp. 443–451, 2016.
  • [14] R. Özdemir, İ.H. Karahan, O. Karabulut, “A study on the electrodeposited Cu-Zn alloy thin films,” Metallurgical and Materials Transactions A, vol. 47A, pp. 5609-5617, 2016.
  • [15] R. Solmaz, G. Kardas, “Electrochemical deposition and characterization of NiFe coatings as electrocatalytic materials for alkaline water electrolysis,” Electrochimica Acta, vol. 54, pp. 3726-3734, 2009.
  • [16] Y. Jeon, S. Choe, H.C. Kim, M.J. Kim, J.J. Kim, “Electrodeposition of Cu-Ag films in ammonia-based electrolyte,” Journal of Alloys and Compounds, vol. 775, pp. 639–646, 2019.
  • [17] H. Kirou, L. Atourki, L. Essaleh, A. Taleb, M.Y. Messous, K. Bouabid, M. Nya, A. Ihlal, “Towards phase pure Kesterite Cu2ZnSnS4 thin films via Cu-Zn-Sn electrodeposition under a variable applied potential,” Journal of Alloys and Compounds, vol. 783, pp. 524-532, 2019.
  • [18] M.A. Raj, S. Arumainathan, “Comparative study of hydrogen evolution behavior of nickel-cobalt and nickel cobalt magnesium alloy film prepared by pulsed electrodeposition,” Vacuum, vol. 160, pp. 461-466, 2019.
  • [19] A. Brenner, Electrodeposition of Alloys Principles and Prattice, Chap., Academic Pres.NewYork, 1963, p.457.
  • [20] M. Schlesinger, M. Paunovic, Modern Electroplating, Published by John Wiley & Sons, Inc., Hoboken, New Jersey, Fifth Edition, 2010, p.737.
  • [21] K.B. Gudasi, M.S. Patil, R.S. Vadavi, “Synthesis, characterization of copper(II), cobalt(II), nickel(II), zinc(II) and cadmium(II) complexes of [7-hydroxy-4-methyl-8-coumarinyl] glycine and a comparitive study of their microbial activities,” European Journal of Medicinal Chemistry, vol. 43, pp. 2436-2441, 2008.
  • [22] R. Fukui, Y. Katayama, T. Miura, “The effect of organic additives in electrodeposition of Co from an amide-type, ionic liquid,” Electrochimica Acta, vol. 56, pp. 1190-1196, 2011.
  • [23] B. Sahin, F. Bayansal, M. Yuksel, N. Biyikli, H.A. Çetinkara, “Effect of coumarin concentration on the physical properties of CdO nanostructures,” Ceramics International, vol. 40, pp. 5237-5243, 2014.
  • [24] G.M.D. Oliveira, I.A. Carlos, “Silver-zinc electrodeposition from a thiourea solution with added EDTA or HEDTA,” Electrochimica Acta, vol. 54, pp. 2155–2163, 2009.
  • [25] A. Ciszewski, S. Posluszny, G. Milczarek, M. Baraniak, “Effects of saccharin and quaternary ammonium chlorides on the electrodeposition of nickel from a Watts-type electrolyte,” Surface and Coatings Technology, vol. 183, pp. 127–133, 2004.
  • [26] K.R. Marikkannu, G.P. Kalaignan, T. Vasudevan, “The role of additives in the electrodeposition of nickel–cobalt alloy from acetate electrolyte,” Journal of Alloys and Compounds, vol. 438, pp. 332-336, 2007.
  • [27] P. Cojocaru, L. Magagnin, E. Gómez, E. Vallés, “Electrodeposition of CoNi and CoNiP alloys in sulphamate electrolytes,” Journal of Alloys and Compounds, vol. 503, pp. 454-459, 2010.
  • [28] E. Gomez, J.G. Torres, E. Valles, “Study and preparation of silver electrodeposits at negative potentials,” Journal of Electroanalytical Chemistry, vol. 594, pp. 89-95, 2006.
  • [29] D. Hamulić, I. Milošev, D.L. Hecht, “The effect of the deposition conditions on the structure, composition and morphology of electrodeposited cobalt materials,” Thin Solid Films, vol. 667, pp. 11-20, 2018.
  • [30] Z. Feng, D. Li, Q. Sun, L. Wang, P. Xing, M. An, “Insight into the role and mechanism of 2,2-bipyridine as a novel additive for nano-electrodeposition of Zn-Ni alloy,” Journal of Alloys and Compounds, vol. 765, pp. 1026-1034, 2018.
  • [31] Q. Xu, C.X. Sun, Z.J. Wang, J.J. Liu, Y.X. Ren, S.Z. Hao, J.L. Zhu, Y.B. Sun, H.Y. Sun, “Preparation and characterization of iridescent Ni1-xCox containing anodic aluminum oxide films,” Dyes and Pigments, vol. 147, pp. 313-317, 2017.
  • [32] Q. Xu, Z.J. Wang, Y.G. Wang, H.Y. Sun, “The effect of Co content on the structure and themagnetic properties of CoxNi1-x nanotubes,” Journal of Magnetism and Magnetic Materials, vol. 419, pp. 166-170, 2016.
  • [33] C.Y. Ho, T.H. Lin, Y.J. Chang, “Influence of various annealed Ni-Co nanowire properties upon the capability of immobilization of histidine-tagged protein,” Journal of Alloys and Compounds, vol. 648, pp. 726-731, 2015.
  • [34] N. Fenineche, C. Coddet, “Effect of electrodeposition parameters on the microstructure and mechanical properties of Co-Ni alloys,” Surface and Coatings Technology, vol. 41, pp. 75-81, 1990.
  • [35] A. Karpuz, H. Koçkar, M. Alper, “Effect of film thickness on properties of electrodeposited Ni–Co films,” Applied Surface Science, vol. 258, pp. 5046–5051, 2012.
  • [36] D. Li, A. Levesque, A. Franczak, Q. Wang, J. He, J.P. Chopart, “Evolution of morphology in electrodeposited nanocrystalline Co–Ni films by in-situ high magnetic field application,” Talanta, vol. 110, pp. 66-70, 2013.
  • [37] A. Karpuz, H. Koçkar, M. Alper, O. Karaagaç, M. Haciismailoglu, “Electrodeposited Ni–Co films from electrolytes with different Co contents,” Applied Surface Science, vol. 258, pp. 4005-4010, 2012.
  • [38] İ.H. Karahan, R. Özdemir, “Effect of Cu concentration on the formation of Cu1−x Znx shape memory alloy thin films,” Applied Surface Science, vol. 318, pp. 100-104, 2014.
  • [39] S. Olvera, E.M.A. Estrada, J.S. Marcos, F.J. Palomares, L. Vazquez, P. Herrasti, “Effect of the low magnetic field on the electrodeposition of CoxNi100-x alloys,” Materials Characterization, vol. 105, pp. 136-43, 2015.
  • [40] D. Grujicic, B. Pesic, “Electrodeposition of copper the nucleation mechanisms,” Electrochimica Acta, vol. 47, pp. 2901-2912, 2002.
  • [41] M. Mouanga, L. Ricq, P. Berçot, “Electrodeposition and characterization of zinc–cobalt alloy from chloride bath; influence of coumarin as additive,” Surface & Coatings Technology, vol. 202, pp. 1645–1651, 2008.
  • [42] Y. Li, H. Jiang, D. Wang, H. Ge, “Effects of saccharin and cobalt concentration in electrolytic solution on microhardness of nanocrystalline Ni–Co alloys,” Surface & Coatings Technology, vol. 202, pp. 4952–4956, 2008.
  • [43] Z. Moghadam, M.S. Nooshabadi, M. Behpour, “Electrochemical performance of aluminium alloy in strong alkaline media by urea and thiourea as inhibitor for aluminium-air batteries,” Journal of Molecular Liquids, vol. 242, pp. 971–978, 2017.
  • [44] J.V. Arenas, M. Pritzker, “Steady-state model for anomalous Co–Ni electrodeposition in sulfate solutions,” Electrochimica Acta, vol. 66, pp. 139-150, 2012.
  • [45] J. Vilana, M. Lorenzo, E. Gómez, E. Vallés, “Electrochemical deposition of CoNi micro/ nanostructures as new materials for electrochemical sensing of glucose,” Materials Letters, vol. 159, pp. 154–158, 2015.
  • [46] V.M. Maksimović, U.Č. Lačnjevac, M.M. Stoiljković, M.G. Pavlović, V.D. Jović, “Morphology and composition of Ni–Co electrodeposited powders,” Materials Characterization, vol. 62, pp. 1173–1179, 2011.
  • [47] O. Ergeneman, K.M. Sivaraman, S. Pané, E. Pellicer, A. Teleki, A.M. Hirt, M.D. Baró, B.J. Nelson, “Morphology, structure and magnetic properties of cobalt–nickel films obtained from acidic electrolytes containing glycine,” Electrochimica Acta, vol. 56, pp. 1399-1408, 2011.
  • [48] L. Tian, J. Xu, C. Qiang, “The electrodeposition behaviors and magnetic properties of Ni–Co films,” Applied Surface Science, vol. 257, pp. 4689–4694, 2011.
  • [49] S.H. Mosavat, M.E. Bahrololoom, M.H. Shariat, “Electrodeposition of nanocrystalline Zn-Ni alloy from alkaline glycinate bath containing saccharin as additive,” Applied Surface Science, vol. 257, pp. 8311– 8316, 2011.
  • [50] Y.L. Zhu, Y. Kozuma, Y. Katayama, T. Miura, “Electrochemical behavior of Ni(II)/Ni in a hydrophobic amide-type room-temperature ionic liquid,” Electrochimica Acta, vol. 54, pp. 7502–7506, 2009.
  • [51] Q.S. Chen, Z.Y. Zhou, G.C. Guo, S.G. Sun, “Electrodeposition of nano structured CoNi thin films and their anomalous infrared properties,” Electrochimica Acta, vol. 113, pp. 694-705, 2013.
  • [52] A. Moskaltsova, M.P. Proenca, S.V. Nedukh, C.T. Sousa, A. Vakula, G.N. Kakazei, S.I. Tarapov, J.P. Araujo, “Study of magnetoelastic and magneto crystalline anisotropies in CoxNi1-x nanowire arrays,” Journal of Magnetism and Magnetic Materials, vol. 374, pp. 663-668, 2015.
  • [53] B. Ali, S.M. Tasirin, P. Aminayi, Z. Yaakob, N.T. Ali, W. Noori, “Non-supported nickel-based coral sponge-like porous magnetic alloys for catalytic production of syngas and carbon bio-nanofilaments via a biogas decomposition approach,” Nanomaterials, vol. 8 (12), pp. 2-28, 2018.
  • [54] S. Budi, B. Kurniawan, D.M. Mott, S. Maenosono, A.A. Umar, A. Manaf, “Comparative trial of saccharin-added electrolyte for improving the structure of an electrodeposited magnetic FeCoNi thin film,” Thin Solid Films, vol. 642, pp. 51-57, 2017.
  • [55] P.Y. Li, J.A. Syed, X.K. Meng, “Sol–gel preparation and characterization of NiCo and Ni3Fe nanoalloys,” Journal of Alloys and Compounds, vol. 512, pp. 47–51, 2012.
  • [56] S. Yoon, J.Y. Yun, J.H. Lim, B. Yoo, “Enhanced electrocatalytic properties of electrodeposited amorphous cobalt-nickel hydroxide nanosheets on nickel foam by the formation of nickel nanocones for the oxygen evolution reaction,” Journal of Alloys and Compounds, vol. 693, pp. 964-969, 2017.
  • [57] H. Guo, N. Youliwasi, L. Zhao, Y. Chai, C. Liu, “Carbon-encapsulated nickel-cobalt alloys nanoparticles fabricated via new post-treatment strategy for hydrogen evolution in alkaline media,” Applied Surface Science, vol. 435, pp. 237–246, 2018.
  • [58] B.M. Mundotiya, W. Ullah, K. Kumar, “Electrodeposition Approaches to Deposit the Single-Phase Solid Solution of Ag-Ni Alloy,” Electric Power Conversion Online, First IntechOpen, pp.1-16, 2018.
  • [59] S. Aydoğu, G. Çabuk, M.B. Çoban, “The effects of different Ga doping on structural, optical and electrical properties of CdO films,” Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, cilt 23, sayı 1, s. 140-147, 2019.
  • [60] A. Kola, X. Geng, E.J. Podlaha, “Ag–W electrodeposits with highW content from thiourea-citrate electrolytes,” Journal of Electroanalytical Chemistry, vol. 761, pp. 125-130, 2016.
  • [61] Kh. Saber, C.C. Koch, P.S. Fedkiw, “Pulse current electrodeposition of nanocrystalline zinc,” Materials Science and Engineering A, vol. 341, pp. 174-181, 2003.
  • [62] D. Jiles, Introduction to Magnetism and Magnetic Materials, First edition, Thomson Press (India) Ltd, New Delhi, 1991, pp. 440.
  • [63] R. Madhavan, S. Suwas, “Evolution of deformation texture and magnetic properties in a nanocrystalline nickel-20 wt% cobalt alloy,” Journal of Magnetism and Magnetic Materials, vol. 378, pp. 239-245, 2015.
  • [64] S. Pane´, E. Go´mez, J.G. Amoro´s, D. Velasco, E. Valle´s, “Modulation of the magnetic properties of CoNi coatings by electrodeposition in the presence of a redox cationic surfactant,” Applied Surface Science, vol. 253, pp. 2964–2968, 2006.
  • [65] D.A. Shishkin, A.S. Volegov, N.V. Baranov, “Iron for nickel substitution effects on magnetic and magnetocaloric properties of melt-spun Gd75(Ni1-xFex)25 alloys,” Journal of Non-Crystalline Solids, vol. 498, pp. 130-133, 2018.
  • [66] A. Sharma, S. Chhangani, R. Madhavan, S. Suwas, “Correlation between crystallographic texture, microstructure and magnetic properties of pulse electrodeposited nanocrystalline Nickel–Cobalt alloys,” Journal of Magnetism and Magnetic Materials, vol. 434, pp. 68-77, 2017.
  • [67] M.C. Esteves, P.T.A. Sumodjo, E.J. Podlaha, “Electrodeposition of CoNiMo thin films using glycine as additive: anomalous and induced codeposition,” Electrochimica Acta, vol. 56, pp. 9082–9087, 2011.
  • [68] F.E. Luborsky, “Magnetic Properties of Amorphous Alloys,” Journal of Magnetism and Magnetic Materials, vol. 7, pp. 143-149, 1978.
  • [69] H. Kronmuller, M. Fahnle, M. Domann, H. Grimm, R. Grimm, B. Grocer, “Magnetic Properties of Amorphous Ferromagnetic Alloys,” Journal of Magnetism and Magnetic Materials, vol. 13, pp. 53-70, 1979.

The Effect of Additives on Structural and Magnetic Properties of CoNi Alloy Thin Film Coatings Produced by Electrodeposition

Yıl 2019, Cilt: 7 Sayı: 3, 661 - 675, 27.09.2019
https://doi.org/10.29109/gujsc.569110

Öz

Electrodeposition
of metals and alloys may contain one or more organic or inorganic additives.
Additives it affects the surface morphology, grainsize and crystal structure of
the thin film coatings. In this study, CoNi alloy thin film coatings were
produced by electrodeposition without additives and using additional additives
(organic coumarin and thiourea). CoNi alloy thin film coating produced without
additional additive; It was found that the crystal structure was face centered
cubic (fcc) and the cobalt content of the coating was 67.94%. When coumarin was
added to the bath composition, cobalt in the film content decreased to 43.82%,
decreased to 34.33% when thiourea was added, and both films showed amorphous
properties. The magnetic field applied was changed between -75000 Oe to +75000
Oe, magnetization values were measured and hysteresis curves were obtained. It
was seen that the additives had a great effect on the amount of matter, crystal
structure and magnetic properties in the alloy film.

Proje Numarası

BAP-2014/02/LTP/05

Kaynakça

  • [1] F.Z. Bouzit, A. Nemamcha, H. Moumeni, J.L. Rehspringer, “Morphology and Rietveld analysis of nano structured Co-Ni electrodeposited thin films obtained at different current densities,” Surface & Coatings Technology, vol.315, pp. 172-180, 2017.
  • [2] L. Wang, X. Lu, Y. Ye, L. Sun, Y. Song, “Nickel-cobalt nanostructures coated reduced graphene oxide nano composite electrode for nonenzymatic glucose,” Electrochimica Acta, vol.114, pp. 484-493, 2013.
  • [3] X. Sun, Q. Yuan, D. Fang, H. Zhang, “Electrodeposition and characterization of CoNiMnP permanent magnet arrays for MEMS sensors and actuators,” Sensors and Actuators A, vol. 188, pp. 190-197, 2012.
  • [4] C. Xu, D. Nie, H. Chen, Y. Wang, Y. Liu, “Template-free synthesis of magnetic CoNi nanoparticles via a solvo thermal method,” Materials Letters, vol 138, pp. 158–161, 2015.
  • [5] A. Karpuz, H. Kockar, M. Alper, “The effect of different chemical compositions caused by the variation of deposition potential on properties of Ni–Co films,” Applied Surface Science, vol. 257, pp. 3632–3635, 2011.
  • [6] F. Noori, A. Ramazani, M.A. Kashi, “Controlling structural and magnetic properties in CoNi and CoNiFe nanowire arrays by fine-tuning of Fe content,” Journal of Alloys and Compounds, vol. 756, pp. 193–201, 2018.
  • [7] N.S. Nguyen, G. Das, H.H. Yoon, “Nickel/cobalt oxide-decorated 3D graphene nano composite electrode for enhanced electrochemical detection of urea,” Biosensors and Bioelectronics, vol. 77, pp. 372–377, 2016.
  • [8] W. Yan, D. Wang, G.G. Botte, “Nickel and cobalt bimetallic hydroxide catalysts for urea electro-oxidation,” Electrochimica Acta, vol. 61, pp. 25–30, 2012.
  • [9] D. Kim, R. Shanmugam, M.R. Choi, B. Yoo, “Formation of CoNi alloy thin films on silicon by electroless deposition,” Electrochimica Acta, vol. 75, pp. 42–48, 2012.
  • [10] J S. Temel, M. Nebi, D. Peker, Sol-gel döndürerek kaplama tekniği ile saydam iletken ZnO ince filmlerin üretilmesi ve karakterizasyonu, Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 5(3): p. 51-59, 2017.
  • [11] R. Özdemir, C.A. Korkmaz, İ.H. Karahan, “Investigation of the structural and magnetic properties of the cobalt-nickel alloys fabricated in various electrolyte solutions,” Acta Physica Polonica A, vol. 132 (3), pp. 1045–1049, 2017.
  • [12] S. Yıldırım, Sol-Gel Döner Kaplama Yöntemiyle Oluşturulmuş Ta2O5 İnce Film Kondansatörün Düşük Sıcaklık Bölgesi Dielektrik Özellikleri ve AC İletkenlik Davranışı, Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, vol. 6(4), p.851-861, 2018.
  • [13] M.Y. Rafique, L. Pan, A. Farid, “From nano-dendrite to nano-sphere of Co1001-xNix alloy: Composition dependent morphology, structure and magnetic properties,” Journal of Alloys and Compounds, vol. 656, pp. 443–451, 2016.
  • [14] R. Özdemir, İ.H. Karahan, O. Karabulut, “A study on the electrodeposited Cu-Zn alloy thin films,” Metallurgical and Materials Transactions A, vol. 47A, pp. 5609-5617, 2016.
  • [15] R. Solmaz, G. Kardas, “Electrochemical deposition and characterization of NiFe coatings as electrocatalytic materials for alkaline water electrolysis,” Electrochimica Acta, vol. 54, pp. 3726-3734, 2009.
  • [16] Y. Jeon, S. Choe, H.C. Kim, M.J. Kim, J.J. Kim, “Electrodeposition of Cu-Ag films in ammonia-based electrolyte,” Journal of Alloys and Compounds, vol. 775, pp. 639–646, 2019.
  • [17] H. Kirou, L. Atourki, L. Essaleh, A. Taleb, M.Y. Messous, K. Bouabid, M. Nya, A. Ihlal, “Towards phase pure Kesterite Cu2ZnSnS4 thin films via Cu-Zn-Sn electrodeposition under a variable applied potential,” Journal of Alloys and Compounds, vol. 783, pp. 524-532, 2019.
  • [18] M.A. Raj, S. Arumainathan, “Comparative study of hydrogen evolution behavior of nickel-cobalt and nickel cobalt magnesium alloy film prepared by pulsed electrodeposition,” Vacuum, vol. 160, pp. 461-466, 2019.
  • [19] A. Brenner, Electrodeposition of Alloys Principles and Prattice, Chap., Academic Pres.NewYork, 1963, p.457.
  • [20] M. Schlesinger, M. Paunovic, Modern Electroplating, Published by John Wiley & Sons, Inc., Hoboken, New Jersey, Fifth Edition, 2010, p.737.
  • [21] K.B. Gudasi, M.S. Patil, R.S. Vadavi, “Synthesis, characterization of copper(II), cobalt(II), nickel(II), zinc(II) and cadmium(II) complexes of [7-hydroxy-4-methyl-8-coumarinyl] glycine and a comparitive study of their microbial activities,” European Journal of Medicinal Chemistry, vol. 43, pp. 2436-2441, 2008.
  • [22] R. Fukui, Y. Katayama, T. Miura, “The effect of organic additives in electrodeposition of Co from an amide-type, ionic liquid,” Electrochimica Acta, vol. 56, pp. 1190-1196, 2011.
  • [23] B. Sahin, F. Bayansal, M. Yuksel, N. Biyikli, H.A. Çetinkara, “Effect of coumarin concentration on the physical properties of CdO nanostructures,” Ceramics International, vol. 40, pp. 5237-5243, 2014.
  • [24] G.M.D. Oliveira, I.A. Carlos, “Silver-zinc electrodeposition from a thiourea solution with added EDTA or HEDTA,” Electrochimica Acta, vol. 54, pp. 2155–2163, 2009.
  • [25] A. Ciszewski, S. Posluszny, G. Milczarek, M. Baraniak, “Effects of saccharin and quaternary ammonium chlorides on the electrodeposition of nickel from a Watts-type electrolyte,” Surface and Coatings Technology, vol. 183, pp. 127–133, 2004.
  • [26] K.R. Marikkannu, G.P. Kalaignan, T. Vasudevan, “The role of additives in the electrodeposition of nickel–cobalt alloy from acetate electrolyte,” Journal of Alloys and Compounds, vol. 438, pp. 332-336, 2007.
  • [27] P. Cojocaru, L. Magagnin, E. Gómez, E. Vallés, “Electrodeposition of CoNi and CoNiP alloys in sulphamate electrolytes,” Journal of Alloys and Compounds, vol. 503, pp. 454-459, 2010.
  • [28] E. Gomez, J.G. Torres, E. Valles, “Study and preparation of silver electrodeposits at negative potentials,” Journal of Electroanalytical Chemistry, vol. 594, pp. 89-95, 2006.
  • [29] D. Hamulić, I. Milošev, D.L. Hecht, “The effect of the deposition conditions on the structure, composition and morphology of electrodeposited cobalt materials,” Thin Solid Films, vol. 667, pp. 11-20, 2018.
  • [30] Z. Feng, D. Li, Q. Sun, L. Wang, P. Xing, M. An, “Insight into the role and mechanism of 2,2-bipyridine as a novel additive for nano-electrodeposition of Zn-Ni alloy,” Journal of Alloys and Compounds, vol. 765, pp. 1026-1034, 2018.
  • [31] Q. Xu, C.X. Sun, Z.J. Wang, J.J. Liu, Y.X. Ren, S.Z. Hao, J.L. Zhu, Y.B. Sun, H.Y. Sun, “Preparation and characterization of iridescent Ni1-xCox containing anodic aluminum oxide films,” Dyes and Pigments, vol. 147, pp. 313-317, 2017.
  • [32] Q. Xu, Z.J. Wang, Y.G. Wang, H.Y. Sun, “The effect of Co content on the structure and themagnetic properties of CoxNi1-x nanotubes,” Journal of Magnetism and Magnetic Materials, vol. 419, pp. 166-170, 2016.
  • [33] C.Y. Ho, T.H. Lin, Y.J. Chang, “Influence of various annealed Ni-Co nanowire properties upon the capability of immobilization of histidine-tagged protein,” Journal of Alloys and Compounds, vol. 648, pp. 726-731, 2015.
  • [34] N. Fenineche, C. Coddet, “Effect of electrodeposition parameters on the microstructure and mechanical properties of Co-Ni alloys,” Surface and Coatings Technology, vol. 41, pp. 75-81, 1990.
  • [35] A. Karpuz, H. Koçkar, M. Alper, “Effect of film thickness on properties of electrodeposited Ni–Co films,” Applied Surface Science, vol. 258, pp. 5046–5051, 2012.
  • [36] D. Li, A. Levesque, A. Franczak, Q. Wang, J. He, J.P. Chopart, “Evolution of morphology in electrodeposited nanocrystalline Co–Ni films by in-situ high magnetic field application,” Talanta, vol. 110, pp. 66-70, 2013.
  • [37] A. Karpuz, H. Koçkar, M. Alper, O. Karaagaç, M. Haciismailoglu, “Electrodeposited Ni–Co films from electrolytes with different Co contents,” Applied Surface Science, vol. 258, pp. 4005-4010, 2012.
  • [38] İ.H. Karahan, R. Özdemir, “Effect of Cu concentration on the formation of Cu1−x Znx shape memory alloy thin films,” Applied Surface Science, vol. 318, pp. 100-104, 2014.
  • [39] S. Olvera, E.M.A. Estrada, J.S. Marcos, F.J. Palomares, L. Vazquez, P. Herrasti, “Effect of the low magnetic field on the electrodeposition of CoxNi100-x alloys,” Materials Characterization, vol. 105, pp. 136-43, 2015.
  • [40] D. Grujicic, B. Pesic, “Electrodeposition of copper the nucleation mechanisms,” Electrochimica Acta, vol. 47, pp. 2901-2912, 2002.
  • [41] M. Mouanga, L. Ricq, P. Berçot, “Electrodeposition and characterization of zinc–cobalt alloy from chloride bath; influence of coumarin as additive,” Surface & Coatings Technology, vol. 202, pp. 1645–1651, 2008.
  • [42] Y. Li, H. Jiang, D. Wang, H. Ge, “Effects of saccharin and cobalt concentration in electrolytic solution on microhardness of nanocrystalline Ni–Co alloys,” Surface & Coatings Technology, vol. 202, pp. 4952–4956, 2008.
  • [43] Z. Moghadam, M.S. Nooshabadi, M. Behpour, “Electrochemical performance of aluminium alloy in strong alkaline media by urea and thiourea as inhibitor for aluminium-air batteries,” Journal of Molecular Liquids, vol. 242, pp. 971–978, 2017.
  • [44] J.V. Arenas, M. Pritzker, “Steady-state model for anomalous Co–Ni electrodeposition in sulfate solutions,” Electrochimica Acta, vol. 66, pp. 139-150, 2012.
  • [45] J. Vilana, M. Lorenzo, E. Gómez, E. Vallés, “Electrochemical deposition of CoNi micro/ nanostructures as new materials for electrochemical sensing of glucose,” Materials Letters, vol. 159, pp. 154–158, 2015.
  • [46] V.M. Maksimović, U.Č. Lačnjevac, M.M. Stoiljković, M.G. Pavlović, V.D. Jović, “Morphology and composition of Ni–Co electrodeposited powders,” Materials Characterization, vol. 62, pp. 1173–1179, 2011.
  • [47] O. Ergeneman, K.M. Sivaraman, S. Pané, E. Pellicer, A. Teleki, A.M. Hirt, M.D. Baró, B.J. Nelson, “Morphology, structure and magnetic properties of cobalt–nickel films obtained from acidic electrolytes containing glycine,” Electrochimica Acta, vol. 56, pp. 1399-1408, 2011.
  • [48] L. Tian, J. Xu, C. Qiang, “The electrodeposition behaviors and magnetic properties of Ni–Co films,” Applied Surface Science, vol. 257, pp. 4689–4694, 2011.
  • [49] S.H. Mosavat, M.E. Bahrololoom, M.H. Shariat, “Electrodeposition of nanocrystalline Zn-Ni alloy from alkaline glycinate bath containing saccharin as additive,” Applied Surface Science, vol. 257, pp. 8311– 8316, 2011.
  • [50] Y.L. Zhu, Y. Kozuma, Y. Katayama, T. Miura, “Electrochemical behavior of Ni(II)/Ni in a hydrophobic amide-type room-temperature ionic liquid,” Electrochimica Acta, vol. 54, pp. 7502–7506, 2009.
  • [51] Q.S. Chen, Z.Y. Zhou, G.C. Guo, S.G. Sun, “Electrodeposition of nano structured CoNi thin films and their anomalous infrared properties,” Electrochimica Acta, vol. 113, pp. 694-705, 2013.
  • [52] A. Moskaltsova, M.P. Proenca, S.V. Nedukh, C.T. Sousa, A. Vakula, G.N. Kakazei, S.I. Tarapov, J.P. Araujo, “Study of magnetoelastic and magneto crystalline anisotropies in CoxNi1-x nanowire arrays,” Journal of Magnetism and Magnetic Materials, vol. 374, pp. 663-668, 2015.
  • [53] B. Ali, S.M. Tasirin, P. Aminayi, Z. Yaakob, N.T. Ali, W. Noori, “Non-supported nickel-based coral sponge-like porous magnetic alloys for catalytic production of syngas and carbon bio-nanofilaments via a biogas decomposition approach,” Nanomaterials, vol. 8 (12), pp. 2-28, 2018.
  • [54] S. Budi, B. Kurniawan, D.M. Mott, S. Maenosono, A.A. Umar, A. Manaf, “Comparative trial of saccharin-added electrolyte for improving the structure of an electrodeposited magnetic FeCoNi thin film,” Thin Solid Films, vol. 642, pp. 51-57, 2017.
  • [55] P.Y. Li, J.A. Syed, X.K. Meng, “Sol–gel preparation and characterization of NiCo and Ni3Fe nanoalloys,” Journal of Alloys and Compounds, vol. 512, pp. 47–51, 2012.
  • [56] S. Yoon, J.Y. Yun, J.H. Lim, B. Yoo, “Enhanced electrocatalytic properties of electrodeposited amorphous cobalt-nickel hydroxide nanosheets on nickel foam by the formation of nickel nanocones for the oxygen evolution reaction,” Journal of Alloys and Compounds, vol. 693, pp. 964-969, 2017.
  • [57] H. Guo, N. Youliwasi, L. Zhao, Y. Chai, C. Liu, “Carbon-encapsulated nickel-cobalt alloys nanoparticles fabricated via new post-treatment strategy for hydrogen evolution in alkaline media,” Applied Surface Science, vol. 435, pp. 237–246, 2018.
  • [58] B.M. Mundotiya, W. Ullah, K. Kumar, “Electrodeposition Approaches to Deposit the Single-Phase Solid Solution of Ag-Ni Alloy,” Electric Power Conversion Online, First IntechOpen, pp.1-16, 2018.
  • [59] S. Aydoğu, G. Çabuk, M.B. Çoban, “The effects of different Ga doping on structural, optical and electrical properties of CdO films,” Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, cilt 23, sayı 1, s. 140-147, 2019.
  • [60] A. Kola, X. Geng, E.J. Podlaha, “Ag–W electrodeposits with highW content from thiourea-citrate electrolytes,” Journal of Electroanalytical Chemistry, vol. 761, pp. 125-130, 2016.
  • [61] Kh. Saber, C.C. Koch, P.S. Fedkiw, “Pulse current electrodeposition of nanocrystalline zinc,” Materials Science and Engineering A, vol. 341, pp. 174-181, 2003.
  • [62] D. Jiles, Introduction to Magnetism and Magnetic Materials, First edition, Thomson Press (India) Ltd, New Delhi, 1991, pp. 440.
  • [63] R. Madhavan, S. Suwas, “Evolution of deformation texture and magnetic properties in a nanocrystalline nickel-20 wt% cobalt alloy,” Journal of Magnetism and Magnetic Materials, vol. 378, pp. 239-245, 2015.
  • [64] S. Pane´, E. Go´mez, J.G. Amoro´s, D. Velasco, E. Valle´s, “Modulation of the magnetic properties of CoNi coatings by electrodeposition in the presence of a redox cationic surfactant,” Applied Surface Science, vol. 253, pp. 2964–2968, 2006.
  • [65] D.A. Shishkin, A.S. Volegov, N.V. Baranov, “Iron for nickel substitution effects on magnetic and magnetocaloric properties of melt-spun Gd75(Ni1-xFex)25 alloys,” Journal of Non-Crystalline Solids, vol. 498, pp. 130-133, 2018.
  • [66] A. Sharma, S. Chhangani, R. Madhavan, S. Suwas, “Correlation between crystallographic texture, microstructure and magnetic properties of pulse electrodeposited nanocrystalline Nickel–Cobalt alloys,” Journal of Magnetism and Magnetic Materials, vol. 434, pp. 68-77, 2017.
  • [67] M.C. Esteves, P.T.A. Sumodjo, E.J. Podlaha, “Electrodeposition of CoNiMo thin films using glycine as additive: anomalous and induced codeposition,” Electrochimica Acta, vol. 56, pp. 9082–9087, 2011.
  • [68] F.E. Luborsky, “Magnetic Properties of Amorphous Alloys,” Journal of Magnetism and Magnetic Materials, vol. 7, pp. 143-149, 1978.
  • [69] H. Kronmuller, M. Fahnle, M. Domann, H. Grimm, R. Grimm, B. Grocer, “Magnetic Properties of Amorphous Ferromagnetic Alloys,” Journal of Magnetism and Magnetic Materials, vol. 13, pp. 53-70, 1979.
Toplam 69 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Metroloji,Uygulamalı ve Endüstriyel Fizik
Bölüm Tasarım ve Teknoloji
Yazarlar

Rasim Özdemir 0000-0003-1439-0444

Proje Numarası BAP-2014/02/LTP/05
Yayımlanma Tarihi 27 Eylül 2019
Gönderilme Tarihi 22 Mayıs 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 7 Sayı: 3

Kaynak Göster

APA Özdemir, R. (2019). Elektrodepolama ile Üretilen CoNi Alaşım İnce Film Kaplamaların Yapısal ve Manyetik Özellikleri Üzerine Ek Katkı Maddelerinin Etkisi. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 7(3), 661-675. https://doi.org/10.29109/gujsc.569110

                                     16168      16167     16166     21432        logo.png   


    e-ISSN:2147-9526