BibTex RIS Kaynak Göster

Chemical Oxidation of 5-amino quinoline with NH4 2S2O8: Synthesis and Characterization

Yıl 2017, Cilt: 45 Sayı: 4, 563 - 571, 01.11.2017

Öz

5-amino quinoline AQ was chemically oxidized in NH4 2S2O8/HCI system, whose structure was identified by UV-vis, FTIR, 1HNMR and 13CNMR analysis. Spectral analysis results indicated the formation of phenazine like units in the oxidation product and C3, C6, C8 positions of quinoline ring were suggested as a possible polymerization sites. Size exclusion chromatography indicated the oxidation product OAQ consisted of oligomeric units 1200 g/mol . OAQ was thermally stable and half of its mass was decomposed at 1000°C.

Kaynakça

  • 1. A. Moliton, R.C. Hiorns, Review of electronic and optical properties of semiconducting π-conjugated polymers: applications in optoelectronics, Polym. Int., 53 (2004) 1397–1412
  • 2. A. Bilici, F. Doğan, M. Yıldırım, İ. Kaya, Facile synthesis of self-stabilized polyphenol nanoparticles, Mater. Chem. Phys., 140 (2013) 66-74.
  • 3. A. Kimyonok, XY. Wang, M. Weck, Electroluminescent poly(quinoline)s and metalloquinolates, J. Macromol. Sci., Polym. Rev., 46 (2006) 47–77.
  • 4. J.L. Kim, J.K. Kim, H.N. Cho, D.Y. Kim, C.Y. Kim, and S.I. Hong, New polyquinoline copolymers: synthesis, optical, luminescent, and hole-blocking/electrontransporting properties, Macromolecules, 33 (2000) 5880-5885.
  • 5. A.K. Agrawal, S.A. Jenekhe, H. Vanherzeele, J.S. Meth, Third-order nonlinear optical properties of conjugated rigid-rod polyquinolines, J. Phys. Chem., 96 (1992) 2837-2843.
  • 6. J.K. Stille, Poly quinolines, Macromolecules, 14 (1981) 870-880.
  • 7. X.G. Li ,M.R. Huang, Y.M. Hua, M.F Zhu, Q. Chen, Facile synthesis of oxidative copolymers from aminoquinoline and anisidine, Polymer, 45 (2004) 4693–4704.
  • 8. H. An, M. Seki, K. Sato, K. Kadoi, R. Yosomiya, Electrochemical polymerization of methyl-substituted quinolines, Polymer, 30 (1989) 1076-1078.
  • 9. N.Saito, T. Kanbara, Y. Nakamura, T. Yamamoto, K. Kubota, Electrochemical and chemical preparation of linear .pi.-conjugated poly(quinoline-2,6-diyl) using nickel complexes and electrochemical properties of the polymer, Macromolecules, 27 ( 1994) 756–761
  • 10. Z.X. Yan, Synthesis and characterization of a Polyquinoline derivative thin film with a low dielectric constant, Acta Phys. Chim. Sin., 26 (2010) 1164-1170
  • 11. D.J. Dibble, M.J. Umerani, A. Mazaheripour, Y.S. Park, J.W. Ziller, and A.A. Gorodetsky, An aza-diels–alder route to polyquinolines, Macromolecules, 48 (2015) 557–561.
  • 12. A. Bilici, I. Kaya, M.Yıldırım, Biosynthesis and characterization of organosoluble conjugated poly(2-aminofluorene) with the pyrazine bridged, Biomacromolecules, 11 (2010), 2593–2601.
  • 13. A. Bilici, F. Doğan, M. Yildirim, İ. Kaya, Tunable multicolor emission in oligo(4-hydroxyquinoline), J. Phys. Chem. C, 116 (2012) 19934-19940.
  • 14. A. Bilici, F. Doğan, M. Yildirim, İ. Kaya, Facile and regioselective synthesis of poly(5-hydroxyquinoline), React. Funct. Polym., 71, (2011) 675-683.
  • 15. F. Doğan, A. Bilici, M. Yıldırım, İ. Kaya, 6-Hydroxyquinoline oligomers emit white ligh, Sci. Adv. Mater., 6 (2014) 1957-1964.
  • 16. S. Ncanana, S. Burton, Oxidation of 8-hydroxyquinoline catalyzed by laccase from Trametes pubescens yields an antioxidant aromatic polymer, J. Mol. Catal. B. Enzym, 44 (2007) 66–71.
  • 17. A. Bilici, B. Ayten, İ. Kaya, Facile Preparation of gold nanoparticles on the polyquinoline matrix: catalytic performance toward 4-nitrophenol reduction, Synt. Met, 201 (2015) 11-17.
  • 18. A. Bilici, İ.H. Gecibesler, İ.Kaya, Enzymatic synthesis of 5-amino quinoline oligomers and evaluation of their free radical scavenging activity, Can. J. Chem., 95 (2017) 7-11.
  • 19. M.C. Stevic, G.C. Marjanovic, B. Marjanovic, L.M. Ignjatovi, D. Manojlovic, The electrochemical oxidation of 6-aminoquinoline: computational and voltammetric study, J. Electrochem. Soc., 159 (2012) G151-G159.
  • 20. X.G. Li, M.R. Huang, Y.M. Hua, Facile synthesis of processible aminoquinoline/phenetidine copolymers and their pure semiconducting nanoparticles, Macromolecules 38 (2005) 4211-4219.
  • 21. B. Lu, L. Zeng, J. Xu, Z. Le, H. Rao, Electrosynthesis of highly conducting poly(1,5-dihydroxynaphthalene) in BF3·Et2O, Eur. Polym. J., 45 (2009) 2279–2287
  • 22. C. Heichert, H. Hartmann, on the formation of mauvein: Mechanistic considerations and preparative results, Z. Naturforsch. B, 64 (2009) 747-755.
  • 23. I. Sapurina, A.V. Tenkovtsev, J. Stejskal, Conjugated polyaniline as a result of the benzidine rearrangement, Polym Int., 64 (2015) 453–465.
  • 24. X.G. Li, H. Feng, M.R. Huang, Redox sorption and recovery of silver ions as silver nanocrystals on poly(aniline-co-5-sulfo-2-anisidine) nanosorbents, Chem. Eur. J., 16 (2010), 10113-10123.
  • 25. A. Kellenberger, E. Dmitrieva, L. Dunsch, The stabilization of charged states at phenazine-like units in polyaniline under p-doping: an in situ, ATR-FTIR spectroelectrochemical study, Phys. Chem. Chem. Phys., 13 (2011) 3411-3420.
  • 26. C. Stammer, A. Taurins, Infrared spectra of phenazines, Spectrochim. Acta, 19 (1963) 1625–1653.
  • 27. R. U. Islam, S.K. Mahato, S.K. Shukla, M.J. Witcomb, K. Mallick, Palladium–poly(3-aminoquinoline) hollowsphere composite: application in sonogashira coupling reactions, Chem. Cat. Chem., 5 (2013) 2453–2461.
  • 28. J. Shan, L. Han, F. Bai, S. Cao, Enzymatic polymerization of aniline and phenol derivatives catalyzed by horseradish peroxidase in dioxane (II), Polym. Adv. Technol., 14, (2003) 330-336.
  • 29. M.R. Huang, X.G. Li, Y. Yang, Oxidative polymerization of o-phenylenediamine and pyrimidylamine, Polym. Degrad. Stab., 71 (2001) 31-38.
  • 30. G. Xu, W. Wang, X. Qu, Y. Yin, L. Chu, B. He, H. Wu, J. Fang, Y. Bao, L. Liang, Electrochemical properties of polyaniline in p-toluene sulfonic acid solution, Eur. Polym. J., 45 (2009) 92701-92707.
  • 31. A. Bilici, R.N. Tezel, İ. Kaya, Facile chemical route to copper/polymer composite: simultaneous reduction and polymerization, Coll. Surf. Physicochem. Eng. Asp., 459 (2014) 254-260.
  • 32. S. Dubey, D. Singh, R.A. Misra, Enzymatic synthesis and various properties of poly(catechol) Enzyme Microb. Technol., 23 (1998), 432–437.
  • 33. L. Qu, G. Shi, Crystalline oligopyrene nanowires with multicolored emission, Chem. Commun., 24 (2004) 2800–2801.
  • 34. W. Yang, C.Y. Pan, M.D. Luo, H.B. Zhang, Multiple functional hyperbranched poly(amido amine) nanoparticles: synthesis and application in cell imaging, Biomacromolecules, 12 (2011) 1523–1531.
  • 35. B.Lu, J. Xu, C. Fan, F. Jiang, H. Miao, Facile electrosynthesis of nitro-group-substituted oligopyrene with bicolored emission, Electrochim. Acta, 54 (2008) 334-340.
  • 36. F. Doğan, İ. Kaya, A. Bilici, M. Yıldırım, Chemical oxidative polymerization, optical, electrochemical and kinetic studies of 8-amino-2-naphthol, J. Polym. Res., 22 (2015) 104-110.

5-Amino Kinolinin NH SO ile Kimyasal Oksidasyonu: Sentez ve Karakterizasyon

Yıl 2017, Cilt: 45 Sayı: 4, 563 - 571, 01.11.2017

Öz

amino kinolin monomeri NH4 2S2O8/HCI varlığında kimyasal olarak yükseltgendi. Elde edilen oksidasyon ürününün OAQ yapısı, UV-vis, FTIR, 1HNMR ve 13CNMR analizleri ile aydınlatıldı. Spektral analizler sonucunda oksidasyon ürünün yapısında fenazin birimlerinin bulunduğu ve momomerik birimlerin birbirleri ile 3,6 ve 8 pozisyonları ile birleştiği belirlendi. Büyüklükçe ayırma tekniği, ürünün oligomerik birimlerden oluştuğunu gösterdi. OAQ ısısal bozunmaya karşı dayanıklıdır. Yarı bozunma sıcaklığının 1000ºC olduğu belirlendi

Kaynakça

  • 1. A. Moliton, R.C. Hiorns, Review of electronic and optical properties of semiconducting π-conjugated polymers: applications in optoelectronics, Polym. Int., 53 (2004) 1397–1412
  • 2. A. Bilici, F. Doğan, M. Yıldırım, İ. Kaya, Facile synthesis of self-stabilized polyphenol nanoparticles, Mater. Chem. Phys., 140 (2013) 66-74.
  • 3. A. Kimyonok, XY. Wang, M. Weck, Electroluminescent poly(quinoline)s and metalloquinolates, J. Macromol. Sci., Polym. Rev., 46 (2006) 47–77.
  • 4. J.L. Kim, J.K. Kim, H.N. Cho, D.Y. Kim, C.Y. Kim, and S.I. Hong, New polyquinoline copolymers: synthesis, optical, luminescent, and hole-blocking/electrontransporting properties, Macromolecules, 33 (2000) 5880-5885.
  • 5. A.K. Agrawal, S.A. Jenekhe, H. Vanherzeele, J.S. Meth, Third-order nonlinear optical properties of conjugated rigid-rod polyquinolines, J. Phys. Chem., 96 (1992) 2837-2843.
  • 6. J.K. Stille, Poly quinolines, Macromolecules, 14 (1981) 870-880.
  • 7. X.G. Li ,M.R. Huang, Y.M. Hua, M.F Zhu, Q. Chen, Facile synthesis of oxidative copolymers from aminoquinoline and anisidine, Polymer, 45 (2004) 4693–4704.
  • 8. H. An, M. Seki, K. Sato, K. Kadoi, R. Yosomiya, Electrochemical polymerization of methyl-substituted quinolines, Polymer, 30 (1989) 1076-1078.
  • 9. N.Saito, T. Kanbara, Y. Nakamura, T. Yamamoto, K. Kubota, Electrochemical and chemical preparation of linear .pi.-conjugated poly(quinoline-2,6-diyl) using nickel complexes and electrochemical properties of the polymer, Macromolecules, 27 ( 1994) 756–761
  • 10. Z.X. Yan, Synthesis and characterization of a Polyquinoline derivative thin film with a low dielectric constant, Acta Phys. Chim. Sin., 26 (2010) 1164-1170
  • 11. D.J. Dibble, M.J. Umerani, A. Mazaheripour, Y.S. Park, J.W. Ziller, and A.A. Gorodetsky, An aza-diels–alder route to polyquinolines, Macromolecules, 48 (2015) 557–561.
  • 12. A. Bilici, I. Kaya, M.Yıldırım, Biosynthesis and characterization of organosoluble conjugated poly(2-aminofluorene) with the pyrazine bridged, Biomacromolecules, 11 (2010), 2593–2601.
  • 13. A. Bilici, F. Doğan, M. Yildirim, İ. Kaya, Tunable multicolor emission in oligo(4-hydroxyquinoline), J. Phys. Chem. C, 116 (2012) 19934-19940.
  • 14. A. Bilici, F. Doğan, M. Yildirim, İ. Kaya, Facile and regioselective synthesis of poly(5-hydroxyquinoline), React. Funct. Polym., 71, (2011) 675-683.
  • 15. F. Doğan, A. Bilici, M. Yıldırım, İ. Kaya, 6-Hydroxyquinoline oligomers emit white ligh, Sci. Adv. Mater., 6 (2014) 1957-1964.
  • 16. S. Ncanana, S. Burton, Oxidation of 8-hydroxyquinoline catalyzed by laccase from Trametes pubescens yields an antioxidant aromatic polymer, J. Mol. Catal. B. Enzym, 44 (2007) 66–71.
  • 17. A. Bilici, B. Ayten, İ. Kaya, Facile Preparation of gold nanoparticles on the polyquinoline matrix: catalytic performance toward 4-nitrophenol reduction, Synt. Met, 201 (2015) 11-17.
  • 18. A. Bilici, İ.H. Gecibesler, İ.Kaya, Enzymatic synthesis of 5-amino quinoline oligomers and evaluation of their free radical scavenging activity, Can. J. Chem., 95 (2017) 7-11.
  • 19. M.C. Stevic, G.C. Marjanovic, B. Marjanovic, L.M. Ignjatovi, D. Manojlovic, The electrochemical oxidation of 6-aminoquinoline: computational and voltammetric study, J. Electrochem. Soc., 159 (2012) G151-G159.
  • 20. X.G. Li, M.R. Huang, Y.M. Hua, Facile synthesis of processible aminoquinoline/phenetidine copolymers and their pure semiconducting nanoparticles, Macromolecules 38 (2005) 4211-4219.
  • 21. B. Lu, L. Zeng, J. Xu, Z. Le, H. Rao, Electrosynthesis of highly conducting poly(1,5-dihydroxynaphthalene) in BF3·Et2O, Eur. Polym. J., 45 (2009) 2279–2287
  • 22. C. Heichert, H. Hartmann, on the formation of mauvein: Mechanistic considerations and preparative results, Z. Naturforsch. B, 64 (2009) 747-755.
  • 23. I. Sapurina, A.V. Tenkovtsev, J. Stejskal, Conjugated polyaniline as a result of the benzidine rearrangement, Polym Int., 64 (2015) 453–465.
  • 24. X.G. Li, H. Feng, M.R. Huang, Redox sorption and recovery of silver ions as silver nanocrystals on poly(aniline-co-5-sulfo-2-anisidine) nanosorbents, Chem. Eur. J., 16 (2010), 10113-10123.
  • 25. A. Kellenberger, E. Dmitrieva, L. Dunsch, The stabilization of charged states at phenazine-like units in polyaniline under p-doping: an in situ, ATR-FTIR spectroelectrochemical study, Phys. Chem. Chem. Phys., 13 (2011) 3411-3420.
  • 26. C. Stammer, A. Taurins, Infrared spectra of phenazines, Spectrochim. Acta, 19 (1963) 1625–1653.
  • 27. R. U. Islam, S.K. Mahato, S.K. Shukla, M.J. Witcomb, K. Mallick, Palladium–poly(3-aminoquinoline) hollowsphere composite: application in sonogashira coupling reactions, Chem. Cat. Chem., 5 (2013) 2453–2461.
  • 28. J. Shan, L. Han, F. Bai, S. Cao, Enzymatic polymerization of aniline and phenol derivatives catalyzed by horseradish peroxidase in dioxane (II), Polym. Adv. Technol., 14, (2003) 330-336.
  • 29. M.R. Huang, X.G. Li, Y. Yang, Oxidative polymerization of o-phenylenediamine and pyrimidylamine, Polym. Degrad. Stab., 71 (2001) 31-38.
  • 30. G. Xu, W. Wang, X. Qu, Y. Yin, L. Chu, B. He, H. Wu, J. Fang, Y. Bao, L. Liang, Electrochemical properties of polyaniline in p-toluene sulfonic acid solution, Eur. Polym. J., 45 (2009) 92701-92707.
  • 31. A. Bilici, R.N. Tezel, İ. Kaya, Facile chemical route to copper/polymer composite: simultaneous reduction and polymerization, Coll. Surf. Physicochem. Eng. Asp., 459 (2014) 254-260.
  • 32. S. Dubey, D. Singh, R.A. Misra, Enzymatic synthesis and various properties of poly(catechol) Enzyme Microb. Technol., 23 (1998), 432–437.
  • 33. L. Qu, G. Shi, Crystalline oligopyrene nanowires with multicolored emission, Chem. Commun., 24 (2004) 2800–2801.
  • 34. W. Yang, C.Y. Pan, M.D. Luo, H.B. Zhang, Multiple functional hyperbranched poly(amido amine) nanoparticles: synthesis and application in cell imaging, Biomacromolecules, 12 (2011) 1523–1531.
  • 35. B.Lu, J. Xu, C. Fan, F. Jiang, H. Miao, Facile electrosynthesis of nitro-group-substituted oligopyrene with bicolored emission, Electrochim. Acta, 54 (2008) 334-340.
  • 36. F. Doğan, İ. Kaya, A. Bilici, M. Yıldırım, Chemical oxidative polymerization, optical, electrochemical and kinetic studies of 8-amino-2-naphthol, J. Polym. Res., 22 (2015) 104-110.
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Research Article
Yazarlar

Ali Bilici Bu kişi benim

Yayımlanma Tarihi 1 Kasım 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 45 Sayı: 4

Kaynak Göster

APA Bilici, A. (2017). Chemical Oxidation of 5-amino quinoline with NH4 2S2O8: Synthesis and Characterization. Hacettepe Journal of Biology and Chemistry, 45(4), 563-571.
AMA Bilici A. Chemical Oxidation of 5-amino quinoline with NH4 2S2O8: Synthesis and Characterization. HJBC. Kasım 2017;45(4):563-571.
Chicago Bilici, Ali. “Chemical Oxidation of 5-Amino Quinoline With NH4 2S2O8: Synthesis and Characterization”. Hacettepe Journal of Biology and Chemistry 45, sy. 4 (Kasım 2017): 563-71.
EndNote Bilici A (01 Kasım 2017) Chemical Oxidation of 5-amino quinoline with NH4 2S2O8: Synthesis and Characterization. Hacettepe Journal of Biology and Chemistry 45 4 563–571.
IEEE A. Bilici, “Chemical Oxidation of 5-amino quinoline with NH4 2S2O8: Synthesis and Characterization”, HJBC, c. 45, sy. 4, ss. 563–571, 2017.
ISNAD Bilici, Ali. “Chemical Oxidation of 5-Amino Quinoline With NH4 2S2O8: Synthesis and Characterization”. Hacettepe Journal of Biology and Chemistry 45/4 (Kasım 2017), 563-571.
JAMA Bilici A. Chemical Oxidation of 5-amino quinoline with NH4 2S2O8: Synthesis and Characterization. HJBC. 2017;45:563–571.
MLA Bilici, Ali. “Chemical Oxidation of 5-Amino Quinoline With NH4 2S2O8: Synthesis and Characterization”. Hacettepe Journal of Biology and Chemistry, c. 45, sy. 4, 2017, ss. 563-71.
Vancouver Bilici A. Chemical Oxidation of 5-amino quinoline with NH4 2S2O8: Synthesis and Characterization. HJBC. 2017;45(4):563-71.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc