Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2021, Cilt: 9 Sayı: 3, 446 - 462, 30.09.2021
https://doi.org/10.29109/gujsc.910228

Öz

Kaynakça

  • 1. Natural Gas Distrubition Companies Association of Turkey (GAZBİR). Energy situation in Turkey and in the world. https://www.gazbir.org.tr/uploads/page/Dunya-ve-Turkiye-Enerji-Gorunumu.pdf
  • 2. Istemi, B., Ediger, V.Ş. Forecasting the coal production: Hubbert curve application on Turkey's lignite fields. Resources Policy, 50 (193-203), (2016). https://doi.org/10.1016/j.resourpol.2016.10.002
  • 3. Republic of Turkey Ministry of Energy and Natural Resources(MENR) https://enerji.gov.tr/bilgi-merkezi-enerji-hidrolik-en
  • 4. Turkish Electricity Transmission Corporation (TEİAŞ). https://www.teias.gov.tr/en-US
  • 5. Uzlu, E., Akpınar, A., Kömürcü, M.İ. Restructuring of Turkey’s electricity market and the share of hydropower energy: The case of the Eastern Black Sea Basin. Renewable Energy, 36 (676–688), (2011). https://doi.org/10.1016/j.renene.2010.08.012
  • 6. General Directorate of State Water Works (DSI). 2020 Annual Report. https://cdniys.tarimorman.gov.tr/api/File/GetFile/425/KonuIcerik/759/1107/DosyaGaleri/DS%C4%B0%202020-yili-faaliyet-raporu.pdf
  • 7. Uzlu, E., Akpınar, A., Öztürk, H.T., Nacar, S., Kankal, M. Estimates of hydroelectric generation using neural networks with artificial bee colony algorithm for Turkey. Energy, 69 (638–647), (2014). https://doi.org/10.1016/j.energy.2014.03.059
  • 8. Geem, W.Z., Roper, W.E. Energy demand estimation of South Korea using artificial neural network. Energy Policy, 37 (4049–4054), (2009). https://doi.org/10.1016/j.enpol.2009.04.049 9. Ekonomou, L. Greek long-term energy consumption prediction using artificial neural networks. Energy, 35 (512–517), (2010). https://doi.org/10.1016/j.energy.2009.10.018
  • 10. Kankal, M., Akpinar, A., Komurcu, M.I., Ozsahin, T.S. Modeling and forecasting of Turkey’s energy consumption using socio-economic and demographic variables. Applied Energy, 88 (1927–1939), (2011). https://doi.org/10.1016/j.apenergy.2010.12.005
  • 11. Pao, H.T. Comparing linear and nonlinear forecasts for Taiwan’s electricity consumption. Energy, 31 (2129–2141), (2006). https://doi.org/10.1016/j.energy.2005.08.010 12. Kandananond, K. Forecasting electricity demand in Thailand with an artificial neural network approach. Energies, 4 (1246–1257), (2011). https://doi.org/10.3390/en4081246
  • 13. Uzlu, E. Application of Jaya algorithm-trained artificial neural networks for prediction of energy use in the nation of Turkey. Energy Sources, Part B: Economics, Planning, And Policy, 14 (183–200), (2019). https://doi.org/10.1080/15567249.2019.1653405
  • 14. Uzlu, E., Dede, T. Estimating electric energy consumption in turkey using artificial neural networks optimized with jaya algorithm. Gazi Üniversitesi fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 8 (511–528), (2020). https://doi.org/10.29109/gujsc.684334
  • 15. Wang, Z.X., Li, Q., Pei, L.L. Grey forecasting method of quarterly hydropower production in China based on a data grouping approach. Applied Mathematical Modeling, 51 (302–316), (2017). https://doi.org/10.1016/j.apm.2017.07.003
  • 16. Coulibaly, P., Anctil, F. Neural network–based long-term hydropower forecasting system. Computer-Aided Civil and Infrastructure Engineering, 15(355–364), (2000). https://doi.org/10.1111/0885-9507.00199
  • 17. Cinar, D., Kayakutlu, G., Daim, T. Development of future energy scenarios with intelligent algorithms: case of hydro in turkey. Energy, 35 (1724–1729), (2010). https://doi.org/10.1016/j.energy.2009.12.025
  • 18. Yuksel, I. Hydropower in Turkey for a clean and sustainable energy future. Renewable and Sustainable Energy Reviews, 12 (1622–1640), (2008). https://doi.org/10.1016/j.rser.2007.01.024
  • 19. Toklu, E. Overview of potential and utilization of renewable energy sources in Turkey. Renewable Energy, 50 (456–463), (2013). https://doi.org/10.1016/j.renene.2012.06.035
  • 20. Kentel, E., Alp, E. Hydropower in Turkey: Economical, social and environmental aspects and legal challenges. Environmental Sciences and Policy, 31 (34–43), (2013). https://doi.org/10.1016/j.envsci.2013.02.008
  • 21. Yuksel, I. Hydropower for sustainable water and energy development. Renewable and Sustainable Energy Reviews, 14 (462–469), (2010). https://doi.org/10.1016/j.rser.2009.07.025
  • 22. Capik, M., Yilmaz, A.O., Cavusoglu, I. Hydropower for sustainable energy development in Turkey: the small hydropower case of the eastern black sea region. Renewable and Sustainable Energy Reviews, 16 (6160–6172), (2012). https://doi.org/10.1016/j.rser.2012.06.005
  • 23. Rao, R.V., Rai, D.P., Ramkumar, J., Balic, J. A new multi-objective Jaya algorithm for optimization of modern machining processes. Advances in Production Engineering & Management, 11 (271–286), (2016). https://doi.org/10.14743/apem2016.4.226
  • 24. Bhoye, M., Pandya, M.H., Valvi, S., Trivedi, I.N., Jangir, P., Parmar, S.A. An emission constraint economic load dispatch problem solution with microgrid using JAYA algorithm. In: 2016 International conference on energy efficient technologies for sustainability (ICEETS), Nagercoil, (497–502), (2016). https://doi.org/10.1109/ICEETS.2016.7583805
  • 25. Rao, R.V., More, K.C. Design optimization and analysis of selected thermal devices using self-adaptive Jaya algorithm. Energy Conversion and Management, 140 (24–35), (2017). https://doi.org/10.1016/j.enconman.2017.02.068
  • 26. Dede, T. Jaya algorithm to solve single objective size optimization problem for steel grillage structures. Steel And Composıte Structures, 26 (163–170), (2018). https://doi.org/10.12989/scs.2018.25.2.163
  • 27. Rao, R.V.: Jaya A simple and new optimization algorithm for solving constrained and unconstrained optimization problems. International Journal of Industrial Engineering Computations, 7 (19–34), (2016). https://doi.org/10.5267/j.ijiec.2015.8.004
  • 28. Rao, R.V., More, K.C., Taler, J., Oclon, P. Dimensional optimization of a micro-channel heat sink using Jaya algorithm. Applied Thermal Engineering 103, 572–582 (2016). https://doi.org/10.1016/j.applthermaleng.2016.04.135
  • 29. Du, D.C., Vinh, H.H., Trung, V.D., Quyen, N.T.H., Trung, N.T. Efficiency of Jaya algorithm for solving the optimization-based structural damage identification problem based on a hybrid objective function. Engineering Optimization, 50 (1233–1251), (2018). https://doi.org/10.1080/0305215X.2017.1367392
  • 30. Kankal, M., Uzlu, E. Neural network approach with teaching-learning-based optimization for modeling and forecasting long-term electric energy demand in Turkey. Neural Computing and Applications, 28 (737–747), (2017). https://doi.org/10.1007/s00521-016-2409-2
  • 31. Uzlu, E., Kankal, M., Akpınar, A, Dede, T. Estimates of energy consumption in Turkey using neural networks with the teaching-learning-based optimization algorithm. Energy, 75 (295–303), (2014). https://doi.org/10.1016/j.energy.2014.07.078
  • 32. Çunkaş, M., Altun, A.A. Long term electricity demand forecasting in Turkey using artificial neural networks. Energy Sources, Part B: Economics, Planning and Policy, 5 (279–289), (2010). https://doi.org/10.1080/15567240802533542
  • 33. Rumelhart, D.E., Hinton, G.E., Williams, R.J. Learning representations by back-propagating errors. Nature, 323 (533–536), (1986). https://doi.org/10.1038/323533a0
  • 34. Adak, M.F., Yumusak, N. Classification of e-nose aroma data of four fruit types by ABC-based neural network. Sensors, 16 (1–13), (2016). https://doi.org/10.3390/s16030304
  • 35. Sonmez, M., Akgüngör, A.P., Bektaş, S. Estimating transportation energy demand in Turkey using the artificial bee colony algorithm. Energy, 122 ( 301–310), (2017). https://doi.org/10.1016/j.energy.2017.01.074
  • 36. Xu, Q., Chen, J., Liu, X., Li, J., Yuan, C. An ABC-BP-ann algorithm for semi-active control for magnetorheological damper. KSCE Journal of Civil Engineering, 21 (2310–2321), (2017). https://doi.org/10.1007/s12205-016-0680-5
  • 37. Karaboga, D. An idea based on honey bee swarm for numerical optimization. Technical Report-TR06. Erciyes University Engineering Faculty Computer Engineering Department (2005). https://abc.erciyes.edu.tr/pub/tr06_2005.pdf 38. Uzlu, E., Kömürcü, M.İ., Kankal, M., Dede, T., Öztürk, H.T. Prediction of berm geometry using a set of laboratory tests combined with teaching–learning-based optimization and artificial bee colony algorithms. Applied Ocean Research, 48 (103–113), (2014). https://doi.org/10.1016/j.apor.2014.08.002
  • 39. Ozkan, C., Kisi, O., Akay, B. Neural networks with artificial bee colony algorithm for modeling daily reference evapotranspiration. Irrigation Science, 29 (431–441), (2011). https://doi.org/10.1007/s00271-010-0254-0
  • 40. Rao, R.V., Saroj, A. Constrained economic optimization of shell-and-tube heat exchangers using elitist-Jaya algorithm. Energy, 128 (785–800), (2017). https://doi.org10.1016/j.energy.2017.04.059
  • 41. Rao, R.V., Waghmare, G. A new optimization algorithm for solving complex constrained design optimization problems. Engineering Optimization, 49 (60–83), (2017). https://doi.org/10.1080/0305215X.2016.1164855
  • 42. Republic of Turkey Presidency of strategy and Budget (SBB). http://www.sbb.gov.tr/ekonomik-ve-sosyal-gostergeler/#1540021349004-1497d2c6-7edf
  • 43. Turkish Statistical Institute (TURKSTAT). Main statistics, Population and Demography, Population Statistics, Population by Years, Age Group and Sex, Census of Population - ABPRS. http://www.turkstat.gov.tr/UstMenu.do?metod=temelist
  • 44. Turkish State Meteorological Service. Statistical Analysıs of Turkey's Meteorologıcal Parameters. https://www.mgm.gov.tr/FILES/resmi-istatistikler/yayinlar/parametre-analiz.pdf
  • 45. Turkish Electricity Transmission Corporation (TEIAS). Turkey’s gross electric generation by the electricity utilities and exports-imports-gross demand. https://www.teias.gov.tr/tr-TR/turkiye-elektrik-uretim-iletim-istatistikleri
  • 46. Republic of Turkey Ministry of Energy and Natural Resources(MENR): General Directorate of Electricity Affairs. Statistics, balance sheets. https://www.eigm.gov.tr/tr-TR/Denge-Tablolari/Denge-Tablolari?page=2
  • 47. Turkish Electricity Transmission Corporation (TEIAS). 10-year demand forecasts report. https://www.teias.gov.tr
  • 48. Tefek, M.F., Uğuz, H., Güçyetmez, M. A new hybrid gravitational search–teaching–learning-based optimization method for energy demand estimation of Turkey. Neural Computing and Applications, 31 (2939-2954), (2019). https://doi.org/10.1007/s00521-017-3244-9
  • 49. Republic of Turkey Energy Market Regulatory Authority (EPDK). Production capacity projection (2017-2021). http://www.epdk.org.tr/Detay/Icerik/3-0-66/elektrikuretim-kapasite-projeksiyonlari#

Estimates of hydroelectric energy generation in Turkey with Jaya algorithm-optimized artificial neural networks

Yıl 2021, Cilt: 9 Sayı: 3, 446 - 462, 30.09.2021
https://doi.org/10.29109/gujsc.910228

Öz

The main purpose of this study was to establish an artificial neural network (ANN) model trained by a Jaya algorithm, and use the model to predict Turkey’s future hydroelectric energy generation (HEG). Population, gross domestic product (GDP), installed capacity, energy consumption, gross electricity energy demand (GEED), and average yearly temperature (AYT) data were inputted as independent variables in the model. ANN-Jaya was compared with ANN models trained by the other two high performance optimization methods, namely back-propagation (BP) and artificial bee colony (ABC) algorithms, to test its accuracy. The ANN-Jaya model converged to smaller error values than were obtained with the ANN-BP and ANN-ABC models for both the training and test datasets. When the average relative error (RE) values calculated for the test set are taken into account, ANN-Jaya performs 19.3% better than ANN-ABC and 31.2% better than ANN-BP. Therefore, Turkey’s HEG projections were made out to the year 2030 using an ANN-Jaya model in a low and a high energy demand scenario. According to the developed projections, HEG values in Turkey in 2030 will be in the range of 104.81–124.66 TWh. The present results affirm that HEG can be modeled accurately with an ANN-Jaya technique and this method was shown to be advantageous for predicting future HEG.

Kaynakça

  • 1. Natural Gas Distrubition Companies Association of Turkey (GAZBİR). Energy situation in Turkey and in the world. https://www.gazbir.org.tr/uploads/page/Dunya-ve-Turkiye-Enerji-Gorunumu.pdf
  • 2. Istemi, B., Ediger, V.Ş. Forecasting the coal production: Hubbert curve application on Turkey's lignite fields. Resources Policy, 50 (193-203), (2016). https://doi.org/10.1016/j.resourpol.2016.10.002
  • 3. Republic of Turkey Ministry of Energy and Natural Resources(MENR) https://enerji.gov.tr/bilgi-merkezi-enerji-hidrolik-en
  • 4. Turkish Electricity Transmission Corporation (TEİAŞ). https://www.teias.gov.tr/en-US
  • 5. Uzlu, E., Akpınar, A., Kömürcü, M.İ. Restructuring of Turkey’s electricity market and the share of hydropower energy: The case of the Eastern Black Sea Basin. Renewable Energy, 36 (676–688), (2011). https://doi.org/10.1016/j.renene.2010.08.012
  • 6. General Directorate of State Water Works (DSI). 2020 Annual Report. https://cdniys.tarimorman.gov.tr/api/File/GetFile/425/KonuIcerik/759/1107/DosyaGaleri/DS%C4%B0%202020-yili-faaliyet-raporu.pdf
  • 7. Uzlu, E., Akpınar, A., Öztürk, H.T., Nacar, S., Kankal, M. Estimates of hydroelectric generation using neural networks with artificial bee colony algorithm for Turkey. Energy, 69 (638–647), (2014). https://doi.org/10.1016/j.energy.2014.03.059
  • 8. Geem, W.Z., Roper, W.E. Energy demand estimation of South Korea using artificial neural network. Energy Policy, 37 (4049–4054), (2009). https://doi.org/10.1016/j.enpol.2009.04.049 9. Ekonomou, L. Greek long-term energy consumption prediction using artificial neural networks. Energy, 35 (512–517), (2010). https://doi.org/10.1016/j.energy.2009.10.018
  • 10. Kankal, M., Akpinar, A., Komurcu, M.I., Ozsahin, T.S. Modeling and forecasting of Turkey’s energy consumption using socio-economic and demographic variables. Applied Energy, 88 (1927–1939), (2011). https://doi.org/10.1016/j.apenergy.2010.12.005
  • 11. Pao, H.T. Comparing linear and nonlinear forecasts for Taiwan’s electricity consumption. Energy, 31 (2129–2141), (2006). https://doi.org/10.1016/j.energy.2005.08.010 12. Kandananond, K. Forecasting electricity demand in Thailand with an artificial neural network approach. Energies, 4 (1246–1257), (2011). https://doi.org/10.3390/en4081246
  • 13. Uzlu, E. Application of Jaya algorithm-trained artificial neural networks for prediction of energy use in the nation of Turkey. Energy Sources, Part B: Economics, Planning, And Policy, 14 (183–200), (2019). https://doi.org/10.1080/15567249.2019.1653405
  • 14. Uzlu, E., Dede, T. Estimating electric energy consumption in turkey using artificial neural networks optimized with jaya algorithm. Gazi Üniversitesi fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 8 (511–528), (2020). https://doi.org/10.29109/gujsc.684334
  • 15. Wang, Z.X., Li, Q., Pei, L.L. Grey forecasting method of quarterly hydropower production in China based on a data grouping approach. Applied Mathematical Modeling, 51 (302–316), (2017). https://doi.org/10.1016/j.apm.2017.07.003
  • 16. Coulibaly, P., Anctil, F. Neural network–based long-term hydropower forecasting system. Computer-Aided Civil and Infrastructure Engineering, 15(355–364), (2000). https://doi.org/10.1111/0885-9507.00199
  • 17. Cinar, D., Kayakutlu, G., Daim, T. Development of future energy scenarios with intelligent algorithms: case of hydro in turkey. Energy, 35 (1724–1729), (2010). https://doi.org/10.1016/j.energy.2009.12.025
  • 18. Yuksel, I. Hydropower in Turkey for a clean and sustainable energy future. Renewable and Sustainable Energy Reviews, 12 (1622–1640), (2008). https://doi.org/10.1016/j.rser.2007.01.024
  • 19. Toklu, E. Overview of potential and utilization of renewable energy sources in Turkey. Renewable Energy, 50 (456–463), (2013). https://doi.org/10.1016/j.renene.2012.06.035
  • 20. Kentel, E., Alp, E. Hydropower in Turkey: Economical, social and environmental aspects and legal challenges. Environmental Sciences and Policy, 31 (34–43), (2013). https://doi.org/10.1016/j.envsci.2013.02.008
  • 21. Yuksel, I. Hydropower for sustainable water and energy development. Renewable and Sustainable Energy Reviews, 14 (462–469), (2010). https://doi.org/10.1016/j.rser.2009.07.025
  • 22. Capik, M., Yilmaz, A.O., Cavusoglu, I. Hydropower for sustainable energy development in Turkey: the small hydropower case of the eastern black sea region. Renewable and Sustainable Energy Reviews, 16 (6160–6172), (2012). https://doi.org/10.1016/j.rser.2012.06.005
  • 23. Rao, R.V., Rai, D.P., Ramkumar, J., Balic, J. A new multi-objective Jaya algorithm for optimization of modern machining processes. Advances in Production Engineering & Management, 11 (271–286), (2016). https://doi.org/10.14743/apem2016.4.226
  • 24. Bhoye, M., Pandya, M.H., Valvi, S., Trivedi, I.N., Jangir, P., Parmar, S.A. An emission constraint economic load dispatch problem solution with microgrid using JAYA algorithm. In: 2016 International conference on energy efficient technologies for sustainability (ICEETS), Nagercoil, (497–502), (2016). https://doi.org/10.1109/ICEETS.2016.7583805
  • 25. Rao, R.V., More, K.C. Design optimization and analysis of selected thermal devices using self-adaptive Jaya algorithm. Energy Conversion and Management, 140 (24–35), (2017). https://doi.org/10.1016/j.enconman.2017.02.068
  • 26. Dede, T. Jaya algorithm to solve single objective size optimization problem for steel grillage structures. Steel And Composıte Structures, 26 (163–170), (2018). https://doi.org/10.12989/scs.2018.25.2.163
  • 27. Rao, R.V.: Jaya A simple and new optimization algorithm for solving constrained and unconstrained optimization problems. International Journal of Industrial Engineering Computations, 7 (19–34), (2016). https://doi.org/10.5267/j.ijiec.2015.8.004
  • 28. Rao, R.V., More, K.C., Taler, J., Oclon, P. Dimensional optimization of a micro-channel heat sink using Jaya algorithm. Applied Thermal Engineering 103, 572–582 (2016). https://doi.org/10.1016/j.applthermaleng.2016.04.135
  • 29. Du, D.C., Vinh, H.H., Trung, V.D., Quyen, N.T.H., Trung, N.T. Efficiency of Jaya algorithm for solving the optimization-based structural damage identification problem based on a hybrid objective function. Engineering Optimization, 50 (1233–1251), (2018). https://doi.org/10.1080/0305215X.2017.1367392
  • 30. Kankal, M., Uzlu, E. Neural network approach with teaching-learning-based optimization for modeling and forecasting long-term electric energy demand in Turkey. Neural Computing and Applications, 28 (737–747), (2017). https://doi.org/10.1007/s00521-016-2409-2
  • 31. Uzlu, E., Kankal, M., Akpınar, A, Dede, T. Estimates of energy consumption in Turkey using neural networks with the teaching-learning-based optimization algorithm. Energy, 75 (295–303), (2014). https://doi.org/10.1016/j.energy.2014.07.078
  • 32. Çunkaş, M., Altun, A.A. Long term electricity demand forecasting in Turkey using artificial neural networks. Energy Sources, Part B: Economics, Planning and Policy, 5 (279–289), (2010). https://doi.org/10.1080/15567240802533542
  • 33. Rumelhart, D.E., Hinton, G.E., Williams, R.J. Learning representations by back-propagating errors. Nature, 323 (533–536), (1986). https://doi.org/10.1038/323533a0
  • 34. Adak, M.F., Yumusak, N. Classification of e-nose aroma data of four fruit types by ABC-based neural network. Sensors, 16 (1–13), (2016). https://doi.org/10.3390/s16030304
  • 35. Sonmez, M., Akgüngör, A.P., Bektaş, S. Estimating transportation energy demand in Turkey using the artificial bee colony algorithm. Energy, 122 ( 301–310), (2017). https://doi.org/10.1016/j.energy.2017.01.074
  • 36. Xu, Q., Chen, J., Liu, X., Li, J., Yuan, C. An ABC-BP-ann algorithm for semi-active control for magnetorheological damper. KSCE Journal of Civil Engineering, 21 (2310–2321), (2017). https://doi.org/10.1007/s12205-016-0680-5
  • 37. Karaboga, D. An idea based on honey bee swarm for numerical optimization. Technical Report-TR06. Erciyes University Engineering Faculty Computer Engineering Department (2005). https://abc.erciyes.edu.tr/pub/tr06_2005.pdf 38. Uzlu, E., Kömürcü, M.İ., Kankal, M., Dede, T., Öztürk, H.T. Prediction of berm geometry using a set of laboratory tests combined with teaching–learning-based optimization and artificial bee colony algorithms. Applied Ocean Research, 48 (103–113), (2014). https://doi.org/10.1016/j.apor.2014.08.002
  • 39. Ozkan, C., Kisi, O., Akay, B. Neural networks with artificial bee colony algorithm for modeling daily reference evapotranspiration. Irrigation Science, 29 (431–441), (2011). https://doi.org/10.1007/s00271-010-0254-0
  • 40. Rao, R.V., Saroj, A. Constrained economic optimization of shell-and-tube heat exchangers using elitist-Jaya algorithm. Energy, 128 (785–800), (2017). https://doi.org10.1016/j.energy.2017.04.059
  • 41. Rao, R.V., Waghmare, G. A new optimization algorithm for solving complex constrained design optimization problems. Engineering Optimization, 49 (60–83), (2017). https://doi.org/10.1080/0305215X.2016.1164855
  • 42. Republic of Turkey Presidency of strategy and Budget (SBB). http://www.sbb.gov.tr/ekonomik-ve-sosyal-gostergeler/#1540021349004-1497d2c6-7edf
  • 43. Turkish Statistical Institute (TURKSTAT). Main statistics, Population and Demography, Population Statistics, Population by Years, Age Group and Sex, Census of Population - ABPRS. http://www.turkstat.gov.tr/UstMenu.do?metod=temelist
  • 44. Turkish State Meteorological Service. Statistical Analysıs of Turkey's Meteorologıcal Parameters. https://www.mgm.gov.tr/FILES/resmi-istatistikler/yayinlar/parametre-analiz.pdf
  • 45. Turkish Electricity Transmission Corporation (TEIAS). Turkey’s gross electric generation by the electricity utilities and exports-imports-gross demand. https://www.teias.gov.tr/tr-TR/turkiye-elektrik-uretim-iletim-istatistikleri
  • 46. Republic of Turkey Ministry of Energy and Natural Resources(MENR): General Directorate of Electricity Affairs. Statistics, balance sheets. https://www.eigm.gov.tr/tr-TR/Denge-Tablolari/Denge-Tablolari?page=2
  • 47. Turkish Electricity Transmission Corporation (TEIAS). 10-year demand forecasts report. https://www.teias.gov.tr
  • 48. Tefek, M.F., Uğuz, H., Güçyetmez, M. A new hybrid gravitational search–teaching–learning-based optimization method for energy demand estimation of Turkey. Neural Computing and Applications, 31 (2939-2954), (2019). https://doi.org/10.1007/s00521-017-3244-9
  • 49. Republic of Turkey Energy Market Regulatory Authority (EPDK). Production capacity projection (2017-2021). http://www.epdk.org.tr/Detay/Icerik/3-0-66/elektrikuretim-kapasite-projeksiyonlari#
Toplam 46 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Tasarım ve Teknoloji
Yazarlar

Ergun Uzlu 0000-0002-2394-179X

Yayımlanma Tarihi 30 Eylül 2021
Gönderilme Tarihi 5 Nisan 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 9 Sayı: 3

Kaynak Göster

APA Uzlu, E. (2021). Estimates of hydroelectric energy generation in Turkey with Jaya algorithm-optimized artificial neural networks. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 9(3), 446-462. https://doi.org/10.29109/gujsc.910228

                                     16168      16167     16166     21432        logo.png   


    e-ISSN:2147-9526