BibTex RIS Cite

Chemical Oxidation of 5-amino quinoline with NH4 2S2O8: Synthesis and Characterization

Year 2017, Volume: 45 Issue: 4, 563 - 571, 01.11.2017

Abstract

5-amino quinoline AQ was chemically oxidized in NH4 2S2O8/HCI system, whose structure was identified by UV-vis, FTIR, 1HNMR and 13CNMR analysis. Spectral analysis results indicated the formation of phenazine like units in the oxidation product and C3, C6, C8 positions of quinoline ring were suggested as a possible polymerization sites. Size exclusion chromatography indicated the oxidation product OAQ consisted of oligomeric units 1200 g/mol . OAQ was thermally stable and half of its mass was decomposed at 1000°C.

References

  • 1. A. Moliton, R.C. Hiorns, Review of electronic and optical properties of semiconducting π-conjugated polymers: applications in optoelectronics, Polym. Int., 53 (2004) 1397–1412
  • 2. A. Bilici, F. Doğan, M. Yıldırım, İ. Kaya, Facile synthesis of self-stabilized polyphenol nanoparticles, Mater. Chem. Phys., 140 (2013) 66-74.
  • 3. A. Kimyonok, XY. Wang, M. Weck, Electroluminescent poly(quinoline)s and metalloquinolates, J. Macromol. Sci., Polym. Rev., 46 (2006) 47–77.
  • 4. J.L. Kim, J.K. Kim, H.N. Cho, D.Y. Kim, C.Y. Kim, and S.I. Hong, New polyquinoline copolymers: synthesis, optical, luminescent, and hole-blocking/electrontransporting properties, Macromolecules, 33 (2000) 5880-5885.
  • 5. A.K. Agrawal, S.A. Jenekhe, H. Vanherzeele, J.S. Meth, Third-order nonlinear optical properties of conjugated rigid-rod polyquinolines, J. Phys. Chem., 96 (1992) 2837-2843.
  • 6. J.K. Stille, Poly quinolines, Macromolecules, 14 (1981) 870-880.
  • 7. X.G. Li ,M.R. Huang, Y.M. Hua, M.F Zhu, Q. Chen, Facile synthesis of oxidative copolymers from aminoquinoline and anisidine, Polymer, 45 (2004) 4693–4704.
  • 8. H. An, M. Seki, K. Sato, K. Kadoi, R. Yosomiya, Electrochemical polymerization of methyl-substituted quinolines, Polymer, 30 (1989) 1076-1078.
  • 9. N.Saito, T. Kanbara, Y. Nakamura, T. Yamamoto, K. Kubota, Electrochemical and chemical preparation of linear .pi.-conjugated poly(quinoline-2,6-diyl) using nickel complexes and electrochemical properties of the polymer, Macromolecules, 27 ( 1994) 756–761
  • 10. Z.X. Yan, Synthesis and characterization of a Polyquinoline derivative thin film with a low dielectric constant, Acta Phys. Chim. Sin., 26 (2010) 1164-1170
  • 11. D.J. Dibble, M.J. Umerani, A. Mazaheripour, Y.S. Park, J.W. Ziller, and A.A. Gorodetsky, An aza-diels–alder route to polyquinolines, Macromolecules, 48 (2015) 557–561.
  • 12. A. Bilici, I. Kaya, M.Yıldırım, Biosynthesis and characterization of organosoluble conjugated poly(2-aminofluorene) with the pyrazine bridged, Biomacromolecules, 11 (2010), 2593–2601.
  • 13. A. Bilici, F. Doğan, M. Yildirim, İ. Kaya, Tunable multicolor emission in oligo(4-hydroxyquinoline), J. Phys. Chem. C, 116 (2012) 19934-19940.
  • 14. A. Bilici, F. Doğan, M. Yildirim, İ. Kaya, Facile and regioselective synthesis of poly(5-hydroxyquinoline), React. Funct. Polym., 71, (2011) 675-683.
  • 15. F. Doğan, A. Bilici, M. Yıldırım, İ. Kaya, 6-Hydroxyquinoline oligomers emit white ligh, Sci. Adv. Mater., 6 (2014) 1957-1964.
  • 16. S. Ncanana, S. Burton, Oxidation of 8-hydroxyquinoline catalyzed by laccase from Trametes pubescens yields an antioxidant aromatic polymer, J. Mol. Catal. B. Enzym, 44 (2007) 66–71.
  • 17. A. Bilici, B. Ayten, İ. Kaya, Facile Preparation of gold nanoparticles on the polyquinoline matrix: catalytic performance toward 4-nitrophenol reduction, Synt. Met, 201 (2015) 11-17.
  • 18. A. Bilici, İ.H. Gecibesler, İ.Kaya, Enzymatic synthesis of 5-amino quinoline oligomers and evaluation of their free radical scavenging activity, Can. J. Chem., 95 (2017) 7-11.
  • 19. M.C. Stevic, G.C. Marjanovic, B. Marjanovic, L.M. Ignjatovi, D. Manojlovic, The electrochemical oxidation of 6-aminoquinoline: computational and voltammetric study, J. Electrochem. Soc., 159 (2012) G151-G159.
  • 20. X.G. Li, M.R. Huang, Y.M. Hua, Facile synthesis of processible aminoquinoline/phenetidine copolymers and their pure semiconducting nanoparticles, Macromolecules 38 (2005) 4211-4219.
  • 21. B. Lu, L. Zeng, J. Xu, Z. Le, H. Rao, Electrosynthesis of highly conducting poly(1,5-dihydroxynaphthalene) in BF3·Et2O, Eur. Polym. J., 45 (2009) 2279–2287
  • 22. C. Heichert, H. Hartmann, on the formation of mauvein: Mechanistic considerations and preparative results, Z. Naturforsch. B, 64 (2009) 747-755.
  • 23. I. Sapurina, A.V. Tenkovtsev, J. Stejskal, Conjugated polyaniline as a result of the benzidine rearrangement, Polym Int., 64 (2015) 453–465.
  • 24. X.G. Li, H. Feng, M.R. Huang, Redox sorption and recovery of silver ions as silver nanocrystals on poly(aniline-co-5-sulfo-2-anisidine) nanosorbents, Chem. Eur. J., 16 (2010), 10113-10123.
  • 25. A. Kellenberger, E. Dmitrieva, L. Dunsch, The stabilization of charged states at phenazine-like units in polyaniline under p-doping: an in situ, ATR-FTIR spectroelectrochemical study, Phys. Chem. Chem. Phys., 13 (2011) 3411-3420.
  • 26. C. Stammer, A. Taurins, Infrared spectra of phenazines, Spectrochim. Acta, 19 (1963) 1625–1653.
  • 27. R. U. Islam, S.K. Mahato, S.K. Shukla, M.J. Witcomb, K. Mallick, Palladium–poly(3-aminoquinoline) hollowsphere composite: application in sonogashira coupling reactions, Chem. Cat. Chem., 5 (2013) 2453–2461.
  • 28. J. Shan, L. Han, F. Bai, S. Cao, Enzymatic polymerization of aniline and phenol derivatives catalyzed by horseradish peroxidase in dioxane (II), Polym. Adv. Technol., 14, (2003) 330-336.
  • 29. M.R. Huang, X.G. Li, Y. Yang, Oxidative polymerization of o-phenylenediamine and pyrimidylamine, Polym. Degrad. Stab., 71 (2001) 31-38.
  • 30. G. Xu, W. Wang, X. Qu, Y. Yin, L. Chu, B. He, H. Wu, J. Fang, Y. Bao, L. Liang, Electrochemical properties of polyaniline in p-toluene sulfonic acid solution, Eur. Polym. J., 45 (2009) 92701-92707.
  • 31. A. Bilici, R.N. Tezel, İ. Kaya, Facile chemical route to copper/polymer composite: simultaneous reduction and polymerization, Coll. Surf. Physicochem. Eng. Asp., 459 (2014) 254-260.
  • 32. S. Dubey, D. Singh, R.A. Misra, Enzymatic synthesis and various properties of poly(catechol) Enzyme Microb. Technol., 23 (1998), 432–437.
  • 33. L. Qu, G. Shi, Crystalline oligopyrene nanowires with multicolored emission, Chem. Commun., 24 (2004) 2800–2801.
  • 34. W. Yang, C.Y. Pan, M.D. Luo, H.B. Zhang, Multiple functional hyperbranched poly(amido amine) nanoparticles: synthesis and application in cell imaging, Biomacromolecules, 12 (2011) 1523–1531.
  • 35. B.Lu, J. Xu, C. Fan, F. Jiang, H. Miao, Facile electrosynthesis of nitro-group-substituted oligopyrene with bicolored emission, Electrochim. Acta, 54 (2008) 334-340.
  • 36. F. Doğan, İ. Kaya, A. Bilici, M. Yıldırım, Chemical oxidative polymerization, optical, electrochemical and kinetic studies of 8-amino-2-naphthol, J. Polym. Res., 22 (2015) 104-110.

5-Amino Kinolinin NH SO ile Kimyasal Oksidasyonu: Sentez ve Karakterizasyon

Year 2017, Volume: 45 Issue: 4, 563 - 571, 01.11.2017

Abstract

amino kinolin monomeri NH4 2S2O8/HCI varlığında kimyasal olarak yükseltgendi. Elde edilen oksidasyon ürününün OAQ yapısı, UV-vis, FTIR, 1HNMR ve 13CNMR analizleri ile aydınlatıldı. Spektral analizler sonucunda oksidasyon ürünün yapısında fenazin birimlerinin bulunduğu ve momomerik birimlerin birbirleri ile 3,6 ve 8 pozisyonları ile birleştiği belirlendi. Büyüklükçe ayırma tekniği, ürünün oligomerik birimlerden oluştuğunu gösterdi. OAQ ısısal bozunmaya karşı dayanıklıdır. Yarı bozunma sıcaklığının 1000ºC olduğu belirlendi

References

  • 1. A. Moliton, R.C. Hiorns, Review of electronic and optical properties of semiconducting π-conjugated polymers: applications in optoelectronics, Polym. Int., 53 (2004) 1397–1412
  • 2. A. Bilici, F. Doğan, M. Yıldırım, İ. Kaya, Facile synthesis of self-stabilized polyphenol nanoparticles, Mater. Chem. Phys., 140 (2013) 66-74.
  • 3. A. Kimyonok, XY. Wang, M. Weck, Electroluminescent poly(quinoline)s and metalloquinolates, J. Macromol. Sci., Polym. Rev., 46 (2006) 47–77.
  • 4. J.L. Kim, J.K. Kim, H.N. Cho, D.Y. Kim, C.Y. Kim, and S.I. Hong, New polyquinoline copolymers: synthesis, optical, luminescent, and hole-blocking/electrontransporting properties, Macromolecules, 33 (2000) 5880-5885.
  • 5. A.K. Agrawal, S.A. Jenekhe, H. Vanherzeele, J.S. Meth, Third-order nonlinear optical properties of conjugated rigid-rod polyquinolines, J. Phys. Chem., 96 (1992) 2837-2843.
  • 6. J.K. Stille, Poly quinolines, Macromolecules, 14 (1981) 870-880.
  • 7. X.G. Li ,M.R. Huang, Y.M. Hua, M.F Zhu, Q. Chen, Facile synthesis of oxidative copolymers from aminoquinoline and anisidine, Polymer, 45 (2004) 4693–4704.
  • 8. H. An, M. Seki, K. Sato, K. Kadoi, R. Yosomiya, Electrochemical polymerization of methyl-substituted quinolines, Polymer, 30 (1989) 1076-1078.
  • 9. N.Saito, T. Kanbara, Y. Nakamura, T. Yamamoto, K. Kubota, Electrochemical and chemical preparation of linear .pi.-conjugated poly(quinoline-2,6-diyl) using nickel complexes and electrochemical properties of the polymer, Macromolecules, 27 ( 1994) 756–761
  • 10. Z.X. Yan, Synthesis and characterization of a Polyquinoline derivative thin film with a low dielectric constant, Acta Phys. Chim. Sin., 26 (2010) 1164-1170
  • 11. D.J. Dibble, M.J. Umerani, A. Mazaheripour, Y.S. Park, J.W. Ziller, and A.A. Gorodetsky, An aza-diels–alder route to polyquinolines, Macromolecules, 48 (2015) 557–561.
  • 12. A. Bilici, I. Kaya, M.Yıldırım, Biosynthesis and characterization of organosoluble conjugated poly(2-aminofluorene) with the pyrazine bridged, Biomacromolecules, 11 (2010), 2593–2601.
  • 13. A. Bilici, F. Doğan, M. Yildirim, İ. Kaya, Tunable multicolor emission in oligo(4-hydroxyquinoline), J. Phys. Chem. C, 116 (2012) 19934-19940.
  • 14. A. Bilici, F. Doğan, M. Yildirim, İ. Kaya, Facile and regioselective synthesis of poly(5-hydroxyquinoline), React. Funct. Polym., 71, (2011) 675-683.
  • 15. F. Doğan, A. Bilici, M. Yıldırım, İ. Kaya, 6-Hydroxyquinoline oligomers emit white ligh, Sci. Adv. Mater., 6 (2014) 1957-1964.
  • 16. S. Ncanana, S. Burton, Oxidation of 8-hydroxyquinoline catalyzed by laccase from Trametes pubescens yields an antioxidant aromatic polymer, J. Mol. Catal. B. Enzym, 44 (2007) 66–71.
  • 17. A. Bilici, B. Ayten, İ. Kaya, Facile Preparation of gold nanoparticles on the polyquinoline matrix: catalytic performance toward 4-nitrophenol reduction, Synt. Met, 201 (2015) 11-17.
  • 18. A. Bilici, İ.H. Gecibesler, İ.Kaya, Enzymatic synthesis of 5-amino quinoline oligomers and evaluation of their free radical scavenging activity, Can. J. Chem., 95 (2017) 7-11.
  • 19. M.C. Stevic, G.C. Marjanovic, B. Marjanovic, L.M. Ignjatovi, D. Manojlovic, The electrochemical oxidation of 6-aminoquinoline: computational and voltammetric study, J. Electrochem. Soc., 159 (2012) G151-G159.
  • 20. X.G. Li, M.R. Huang, Y.M. Hua, Facile synthesis of processible aminoquinoline/phenetidine copolymers and their pure semiconducting nanoparticles, Macromolecules 38 (2005) 4211-4219.
  • 21. B. Lu, L. Zeng, J. Xu, Z. Le, H. Rao, Electrosynthesis of highly conducting poly(1,5-dihydroxynaphthalene) in BF3·Et2O, Eur. Polym. J., 45 (2009) 2279–2287
  • 22. C. Heichert, H. Hartmann, on the formation of mauvein: Mechanistic considerations and preparative results, Z. Naturforsch. B, 64 (2009) 747-755.
  • 23. I. Sapurina, A.V. Tenkovtsev, J. Stejskal, Conjugated polyaniline as a result of the benzidine rearrangement, Polym Int., 64 (2015) 453–465.
  • 24. X.G. Li, H. Feng, M.R. Huang, Redox sorption and recovery of silver ions as silver nanocrystals on poly(aniline-co-5-sulfo-2-anisidine) nanosorbents, Chem. Eur. J., 16 (2010), 10113-10123.
  • 25. A. Kellenberger, E. Dmitrieva, L. Dunsch, The stabilization of charged states at phenazine-like units in polyaniline under p-doping: an in situ, ATR-FTIR spectroelectrochemical study, Phys. Chem. Chem. Phys., 13 (2011) 3411-3420.
  • 26. C. Stammer, A. Taurins, Infrared spectra of phenazines, Spectrochim. Acta, 19 (1963) 1625–1653.
  • 27. R. U. Islam, S.K. Mahato, S.K. Shukla, M.J. Witcomb, K. Mallick, Palladium–poly(3-aminoquinoline) hollowsphere composite: application in sonogashira coupling reactions, Chem. Cat. Chem., 5 (2013) 2453–2461.
  • 28. J. Shan, L. Han, F. Bai, S. Cao, Enzymatic polymerization of aniline and phenol derivatives catalyzed by horseradish peroxidase in dioxane (II), Polym. Adv. Technol., 14, (2003) 330-336.
  • 29. M.R. Huang, X.G. Li, Y. Yang, Oxidative polymerization of o-phenylenediamine and pyrimidylamine, Polym. Degrad. Stab., 71 (2001) 31-38.
  • 30. G. Xu, W. Wang, X. Qu, Y. Yin, L. Chu, B. He, H. Wu, J. Fang, Y. Bao, L. Liang, Electrochemical properties of polyaniline in p-toluene sulfonic acid solution, Eur. Polym. J., 45 (2009) 92701-92707.
  • 31. A. Bilici, R.N. Tezel, İ. Kaya, Facile chemical route to copper/polymer composite: simultaneous reduction and polymerization, Coll. Surf. Physicochem. Eng. Asp., 459 (2014) 254-260.
  • 32. S. Dubey, D. Singh, R.A. Misra, Enzymatic synthesis and various properties of poly(catechol) Enzyme Microb. Technol., 23 (1998), 432–437.
  • 33. L. Qu, G. Shi, Crystalline oligopyrene nanowires with multicolored emission, Chem. Commun., 24 (2004) 2800–2801.
  • 34. W. Yang, C.Y. Pan, M.D. Luo, H.B. Zhang, Multiple functional hyperbranched poly(amido amine) nanoparticles: synthesis and application in cell imaging, Biomacromolecules, 12 (2011) 1523–1531.
  • 35. B.Lu, J. Xu, C. Fan, F. Jiang, H. Miao, Facile electrosynthesis of nitro-group-substituted oligopyrene with bicolored emission, Electrochim. Acta, 54 (2008) 334-340.
  • 36. F. Doğan, İ. Kaya, A. Bilici, M. Yıldırım, Chemical oxidative polymerization, optical, electrochemical and kinetic studies of 8-amino-2-naphthol, J. Polym. Res., 22 (2015) 104-110.
There are 36 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Ali Bilici This is me

Publication Date November 1, 2017
Published in Issue Year 2017 Volume: 45 Issue: 4

Cite

APA Bilici, A. (2017). Chemical Oxidation of 5-amino quinoline with NH4 2S2O8: Synthesis and Characterization. Hacettepe Journal of Biology and Chemistry, 45(4), 563-571.
AMA Bilici A. Chemical Oxidation of 5-amino quinoline with NH4 2S2O8: Synthesis and Characterization. HJBC. November 2017;45(4):563-571.
Chicago Bilici, Ali. “Chemical Oxidation of 5-Amino Quinoline With NH4 2S2O8: Synthesis and Characterization”. Hacettepe Journal of Biology and Chemistry 45, no. 4 (November 2017): 563-71.
EndNote Bilici A (November 1, 2017) Chemical Oxidation of 5-amino quinoline with NH4 2S2O8: Synthesis and Characterization. Hacettepe Journal of Biology and Chemistry 45 4 563–571.
IEEE A. Bilici, “Chemical Oxidation of 5-amino quinoline with NH4 2S2O8: Synthesis and Characterization”, HJBC, vol. 45, no. 4, pp. 563–571, 2017.
ISNAD Bilici, Ali. “Chemical Oxidation of 5-Amino Quinoline With NH4 2S2O8: Synthesis and Characterization”. Hacettepe Journal of Biology and Chemistry 45/4 (November 2017), 563-571.
JAMA Bilici A. Chemical Oxidation of 5-amino quinoline with NH4 2S2O8: Synthesis and Characterization. HJBC. 2017;45:563–571.
MLA Bilici, Ali. “Chemical Oxidation of 5-Amino Quinoline With NH4 2S2O8: Synthesis and Characterization”. Hacettepe Journal of Biology and Chemistry, vol. 45, no. 4, 2017, pp. 563-71.
Vancouver Bilici A. Chemical Oxidation of 5-amino quinoline with NH4 2S2O8: Synthesis and Characterization. HJBC. 2017;45(4):563-71.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc