Review
BibTex RIS Cite
Year 2019, Volume: 47 Issue: 2, 143 - 152, 18.09.2019
https://doi.org/10.15671/hjbc.622644

Abstract

References

  • 1. M. Auffan, J. Rose, J.-Y. Bottero, G. V. Lowry, J.-P. Jolivet, M.R. Wiesner, Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective, Nat. Nanotechnol. 4 (2009) 634–641.
  • 2. S. Laurent, S. Dutz, U.O. Häfeli, M. Mahmoudi, Magnetic fluid hyperthermia: Focus on superparamagnetic iron oxide nanoparticles, Adv. Colloid Interface Sci. 166 (2011) 8–23.
  • 3. R. Sedghi, M. Yassari, B. Heidari, Thermo-responsive molecularly imprinted polymer containing magnetic nanoparticles: Synthesis, characterization and adsorption properties for curcumin, Colloids Surfaces B Biointerfaces. 162 (2018) 154–162.
  • 4. M. Rutnakornpituk, N. Puangsin, P. Theamdee, B. Rutnakornpituk, U. Wichai, Poly(acrylic acid)-grafted magnetic nanoparticle for conjugation with folic acid, Polymer (Guildf)., 52 (2011) 987–995.
  • 5. M. Kaur, H. Zhang, L. Martin, T. Todd, Y. Qiang, Conjugates of Magnetic Nanoparticle—Actinide Specific Chelator for Radioactive Waste Separation, Environ. Sci. Technol., 47 (2013) 11942–11959.
  • 6. T. Jing, H. Du, Q. Dai, H. Xia, J. Niu, Q. Hao, S. Mei, Y. Zhou, Magnetic molecularly imprinted nanoparticles for recognition of lysozyme, Biosens. Bioelectron., 26 (2010) 301–306.
  • 7. J. Zhang, R.D.K. Misra, Magnetic drug-targeting carrier encapsulated with thermosensitive smart polymer: Core– shell nanoparticle carrier and drug release response, Acta Biomater., 3 (2007) 838–850
  • 8. S. Kango, S. Kalia, A. Celli, J. Njuguna, Y. Habibi, R. Kumar, Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites—A review, Prog. Polym. Sci., 38 (2013) 1232–1261.
  • 9. J.-P. Chen, P.-C. Yang, Y.-H. Ma, T. Wu, Characterization of chitosan magnetic nanoparticles for in situ delivery of tissue plasminogen activator, Carbohydr. Polym., 84 (2011) 364– 372.
  • 10. D.-L. Zhao, X.-X. Wang, X.-W. Zeng, Q.-S. Xia, J.-T. Tang, Preparation and inductive heating property of Fe3O4– chitosan composite nanoparticles in an AC magnetic field for localized hyperthermia, J. Alloys Compd., 477 (2009) 739–743.
  • 11. X. Li, H. Li, G. Liu, Z. Deng, S. Wu, P. Li, Z. Xu, H. Xu, P.K. Chu, Magnetite-loaded fluorine-containing polymeric micelles for magnetic resonance imaging and drug delivery, Biomaterials., 33 (2012) 3013–3024.
  • 12. A.M. Abu-Dief, S.M. Abdel-Fatah, Development and functionalization of magnetic nanoparticles as powerful and green catalysts for organic synthesis, Beni-Suef Univ. J. Basic Appl. Sci., 7 (2018) 55–67.
  • 13. A. Jedlovszky-Hajdú, F.B. Bombelli, M.P. Monopoli, E. Tombácz, K.A. Dawson, Surface Coatings Shape the Protein Corona of SPIONs with Relevance to Their Application in Vivo, Langmuir, 28 (2012) 14983–14991.
  • 14. J. Mosafer, K. Abnous, M. Tafaghodi, A. Mokhtarzadeh, M. Ramezani, In vitro and in vivo evaluation of anti-nucleolintargeted magnetic PLGA nanoparticles loaded with doxorubicin as a theranostic agent for enhanced targeted cancer imaging and therapy, Eur. J. Pharm. Biopharm., 113 (2017) 60–74.
  • 15. T. Sen, S.J. Sheppard, T. Mercer, M. Eizadi-sharifabad, M. Mahmoudi, A. Elhissi, Simple one-pot fabrication of ultrastable core-shell superparamagnetic nanoparticles for potential application in drug delivery, RSC Adv., 2 (2012) 5221.
  • 16. Z. Osawa, K. Kawauchi, M. Iwata, H. Harada, Effect of polymer matrices on magnetic properties of plastic magnets, J. Mater. Sci., 23 (1988) 2637–2644.
  • 17. N.A. Zaidi, S.R. Giblin, I. Terry, A.P. Monkman, Room temperature magnetic order in an organic magnet derived from polyaniline, Polymer (Guildf), 45 (2004) 5683–5689.
  • 18. X. Li, S. Wu, P. Hu, X. Xing, Y. Liu, Y. Yu, M. Yang, J. Lu, S. Li, W. Liu, Structures and magnetic properties of p-type Mn:TiO2 dilute magnetic semiconductor thin films, J. Appl. Phys., 106 (2009) 043913.
  • 19. A. Majid, S. Fatima, A. Dar, A density functional theory study of electronic properties of Ce:GaN, Comput. Mater. Sci., 79 (2013) 929–932.
  • 20. K. Gopinadhan, S.C. Kashyap, D.K. Pandya, S. Chaudhary, High temperature ferromagnetism in Mn-doped SnO2 nanocrystalline thin films, J. Appl. Phys., 102 (2007) 113513.
  • 21. Y.K. Lakshmi, K. Srinivas, B. Sreedhar, M.M. Raja, M. Vithal, P.V. Reddy, Structural, optical and magnetic properties of nanocrystalline Zn0.9Co0.1O-based diluted magnetic semiconductors, Mater. Chem. Phys., 113 (2009) 749–755.
  • 22. J. Kudr, Y. Haddad, L. Richtera, Z. Heger, M. Cernak, V. Adam, O. Zitka, J. Kudr, Y. Haddad, L. Richtera, Z. Heger, M. Cernak, V. Adam, O. Zitka, Magnetic Nanoparticles: From Design and Synthesis to Real World Applications, Nanomaterials, 7 (2017) 243.
  • 23. S.W. Charles, The Preparation of Magnetic Fluids, in: Springer, Berlin, Heidelberg, 2002: pp. 3–18.
  • 24. C.A. Charitidis, P. Georgiou, M.A. Koklioti, A.-F. Trompeta, V. Markakis, Manufacturing nanomaterials: from research to industry, Manuf. Rev., 1 (2014) 11.
  • 25. V. Amendola, P. Riello, M. Meneghetti, Magnetic Nanoparticles of Iron Carbide, Iron Oxide, Iron@Iron Oxide, and Metal Iron Synthesized by Laser Ablation in Organic Solvents, J. Phys. Chem. C, 115 (2011) 5140–5146.
  • 26. H. Lee, A.M. Purdon, V. Chu, R.M. Westervelt, Controlled Assembly of Magnetic Nanoparticles from Magnetotactic Bacteria Using Microelectromagnets Arrays, Nano Lett., 4 (2004) 995–998.
  • 27. O. Veiseh, J.W. Gunn, M. Zhang, Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging, Adv. Drug Deliv. Rev., 62 (2010) 284–304.
  • 28. S.K. Sahu, S. Maiti, A. Pramanik, S.K. Ghosh, P. Pramanik, Controlling the thickness of polymeric shell on magnetic nanoparticles loaded with doxorubicin for targeted delivery and MRI contrast agent, Carbohydr. Polym., 87 (2012) 2593– 2604.
  • 29. J.-H. Lee, Y.-M. Huh, Y. Jun, J. Seo, J. Jang, H.-T. Song, S. Kim, E.-J. Cho, H.-G. Yoon, J.-S. Suh, J. Cheon, Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging, Nat. Med., 13 (2007) 95–99.
  • 30. V.S. Marangoni, O. Neumann, L. Henderson, C.C. Kaffes, H. Zhang, R. Zhang, S. Bishnoi, C. Ayala-Orozco, V. Zucolotto, J.A. Bankson, P. Nordlander, N.J. Halas, Enhancing T1 magnetic resonance imaging contrast with internalized gadolinium(III) in a multilayer nanoparticle., Proc. Natl. Acad. Sci., 114 (2017) 6960–6965.
  • 31. H. Yavuz, K. Çetin, S. Akgönüllü, D. Battal, A. Denizli, Therapeutic protein and drug imprinted nanostructures as controlled delivery tools, in: Alexandru Mihai Grumezescu (Ed.), Des. Dev. New Nanocarriers, William Andrew Publishing, 2018: pp. 439–473.
  • 32. K. Çetin, A. Denizli, 5-Fluorouracil delivery from metal-ion mediated molecularly imprinted cryogel discs, Colloids Surfaces B Biointerfaces., 126 (2015) 401–406.
  • 33. K. Çetin, H. Alkan, N. Bereli, A. Denizli, Molecularly imprinted cryogel as a pH-responsive delivery system for doxorubicin, J. Macromol. Sci. Part A Pure Appl. Chem., 54 (2017) 502– 508.
  • 34. T. Sadhukha, B. Layek, S. Prabha, Incorporation of lipolysis in monolayer permeability studies of lipid-based oral drug delivery systems, Drug Deliv. Transl. Res., 8 (2018) 375–386.
  • 35. D. Ailincai, L. Tartau Mititelu, L. Marin, Drug delivery systems based on biocompatible imino-chitosan hydrogels for local anticancer therapy, Drug Deliv., 25 (2018) 1080–1090.
  • 36. M. Amiri, M. Salavati-Niasari, A. Pardakhty, M. Ahmadi, A. Akbari, Caffeine: A novel green precursor for synthesis of magnetic CoFe2O4 nanoparticles and pH-sensitive magnetic alginate beads for drug delivery, Mater. Sci. Eng. C, 76 (2017) 1085–1093.
  • 37. Y. Dong, S.-S. Feng, Methoxy poly(ethylene glycol)poly(lactide) (MPEG-PLA) nanoparticles for controlled delivery of anticancer drugs, Biomaterials, 25 (2004) 2843– 2849.
  • 38. J. Yang, C.-H. Lee, J. Park, S. Seo, E.-K. Lim, Y.J. Song, J.-S. Suh, H.-G. Yoon, Y.-M. Huh, S. Haam, Antibody conjugated magnetic PLGA nanoparticles for diagnosis and treatment of breast cancer, J. Mater. Chem., 17 (2007) 2695.
  • 39. S. Deok Kong, M. Sartor, C.-M. Jack Hu, W. Zhang, L. Zhang, S. Jin, Magnetic field activated lipid–polymer hybrid nanoparticles for stimuli-responsive drug release, Acta Biomater., 9 (2013) 5447–5452.
  • 40. M.-Y. Hua, H.-L. Liu, H.-W. Yang, P.-Y. Chen, R.-Y. Tsai, C.-Y. Huang, I.-C. Tseng, L.-A. Lyu, C.-C. Ma, H.J. Tang, T.-C. Yen, K.-C. Wei, The effectiveness of a magnetic nanoparticlebased delivery system for BCNU in the treatment of gliomas, Biomaterials, 32 (2011) 516–527.
  • 41. C. Alexiou, R. Jurgons, C. Seliger, O. Brunke, H. Iro, S. Odenbach, Delivery of superparamagnetic nanoparticles for local chemotherapy after intraarterial infusion and magnetic drug targeting, Anticancer Res., 27 (2007) 2019– 22.
  • 42. E. Lellouche, E. Locatelli, L.L. Israel, M. Naddaka, E. Kurlander, S. Michaeli, J.-P. Lellouche, M.C. Franchini, Maghemitecontaining PLGA–PEG-based polymeric nanoparticles for siRNA delivery: toxicity and silencing evaluation, RSC Adv., 7 (2017) 26912–26920.
  • 43. Z. Abed, S. Khoei, B. Ghalandari, J. Beik, A. ShakeriZadeh, H. Ghaznavi, M.-B. Shiran, The Measurement and Mathematical Analysis of 5-Fu Release from Magnetic Polymeric Nanocapsules, following the Application of Ultrasound, Anticancer Agents Med. Chem., 18 (2018) 438– 449.
  • 44. J. Yang, S.-B. Park, H.-G. Yoon, Y.-M. Huh, S. Haam, Preparation of poly ɛ-caprolactone nanoparticles containing magnetite for magnetic drug carrier, Int. J. Pharm., 324 (2006) 185–190.
  • 45. J. Huang, Q. Shu, L. Wang, H. Wu, A.Y. Wang, H. Mao, Layer-by-layer assembled milk protein coated magnetic nanoparticle enabled oral drug delivery with high stability in stomach and enzyme-responsive release in small intestine, Biomaterials, 39 (2015) 105–113.
  • 46. M. Ghadiri, E. Vasheghani-Farahani, F. Atyabi, F. Kobarfard, F. Mohamadyar-Toupkanlou, H. Hosseinkhani, Transferrinconjugated magnetic dextran-spermine nanoparticles for targeted drug transport across blood-brain barrier, J. Biomed. Mater. Res. Part A, 105 (2017) 2851–2864.
  • 47. C. Plank, O. Zelphati, O. Mykhaylyk, Magnetically enhanced nucleic acid delivery. Ten years of magnetofection—Progress and prospects, Adv. Drug Deliv. Rev., 63 (2011) 1300–1331.
  • 48. F. Scherer, M. Anton, U. Schillinger, J. Henke, C. Bergemann, A. Krüger, B. Gänsbacher, C. Plank, Magnetofection: enhancing and targeting gene delivery by magnetic force in vitro and in vivo, Gene Ther., 9 (2002) 102–109.
  • 49. J. Dobson, Gene therapy progress and prospects: magnetic nanoparticle-based gene delivery, Gene Ther., 13 (2006) 283–287.
  • 50. J. Reiser, X.-Y. Zhang, C.S. Hemenway, D. Mondal, L. Pradhan, V.F. La Russa, Potential of mesenchymal stem cells in gene therapy approaches for inherited and acquired diseases, Expert Opin. Biol. Ther. 5 (2005) 1571–1584.
  • 51. S.P. Jackson, J. Bartek, The DNA-damage response in human biology and disease, Nature, 461 (2009) 1071–1078.
  • 52. C. Plank, M. Anton, C. Rudolph, J. Rosenecker, F. Krötz, Enhancing and targeting nucleic acid delivery by magnetic force, Expert Opin. Biol. Ther., 3 (2003) 745–758.
  • 53. L. Mohammed, H.G. Gomaa, D. Ragab, J. Zhu, Magnetic nanoparticles for environmental and biomedical applications: A review, Particuology., 30 (2017) 1–14.
  • 54. P. Gas, Essential Facts on the History of Hyperthermia and their Connections with Electromedicine, Prz. Elektrotechniczny. 87
  • 55. S. Toraya-Brown, S. Fiering, Local tumour hyperthermia as immunotherapy for metastatic cancer, Int. J. Hyperth., 30 (2014) 531–539.
  • 56. B.B. Singh, Hyperthermia: An ancient science in India, Int. J. Hyperth., 7 (1991) 1–6.
  • 57. D. Jaque, C. Jacinto, Luminescent nanoprobes for thermal bio-sensing: Towards controlled photo-thermal therapies, J. Lumin., 169 (2016) 394–399.
  • 58. R. Hergt, S. Dutz, R. Müller, M. Zeisberger, Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy, J. Phys. Condens. Matter., 18 (2006) S2919–S2934.
  • 59. N.D. Thorat, R.M. Patil, V.M. Khot, A.B. Salunkhe, A.I. Prasad, K.C. Barick, R.S. Ningthoujam, S.H. Pawar, Highly waterdispersible surface-functionalized LSMO nanoparticles for magnetic fluid hyperthermia application, New J. Chem., 37 (2013) 2733.
  • 60. V. Zamora-Mora, M. Fernández-Gutiérrez, Á. GonzálezGómez, B. Sanz, J.S. Román, G.F. Goya, R. Hernández, C. Mijangos, Chitosan nanoparticles for combined drug delivery and magnetic hyperthermia: From preparation to in vitro studies, Carbohydr. Polym., 157 (2017) 361–370.
  • 61. A. Mehdinia, S. Shegefti, F. Shemirani, A novel nanomagnetic task specific ionic liquid as a selective sorbent for the trace determination of cadmium in water and fruit samples, Talanta, 144 (2015) 1266–1272.
  • 62. S. Sadeghi, E. Aboobakri, Magnetic nanoparticles with an imprinted polymer coating for the selective extraction of uranyl ions, Microchim. Acta., 178 (2012) 89–97.
  • 63. Y. Saylan, L. Uzun, A. Denizli, Alanine Functionalized Magnetic Nanoparticles for Reversible Amyloglucosidase Immobilization, Ind. Eng. Chem. Res., 54 (2015) 454–461.

Magnetic Nanoparticles and Their Biomedical Applications

Year 2019, Volume: 47 Issue: 2, 143 - 152, 18.09.2019
https://doi.org/10.15671/hjbc.622644

Abstract

The combination of magnetism and nanotechnology has presented promising materials: magnetic nanoparticles. These
materials have been getting more attention due to their “size‐dependent functionality”. There is a critical size for nanoparticles that their properties change. Materials with various functions can be synthesized with the desired properties since
a wide range of polymers including natural and synthetic polymers can be utilized in the production of the magnetic nanoparticles. Furthermore, they can be more selective and specific with the conjugation target-specific ligands. This structural
and functional diversity enables these materials to be used in a wide range of areas. In this review, we discuss the main components of the magnetic nanoparticles and their examples in biomedical applications. They can be used as contrast agents
in magnetic resonance imaging; delivery systems in the controlled release of therapeutic agents; supporting materials for
separation, isolation, and purification of biomolecules. They can be also functioned in hyperthermia and magnetofection
for gene therapy. However, even though their increasing research interest, magnetic nanoparticles still need to be improved
to be more popular in the commercial area. We hope that these functional materials will present promising possibilities in
nanotechnology and biomedicine in near future.

References

  • 1. M. Auffan, J. Rose, J.-Y. Bottero, G. V. Lowry, J.-P. Jolivet, M.R. Wiesner, Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective, Nat. Nanotechnol. 4 (2009) 634–641.
  • 2. S. Laurent, S. Dutz, U.O. Häfeli, M. Mahmoudi, Magnetic fluid hyperthermia: Focus on superparamagnetic iron oxide nanoparticles, Adv. Colloid Interface Sci. 166 (2011) 8–23.
  • 3. R. Sedghi, M. Yassari, B. Heidari, Thermo-responsive molecularly imprinted polymer containing magnetic nanoparticles: Synthesis, characterization and adsorption properties for curcumin, Colloids Surfaces B Biointerfaces. 162 (2018) 154–162.
  • 4. M. Rutnakornpituk, N. Puangsin, P. Theamdee, B. Rutnakornpituk, U. Wichai, Poly(acrylic acid)-grafted magnetic nanoparticle for conjugation with folic acid, Polymer (Guildf)., 52 (2011) 987–995.
  • 5. M. Kaur, H. Zhang, L. Martin, T. Todd, Y. Qiang, Conjugates of Magnetic Nanoparticle—Actinide Specific Chelator for Radioactive Waste Separation, Environ. Sci. Technol., 47 (2013) 11942–11959.
  • 6. T. Jing, H. Du, Q. Dai, H. Xia, J. Niu, Q. Hao, S. Mei, Y. Zhou, Magnetic molecularly imprinted nanoparticles for recognition of lysozyme, Biosens. Bioelectron., 26 (2010) 301–306.
  • 7. J. Zhang, R.D.K. Misra, Magnetic drug-targeting carrier encapsulated with thermosensitive smart polymer: Core– shell nanoparticle carrier and drug release response, Acta Biomater., 3 (2007) 838–850
  • 8. S. Kango, S. Kalia, A. Celli, J. Njuguna, Y. Habibi, R. Kumar, Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites—A review, Prog. Polym. Sci., 38 (2013) 1232–1261.
  • 9. J.-P. Chen, P.-C. Yang, Y.-H. Ma, T. Wu, Characterization of chitosan magnetic nanoparticles for in situ delivery of tissue plasminogen activator, Carbohydr. Polym., 84 (2011) 364– 372.
  • 10. D.-L. Zhao, X.-X. Wang, X.-W. Zeng, Q.-S. Xia, J.-T. Tang, Preparation and inductive heating property of Fe3O4– chitosan composite nanoparticles in an AC magnetic field for localized hyperthermia, J. Alloys Compd., 477 (2009) 739–743.
  • 11. X. Li, H. Li, G. Liu, Z. Deng, S. Wu, P. Li, Z. Xu, H. Xu, P.K. Chu, Magnetite-loaded fluorine-containing polymeric micelles for magnetic resonance imaging and drug delivery, Biomaterials., 33 (2012) 3013–3024.
  • 12. A.M. Abu-Dief, S.M. Abdel-Fatah, Development and functionalization of magnetic nanoparticles as powerful and green catalysts for organic synthesis, Beni-Suef Univ. J. Basic Appl. Sci., 7 (2018) 55–67.
  • 13. A. Jedlovszky-Hajdú, F.B. Bombelli, M.P. Monopoli, E. Tombácz, K.A. Dawson, Surface Coatings Shape the Protein Corona of SPIONs with Relevance to Their Application in Vivo, Langmuir, 28 (2012) 14983–14991.
  • 14. J. Mosafer, K. Abnous, M. Tafaghodi, A. Mokhtarzadeh, M. Ramezani, In vitro and in vivo evaluation of anti-nucleolintargeted magnetic PLGA nanoparticles loaded with doxorubicin as a theranostic agent for enhanced targeted cancer imaging and therapy, Eur. J. Pharm. Biopharm., 113 (2017) 60–74.
  • 15. T. Sen, S.J. Sheppard, T. Mercer, M. Eizadi-sharifabad, M. Mahmoudi, A. Elhissi, Simple one-pot fabrication of ultrastable core-shell superparamagnetic nanoparticles for potential application in drug delivery, RSC Adv., 2 (2012) 5221.
  • 16. Z. Osawa, K. Kawauchi, M. Iwata, H. Harada, Effect of polymer matrices on magnetic properties of plastic magnets, J. Mater. Sci., 23 (1988) 2637–2644.
  • 17. N.A. Zaidi, S.R. Giblin, I. Terry, A.P. Monkman, Room temperature magnetic order in an organic magnet derived from polyaniline, Polymer (Guildf), 45 (2004) 5683–5689.
  • 18. X. Li, S. Wu, P. Hu, X. Xing, Y. Liu, Y. Yu, M. Yang, J. Lu, S. Li, W. Liu, Structures and magnetic properties of p-type Mn:TiO2 dilute magnetic semiconductor thin films, J. Appl. Phys., 106 (2009) 043913.
  • 19. A. Majid, S. Fatima, A. Dar, A density functional theory study of electronic properties of Ce:GaN, Comput. Mater. Sci., 79 (2013) 929–932.
  • 20. K. Gopinadhan, S.C. Kashyap, D.K. Pandya, S. Chaudhary, High temperature ferromagnetism in Mn-doped SnO2 nanocrystalline thin films, J. Appl. Phys., 102 (2007) 113513.
  • 21. Y.K. Lakshmi, K. Srinivas, B. Sreedhar, M.M. Raja, M. Vithal, P.V. Reddy, Structural, optical and magnetic properties of nanocrystalline Zn0.9Co0.1O-based diluted magnetic semiconductors, Mater. Chem. Phys., 113 (2009) 749–755.
  • 22. J. Kudr, Y. Haddad, L. Richtera, Z. Heger, M. Cernak, V. Adam, O. Zitka, J. Kudr, Y. Haddad, L. Richtera, Z. Heger, M. Cernak, V. Adam, O. Zitka, Magnetic Nanoparticles: From Design and Synthesis to Real World Applications, Nanomaterials, 7 (2017) 243.
  • 23. S.W. Charles, The Preparation of Magnetic Fluids, in: Springer, Berlin, Heidelberg, 2002: pp. 3–18.
  • 24. C.A. Charitidis, P. Georgiou, M.A. Koklioti, A.-F. Trompeta, V. Markakis, Manufacturing nanomaterials: from research to industry, Manuf. Rev., 1 (2014) 11.
  • 25. V. Amendola, P. Riello, M. Meneghetti, Magnetic Nanoparticles of Iron Carbide, Iron Oxide, Iron@Iron Oxide, and Metal Iron Synthesized by Laser Ablation in Organic Solvents, J. Phys. Chem. C, 115 (2011) 5140–5146.
  • 26. H. Lee, A.M. Purdon, V. Chu, R.M. Westervelt, Controlled Assembly of Magnetic Nanoparticles from Magnetotactic Bacteria Using Microelectromagnets Arrays, Nano Lett., 4 (2004) 995–998.
  • 27. O. Veiseh, J.W. Gunn, M. Zhang, Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging, Adv. Drug Deliv. Rev., 62 (2010) 284–304.
  • 28. S.K. Sahu, S. Maiti, A. Pramanik, S.K. Ghosh, P. Pramanik, Controlling the thickness of polymeric shell on magnetic nanoparticles loaded with doxorubicin for targeted delivery and MRI contrast agent, Carbohydr. Polym., 87 (2012) 2593– 2604.
  • 29. J.-H. Lee, Y.-M. Huh, Y. Jun, J. Seo, J. Jang, H.-T. Song, S. Kim, E.-J. Cho, H.-G. Yoon, J.-S. Suh, J. Cheon, Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging, Nat. Med., 13 (2007) 95–99.
  • 30. V.S. Marangoni, O. Neumann, L. Henderson, C.C. Kaffes, H. Zhang, R. Zhang, S. Bishnoi, C. Ayala-Orozco, V. Zucolotto, J.A. Bankson, P. Nordlander, N.J. Halas, Enhancing T1 magnetic resonance imaging contrast with internalized gadolinium(III) in a multilayer nanoparticle., Proc. Natl. Acad. Sci., 114 (2017) 6960–6965.
  • 31. H. Yavuz, K. Çetin, S. Akgönüllü, D. Battal, A. Denizli, Therapeutic protein and drug imprinted nanostructures as controlled delivery tools, in: Alexandru Mihai Grumezescu (Ed.), Des. Dev. New Nanocarriers, William Andrew Publishing, 2018: pp. 439–473.
  • 32. K. Çetin, A. Denizli, 5-Fluorouracil delivery from metal-ion mediated molecularly imprinted cryogel discs, Colloids Surfaces B Biointerfaces., 126 (2015) 401–406.
  • 33. K. Çetin, H. Alkan, N. Bereli, A. Denizli, Molecularly imprinted cryogel as a pH-responsive delivery system for doxorubicin, J. Macromol. Sci. Part A Pure Appl. Chem., 54 (2017) 502– 508.
  • 34. T. Sadhukha, B. Layek, S. Prabha, Incorporation of lipolysis in monolayer permeability studies of lipid-based oral drug delivery systems, Drug Deliv. Transl. Res., 8 (2018) 375–386.
  • 35. D. Ailincai, L. Tartau Mititelu, L. Marin, Drug delivery systems based on biocompatible imino-chitosan hydrogels for local anticancer therapy, Drug Deliv., 25 (2018) 1080–1090.
  • 36. M. Amiri, M. Salavati-Niasari, A. Pardakhty, M. Ahmadi, A. Akbari, Caffeine: A novel green precursor for synthesis of magnetic CoFe2O4 nanoparticles and pH-sensitive magnetic alginate beads for drug delivery, Mater. Sci. Eng. C, 76 (2017) 1085–1093.
  • 37. Y. Dong, S.-S. Feng, Methoxy poly(ethylene glycol)poly(lactide) (MPEG-PLA) nanoparticles for controlled delivery of anticancer drugs, Biomaterials, 25 (2004) 2843– 2849.
  • 38. J. Yang, C.-H. Lee, J. Park, S. Seo, E.-K. Lim, Y.J. Song, J.-S. Suh, H.-G. Yoon, Y.-M. Huh, S. Haam, Antibody conjugated magnetic PLGA nanoparticles for diagnosis and treatment of breast cancer, J. Mater. Chem., 17 (2007) 2695.
  • 39. S. Deok Kong, M. Sartor, C.-M. Jack Hu, W. Zhang, L. Zhang, S. Jin, Magnetic field activated lipid–polymer hybrid nanoparticles for stimuli-responsive drug release, Acta Biomater., 9 (2013) 5447–5452.
  • 40. M.-Y. Hua, H.-L. Liu, H.-W. Yang, P.-Y. Chen, R.-Y. Tsai, C.-Y. Huang, I.-C. Tseng, L.-A. Lyu, C.-C. Ma, H.J. Tang, T.-C. Yen, K.-C. Wei, The effectiveness of a magnetic nanoparticlebased delivery system for BCNU in the treatment of gliomas, Biomaterials, 32 (2011) 516–527.
  • 41. C. Alexiou, R. Jurgons, C. Seliger, O. Brunke, H. Iro, S. Odenbach, Delivery of superparamagnetic nanoparticles for local chemotherapy after intraarterial infusion and magnetic drug targeting, Anticancer Res., 27 (2007) 2019– 22.
  • 42. E. Lellouche, E. Locatelli, L.L. Israel, M. Naddaka, E. Kurlander, S. Michaeli, J.-P. Lellouche, M.C. Franchini, Maghemitecontaining PLGA–PEG-based polymeric nanoparticles for siRNA delivery: toxicity and silencing evaluation, RSC Adv., 7 (2017) 26912–26920.
  • 43. Z. Abed, S. Khoei, B. Ghalandari, J. Beik, A. ShakeriZadeh, H. Ghaznavi, M.-B. Shiran, The Measurement and Mathematical Analysis of 5-Fu Release from Magnetic Polymeric Nanocapsules, following the Application of Ultrasound, Anticancer Agents Med. Chem., 18 (2018) 438– 449.
  • 44. J. Yang, S.-B. Park, H.-G. Yoon, Y.-M. Huh, S. Haam, Preparation of poly ɛ-caprolactone nanoparticles containing magnetite for magnetic drug carrier, Int. J. Pharm., 324 (2006) 185–190.
  • 45. J. Huang, Q. Shu, L. Wang, H. Wu, A.Y. Wang, H. Mao, Layer-by-layer assembled milk protein coated magnetic nanoparticle enabled oral drug delivery with high stability in stomach and enzyme-responsive release in small intestine, Biomaterials, 39 (2015) 105–113.
  • 46. M. Ghadiri, E. Vasheghani-Farahani, F. Atyabi, F. Kobarfard, F. Mohamadyar-Toupkanlou, H. Hosseinkhani, Transferrinconjugated magnetic dextran-spermine nanoparticles for targeted drug transport across blood-brain barrier, J. Biomed. Mater. Res. Part A, 105 (2017) 2851–2864.
  • 47. C. Plank, O. Zelphati, O. Mykhaylyk, Magnetically enhanced nucleic acid delivery. Ten years of magnetofection—Progress and prospects, Adv. Drug Deliv. Rev., 63 (2011) 1300–1331.
  • 48. F. Scherer, M. Anton, U. Schillinger, J. Henke, C. Bergemann, A. Krüger, B. Gänsbacher, C. Plank, Magnetofection: enhancing and targeting gene delivery by magnetic force in vitro and in vivo, Gene Ther., 9 (2002) 102–109.
  • 49. J. Dobson, Gene therapy progress and prospects: magnetic nanoparticle-based gene delivery, Gene Ther., 13 (2006) 283–287.
  • 50. J. Reiser, X.-Y. Zhang, C.S. Hemenway, D. Mondal, L. Pradhan, V.F. La Russa, Potential of mesenchymal stem cells in gene therapy approaches for inherited and acquired diseases, Expert Opin. Biol. Ther. 5 (2005) 1571–1584.
  • 51. S.P. Jackson, J. Bartek, The DNA-damage response in human biology and disease, Nature, 461 (2009) 1071–1078.
  • 52. C. Plank, M. Anton, C. Rudolph, J. Rosenecker, F. Krötz, Enhancing and targeting nucleic acid delivery by magnetic force, Expert Opin. Biol. Ther., 3 (2003) 745–758.
  • 53. L. Mohammed, H.G. Gomaa, D. Ragab, J. Zhu, Magnetic nanoparticles for environmental and biomedical applications: A review, Particuology., 30 (2017) 1–14.
  • 54. P. Gas, Essential Facts on the History of Hyperthermia and their Connections with Electromedicine, Prz. Elektrotechniczny. 87
  • 55. S. Toraya-Brown, S. Fiering, Local tumour hyperthermia as immunotherapy for metastatic cancer, Int. J. Hyperth., 30 (2014) 531–539.
  • 56. B.B. Singh, Hyperthermia: An ancient science in India, Int. J. Hyperth., 7 (1991) 1–6.
  • 57. D. Jaque, C. Jacinto, Luminescent nanoprobes for thermal bio-sensing: Towards controlled photo-thermal therapies, J. Lumin., 169 (2016) 394–399.
  • 58. R. Hergt, S. Dutz, R. Müller, M. Zeisberger, Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy, J. Phys. Condens. Matter., 18 (2006) S2919–S2934.
  • 59. N.D. Thorat, R.M. Patil, V.M. Khot, A.B. Salunkhe, A.I. Prasad, K.C. Barick, R.S. Ningthoujam, S.H. Pawar, Highly waterdispersible surface-functionalized LSMO nanoparticles for magnetic fluid hyperthermia application, New J. Chem., 37 (2013) 2733.
  • 60. V. Zamora-Mora, M. Fernández-Gutiérrez, Á. GonzálezGómez, B. Sanz, J.S. Román, G.F. Goya, R. Hernández, C. Mijangos, Chitosan nanoparticles for combined drug delivery and magnetic hyperthermia: From preparation to in vitro studies, Carbohydr. Polym., 157 (2017) 361–370.
  • 61. A. Mehdinia, S. Shegefti, F. Shemirani, A novel nanomagnetic task specific ionic liquid as a selective sorbent for the trace determination of cadmium in water and fruit samples, Talanta, 144 (2015) 1266–1272.
  • 62. S. Sadeghi, E. Aboobakri, Magnetic nanoparticles with an imprinted polymer coating for the selective extraction of uranyl ions, Microchim. Acta., 178 (2012) 89–97.
  • 63. Y. Saylan, L. Uzun, A. Denizli, Alanine Functionalized Magnetic Nanoparticles for Reversible Amyloglucosidase Immobilization, Ind. Eng. Chem. Res., 54 (2015) 454–461.
There are 63 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Kemal Çetin This is me

Fatma Denizli This is me

Handan Yavuz This is me

Deniz Türkmen This is me

Tahira Qureshi This is me 0000-0003-0161-172X

Adil Denizli

Publication Date September 18, 2019
Acceptance Date May 12, 2019
Published in Issue Year 2019 Volume: 47 Issue: 2

Cite

APA Çetin, K., Denizli, F., Yavuz, H., Türkmen, D., et al. (2019). Magnetic Nanoparticles and Their Biomedical Applications. Hacettepe Journal of Biology and Chemistry, 47(2), 143-152. https://doi.org/10.15671/hjbc.622644
AMA Çetin K, Denizli F, Yavuz H, Türkmen D, Qureshi T, Denizli A. Magnetic Nanoparticles and Their Biomedical Applications. HJBC. September 2019;47(2):143-152. doi:10.15671/hjbc.622644
Chicago Çetin, Kemal, Fatma Denizli, Handan Yavuz, Deniz Türkmen, Tahira Qureshi, and Adil Denizli. “Magnetic Nanoparticles and Their Biomedical Applications”. Hacettepe Journal of Biology and Chemistry 47, no. 2 (September 2019): 143-52. https://doi.org/10.15671/hjbc.622644.
EndNote Çetin K, Denizli F, Yavuz H, Türkmen D, Qureshi T, Denizli A (September 1, 2019) Magnetic Nanoparticles and Their Biomedical Applications. Hacettepe Journal of Biology and Chemistry 47 2 143–152.
IEEE K. Çetin, F. Denizli, H. Yavuz, D. Türkmen, T. Qureshi, and A. Denizli, “Magnetic Nanoparticles and Their Biomedical Applications”, HJBC, vol. 47, no. 2, pp. 143–152, 2019, doi: 10.15671/hjbc.622644.
ISNAD Çetin, Kemal et al. “Magnetic Nanoparticles and Their Biomedical Applications”. Hacettepe Journal of Biology and Chemistry 47/2 (September 2019), 143-152. https://doi.org/10.15671/hjbc.622644.
JAMA Çetin K, Denizli F, Yavuz H, Türkmen D, Qureshi T, Denizli A. Magnetic Nanoparticles and Their Biomedical Applications. HJBC. 2019;47:143–152.
MLA Çetin, Kemal et al. “Magnetic Nanoparticles and Their Biomedical Applications”. Hacettepe Journal of Biology and Chemistry, vol. 47, no. 2, 2019, pp. 143-52, doi:10.15671/hjbc.622644.
Vancouver Çetin K, Denizli F, Yavuz H, Türkmen D, Qureshi T, Denizli A. Magnetic Nanoparticles and Their Biomedical Applications. HJBC. 2019;47(2):143-52.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc