BibTex RIS Kaynak Göster

-

Yıl 2013, Cilt: 1 Sayı: 2, 37 - 47, 19.02.2013

Öz

As a consequence of the facts that the lignite used in our country has extremely low calorific values and contain volatile materials such as moisture, ash, sulfur causing air pollutant emissions; so this type of lignite cannot be burned efficiently and cleanly in the usual combustion systems. The most suitable combustion methods for surpassing the combustion difficulties of low quality coals and decreasing the emission rates shall be the fluidized bed combustion systems. This type of combustion systems shall provide an alternate solution for effectiveness of energy usage and problem of environmental pollution. Therefore, in order to provide effective GU J Sci Part:C, 1(2):37-47 (2013)/ Murad A. RAHİM, Duygu GÜNDÜZ and clean combustion of lignite it is required to provide a suitable medium such us; heat, turbulence and including structural means for prohibiting particularly SO2, NOx and dust emissions. In this study, coal fired circulating fluidized bed combustion system had been simulated by using THERMOFLEX packet program and sensitivity analysis was carried out for the system for determination of parameters for optimization. As shown from the results that, increasing the high pressure steam pressure, the net power output and net electrical efficiency increases by 1.54% and 2.70%, respectively. Also, increasing the secondary air inlet to fluidized bed will decrease in net power output by 0.34% but the net electrical efficiency will increase by 0.56%. Increasing the excess air at fluidized bed, increases the net power output by 2.10% but the net electrical efficiency will decrease by 0.37%

Kaynakça

  • Mukadi, L., Guy, C., and Legros, R., “Prediction of Gas Emissions in an Internally Circulating Fluidized Bed Combustor for Treatment of Industrial Solid Wastes”, Fuel, 79:1125-36, (2000).
  • Liu, H. and Gibbs, B.M., “Modeling of NO and NO2 Emissions from Biomass-Fired Circulating Fluidized Bed Combustors”, Fuel, 81: 271-80, (2000).
  • Chen, Z., Lin, M., Ignowski, J., Kelly, B., Linjewile, T.M. and Agarwal, P.K., “Mathematical Modeling of Fluidized Bed Combustion: NO2 and NOx Emission from the Combustion of Char’’, Fuel, 80: 1259-72, (2001).
  • Winter, F., Loffler, G., Wartha, C., Hofbauer, H., Preto, F., and Anthony, E.J., “The NO and NO2 Formation Mechanism Under Circulating Fluidized Bed Combustor Conditions: from the Single Particle to the Pilot-Scale”, The Canadian Journal of Chemical Engineering, 77: 275-83, (1999).
  • Sotudeh-Gharebaagh, R., Legros, R., Chaouki, J., and Paris, J., “Simulation of Circulating Fluidized Bed Reactors Using ASPEN PLUS”, Fuel, 77: 327-37, (1998).
  • Huilin, L., Rushan, B., Wenti, L., Binxi, L. and Lidan, Y., “Computations of a Circulating Fluidized-Bed Boiler with Wide Particle Size Distributions”, Ind. Eng. Chem. Res., 39: 3212- 20, (2000).
  • Çevre ve Orman Bakanlığı Çevresel Etki Sektörel Rehberi Termik Enerji Santralları, Nisan (2006). Rehberleri, ÇED
  • EÜAŞ Elektrik Üretim A.Ş Genel Müdürlüğü Komisyon Raporu, (2010).
  • Türkeş, M., İklim Değişikliği: Türkiye - İklim Değişikliği Çerçeve ve Sözleşmesi İlişkileri ve İklim Değişikliği Politikaları, Devlet Meteoroloji İşleri Genel Müdürlüğü, (2006).
  • Baca Gazı Kükürt Arıtma Tesisleri, Turkish- American Clean Energy Conference, İstanbul, Ocak, (2008).
  • Reddy, B.V., Basu, P., “A Model for Heat Transfer in a Pressurized Circulating Fluidized Bed Furnace”, Int. Jor. Heat Mass Transfer, 39: 2877- 2887, (2001).
  • Basu, P., Nag, P.K., “Heat Transfer to Walls of a Circulating Fluidized-Bed Furnace”, Chemical Engineering Science, 51: 1-26, (1995).
  • Silvera, J.L., Tuna, C.E., ‘’Thermoeconomic analysis method for optimization of combined heat and power systems’’, Part 1. Progress in Energy and Combustion Science, 29:479–485, (2003).
  • Han, X., Jiang, X., Wang H., Cui, Z., ‘’Study on design of Huadian oil shale-fired circulating fluidized bed boiler’’, Fuel Process. Technol., 87:289–295, (2006).
  • Eskin, N., Güngör, A., Özdemir, K., ‘’Effects of operational parameters on the thermodynamic performance of FBCC steam power plant’’, Fuel, 88:54-66, (2009).

Dolasımlı Akıskan Yataklı Bir Isıl – Güç Çevrim Santralinin Simülasyonu ve Duyarlılık Analizi

Yıl 2013, Cilt: 1 Sayı: 2, 37 - 47, 19.02.2013

Öz

Ülkemizde kullanılan linyitlerin oldukça düsük kalorili olusları, ayrıca içersinde yanmayı olumsuz yöndeetkileyen ve hava kirletici emisyonlara neden olan nem, kül, kükürt ve uçucu maddelerin yüksek oranlarda bulunması nedeniyle; alısılmıs yakma sistemlerinde gerekli biçimde temiz ve verimli yakılamamaktadır. Düsük kaliteli kömürlerin yakılması güçlüğüne karsı ve de emisyonların azaltılması bakımından en uygun yakma sistemleri, akıskan yataklı yakma sistemleridir. Bu tür yakma sistemleri, enerji kullanım verimi ve çevre
kirlenmesi problemine karsı bir alternatif çözüm olmaktadır. Dolayısıyla linyitlerin verimli ve temiz yakılabilmesi için, yanmanın yüksek ısı depolu, türbülanslı, yapısal olarak özellikle SO2, NOx ve toz emisyonlarını önleyici bir ortamın sağlanması gerekmektedir. Bu çalısmada, THERMOFLEX simülasyon programı kullanılarak, linyit yakıtlı bir dolasımlı akıskan yataklı güç çevrimi simülasyonu yapılmıs ve
optimizasyon için parametreler belirlenerek, maksimum güç için duyarlılık analizi yapılmıstır. Bu duyarlılık analizine göre, yüksek basınç giris basıncı arttırılmasıyla, sistem çıkıs gücü %1,54 ve net elektrik verimi ise %2,70 arttığı görülmüstür. Akıskan yatağa giren ikincil hava sıcaklığı arttığında ise, net elektrik üretimi %0,34 azalarak, diğer taraftan net elektrik verimi %0,56 artmaktadır. Ayrıca, yatak içerisinde hava fazlalık katsayısının arttırılması durumunda, net elektrik üretimi %2,10 artıs göstermekte, buna karsılık net elektrik verimi ise %0,37
düsmektedir.
Anahtar kelimeler: Akıskan yatak, linyit, termik santral, güç çevrim simülasyonu, duyarlılık analizi

Kaynakça

  • Mukadi, L., Guy, C., and Legros, R., “Prediction of Gas Emissions in an Internally Circulating Fluidized Bed Combustor for Treatment of Industrial Solid Wastes”, Fuel, 79:1125-36, (2000).
  • Liu, H. and Gibbs, B.M., “Modeling of NO and NO2 Emissions from Biomass-Fired Circulating Fluidized Bed Combustors”, Fuel, 81: 271-80, (2000).
  • Chen, Z., Lin, M., Ignowski, J., Kelly, B., Linjewile, T.M. and Agarwal, P.K., “Mathematical Modeling of Fluidized Bed Combustion: NO2 and NOx Emission from the Combustion of Char’’, Fuel, 80: 1259-72, (2001).
  • Winter, F., Loffler, G., Wartha, C., Hofbauer, H., Preto, F., and Anthony, E.J., “The NO and NO2 Formation Mechanism Under Circulating Fluidized Bed Combustor Conditions: from the Single Particle to the Pilot-Scale”, The Canadian Journal of Chemical Engineering, 77: 275-83, (1999).
  • Sotudeh-Gharebaagh, R., Legros, R., Chaouki, J., and Paris, J., “Simulation of Circulating Fluidized Bed Reactors Using ASPEN PLUS”, Fuel, 77: 327-37, (1998).
  • Huilin, L., Rushan, B., Wenti, L., Binxi, L. and Lidan, Y., “Computations of a Circulating Fluidized-Bed Boiler with Wide Particle Size Distributions”, Ind. Eng. Chem. Res., 39: 3212- 20, (2000).
  • Çevre ve Orman Bakanlığı Çevresel Etki Sektörel Rehberi Termik Enerji Santralları, Nisan (2006). Rehberleri, ÇED
  • EÜAŞ Elektrik Üretim A.Ş Genel Müdürlüğü Komisyon Raporu, (2010).
  • Türkeş, M., İklim Değişikliği: Türkiye - İklim Değişikliği Çerçeve ve Sözleşmesi İlişkileri ve İklim Değişikliği Politikaları, Devlet Meteoroloji İşleri Genel Müdürlüğü, (2006).
  • Baca Gazı Kükürt Arıtma Tesisleri, Turkish- American Clean Energy Conference, İstanbul, Ocak, (2008).
  • Reddy, B.V., Basu, P., “A Model for Heat Transfer in a Pressurized Circulating Fluidized Bed Furnace”, Int. Jor. Heat Mass Transfer, 39: 2877- 2887, (2001).
  • Basu, P., Nag, P.K., “Heat Transfer to Walls of a Circulating Fluidized-Bed Furnace”, Chemical Engineering Science, 51: 1-26, (1995).
  • Silvera, J.L., Tuna, C.E., ‘’Thermoeconomic analysis method for optimization of combined heat and power systems’’, Part 1. Progress in Energy and Combustion Science, 29:479–485, (2003).
  • Han, X., Jiang, X., Wang H., Cui, Z., ‘’Study on design of Huadian oil shale-fired circulating fluidized bed boiler’’, Fuel Process. Technol., 87:289–295, (2006).
  • Eskin, N., Güngör, A., Özdemir, K., ‘’Effects of operational parameters on the thermodynamic performance of FBCC steam power plant’’, Fuel, 88:54-66, (2009).
Toplam 15 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Tasarım ve Teknoloji
Yazarlar

Murad Rahım

Duygu Gunduz Bu kişi benim

Yayımlanma Tarihi 19 Şubat 2013
Gönderilme Tarihi 19 Şubat 2013
Yayımlandığı Sayı Yıl 2013 Cilt: 1 Sayı: 2

Kaynak Göster

APA Rahım, M., & Gunduz, D. (2013). Dolasımlı Akıskan Yataklı Bir Isıl – Güç Çevrim Santralinin Simülasyonu ve Duyarlılık Analizi. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 1(2), 37-47.

                                     16168      16167     16166     21432        logo.png   


    e-ISSN:2147-9526