Yıl 2019, Cilt 9 , Sayı 3, Sayfalar 425 - 432 2019-07-15

Automatic Registration of Remotely Sensed Images by Using SURF Features and RANSAC Algorithm
Uzaktan Algılanmış Görüntülerin SURF Özellik Verileri ve RANSAC Algoritması İle Otomatik Çakıştırılması

Mustafa Dihkan [1]


Intensive work has been carried out for optimization of automatic registration using remotely sensed data and photogrammetric techniques because of very large and various datasets availability. Automatic registration is used in many remote sensing mapping applications such as environmental monitoring, change detection, classification, image fusion, etc. In this study, a feature based approach was proposed for automatic registration which can be used for automatic registration of multispectral images acquired in different periods. This technique suggests an optimization of multiband spectral data generated by PCA (Principal Component Analysis) transformation. The multispectral image data was first evaluated using PCA then the SURF (Speeded up Robust Feature) algorithm was applied on the optimized first band of the processed image to detect interest points. In order to decide on matching points used SSD (Sum of Square Distances) values are calculated using interest points data with 64 dimensional feature vectors. As a step forward weak points were eliminated by applying RANSAC (Random Sample Consensus) method and the remaining point data were used for determining homography which is necessary for projective transformation. In the last step, georeferenced images that were geometrically transformed using homography matrix were saved after resampling process. In order to test the proposed approach multispectral aerial images from 2003, 2008 and 2015 were used. The orthophoto image of 2015 was used as reference data. As a result spatial accuracies were found with RMSE values as ± 0.61m and ± 0.53m for the years 2003 and 2008 respectively.

Günümüzde algılayıcı çeşitliliği ile birlikte artan veri yoğunluğu sebebiyle, uzaktan algılama ve fotogrametrik değerlendirme süreçlerinde çakıştırma aşamasının otomatizasyonuna yönelik araştırmalar yoğunlaşmıştır. Otomatik çakıştırma algoritmalarından; çevresel izleme, değişim analizi, sınıflandırma, görüntü kaynaştırma gibi birçok çalışmada faydalanılmaktadır. Bu çalışmada farklı zamanlarda değişik sensörlerce (alıcılarla) kaydedilen uzaktan algılanmış çok bantlı görüntülerin otomatik çakıştırılmasına yönelik özellik tabanlı bir yaklaşım önerilmiştir. Bu yaklaşımın özellik çıkarma aşamasında SURF (Speeded-up Robust Feature) algoritmasının TBA (Temel Bileşen Analizi) yardımıyla iyileştirilmiş çok bantlı veri setlerinin ilk bandına uygulanması yoluyla verinin tüm bantlarındaki spektral bilgiden optimum düzeyde faydalanılmıştır. Bu aşamada belirlenen ilgi noktalarına ilişkin 64 boyutlu özellik vektörleri yardımıyla hesaplanan KFT(Karesel Farklar Toplamı) değerleri kritize edilerek eşlenik noktalar tespit edilmiştir. Ardından eşlenik noktalar arasında zayıf olanlar RANSAC (Random Sample Consensus) yardımıyla elemine edilerek kalan noktalar ile projektif dönüşüm modeli için homografi tanımlanmıştır. Son aşamada hesaplanan homografi matrisi kullanılarak geometrik dönüşüm uygulanan görüntüler yeniden örnekleme sonrasında jeoreferanslı olarak kaydedilmiştir. Önerilen yaklaşımın testi için 2003, 2008 ve 2015 tarihlerinde farklı sensörlerce algılanmış çok bantlı dijital hava görüntülerinden faydalanılmıştır. Bunlardan 2015 tarihli görüntü ortofoto olup referans görüntüsü olarak kullanılmıştır. Çalışmada önerilen yaklaşımın uygulanması sonucunda; 2003 görüntüsü için ± 0.61m, 2008 görüntüsü için ise ± 0.53m KOH (Karesel Ortalama Hata) düzeyinde konumsal doğruluk elde edilmiştir.

  • Acar, H., Karsli, F., Dihkan, M. (2017). Automatic 3D Coordinate Extraction from High Resolution Digital Aerial Images. Journal of the Indian Society of Remote Sensing, 45(2), 209-216.
  • Bay, H., Ess, A., Tuytelaars, T., Van Gool, L. (2008). Speeded-up robust features (SURF). Computer vision and image understanding, 110(3), 346-359.
  • Brown, L. G. (1992). A survey of image registration techniques. ACM computing surveys (CSUR), 24(4), 325-376.
  • Brown, M., Lowe, D. G. (2002). Invariant features from interest point groups. In: BMVC, 4.
  • Fischler, M. A., Bolles, R. C. (1981). Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 24(6), 381-395.
  • Fonseca, L. M., & Manjunath, B. S. (1996). Registration techniques for multisensor remotely sensed imagery. PE & RS- Photogrammetric Engineering & Remote Sensing, 62(9), 1049-1056.
  • Gonçalves, H., Gonçalves, J. A., Corte-Real, L. (2011a). HAIRIS: A method for automatic image registration through histogram-based image segmentation. IEEE transactions on image processing, 20(3), 776-789.
  • Gonçalves, H., Corte-Real, L., Gonçalves, J. A. (2011b). Automatic image registration through image segmentation and SIFT. IEEE Transactions on Geoscience and Remote Sensing, 49(7), 2589-2600.
  • Hartley, R., Zisserman, A. (2003). Multiple view geometry in computer vision. Cambridge university press.
  • Harris, C., Stephens, M. (1988). A combined corner and edge detector. In: Alvey vision conference, 15(50), 10-5244.
  • Li, Q., Wang, G., Liu, J., Chen, S. (2009). Robust scale-invariant feature matching for remote sensing image registration. IEEE Geoscience and Remote Sensing Letters, 6(2), 287-291.
  • Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International journal of computer vision, 60(2), 91-110.
  • Ma, W., Wen, Z., Wu, Y., Jiao, L., Gong, M., Zheng, Y., Liu, L. (2017). Remote sensing image registration with modified SIFT and enhanced feature matching. IEEE Geoscience and Remote Sensing Letters, 14(1), 3-7.
  • Rosten, E., Drummond, T. (2006). Machine learning for high-speed corner detection. In: European conference on computer vision, 430-443, Springer, Berlin, Heidelberg.
  • Smith, S. M., Brady, J. M. (1997). SUSAN - a new approach to low level image processing. International journal of computer vision, 23(1), 45-78.
  • Yang, K., Pan, A., Yang, Y., Zhang, S., Ong, S. H., Tang, H. (2017). Remote sensing image registration using multiple image features. Remote Sensing, 9(6), 581.
  • Zitova, B., Flusser, J. (2003). Image registration methods: a survey. Image and vision computing, 21(11), 977- 1000.
Birincil Dil tr
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Orcid: 0000-0002-0027-236X
Yazar: Mustafa Dihkan (Sorumlu Yazar)
Kurum: KARADENİZ TEKNİK ÜNİVERSİTESİ
Ülke: Turkey


Tarihler

Yayımlanma Tarihi : 15 Temmuz 2019

Bibtex @araştırma makalesi { gumusfenbil486585, journal = {Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi}, issn = {2146-538X}, address = {}, publisher = {Gümüşhane Üniversitesi}, year = {2019}, volume = {9}, pages = {425 - 432}, doi = {10.17714/gumusfenbil.486585}, title = {Uzaktan Algılanmış Görüntülerin SURF Özellik Verileri ve RANSAC Algoritması İle Otomatik Çakıştırılması}, key = {cite}, author = {Dihkan, Mustafa} }
APA Dihkan, M . (2019). Uzaktan Algılanmış Görüntülerin SURF Özellik Verileri ve RANSAC Algoritması İle Otomatik Çakıştırılması. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi , 9 (3) , 425-432 . DOI: 10.17714/gumusfenbil.486585
MLA Dihkan, M . "Uzaktan Algılanmış Görüntülerin SURF Özellik Verileri ve RANSAC Algoritması İle Otomatik Çakıştırılması". Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi 9 (2019 ): 425-432 <https://dergipark.org.tr/tr/pub/gumusfenbil/issue/46153/486585>
Chicago Dihkan, M . "Uzaktan Algılanmış Görüntülerin SURF Özellik Verileri ve RANSAC Algoritması İle Otomatik Çakıştırılması". Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi 9 (2019 ): 425-432
RIS TY - JOUR T1 - Uzaktan Algılanmış Görüntülerin SURF Özellik Verileri ve RANSAC Algoritması İle Otomatik Çakıştırılması AU - Mustafa Dihkan Y1 - 2019 PY - 2019 N1 - doi: 10.17714/gumusfenbil.486585 DO - 10.17714/gumusfenbil.486585 T2 - Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi JF - Journal JO - JOR SP - 425 EP - 432 VL - 9 IS - 3 SN - 2146-538X- M3 - doi: 10.17714/gumusfenbil.486585 UR - https://doi.org/10.17714/gumusfenbil.486585 Y2 - 2019 ER -
EndNote %0 Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi Uzaktan Algılanmış Görüntülerin SURF Özellik Verileri ve RANSAC Algoritması İle Otomatik Çakıştırılması %A Mustafa Dihkan %T Uzaktan Algılanmış Görüntülerin SURF Özellik Verileri ve RANSAC Algoritması İle Otomatik Çakıştırılması %D 2019 %J Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi %P 2146-538X- %V 9 %N 3 %R doi: 10.17714/gumusfenbil.486585 %U 10.17714/gumusfenbil.486585
ISNAD Dihkan, Mustafa . "Uzaktan Algılanmış Görüntülerin SURF Özellik Verileri ve RANSAC Algoritması İle Otomatik Çakıştırılması". Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi 9 / 3 (Temmuz 2019): 425-432 . https://doi.org/10.17714/gumusfenbil.486585
AMA Dihkan M . Uzaktan Algılanmış Görüntülerin SURF Özellik Verileri ve RANSAC Algoritması İle Otomatik Çakıştırılması. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2019; 9(3): 425-432.
Vancouver Dihkan M . Uzaktan Algılanmış Görüntülerin SURF Özellik Verileri ve RANSAC Algoritması İle Otomatik Çakıştırılması. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2019; 9(3): 432-425.