Review Article
BibTex RIS Cite
Year 2024, Volume: 1 Issue: 1, 39 - 43, 31.07.2024

Abstract

References

  • Maria Diez-Pascual A. Carbon-Based Nanomaterials. Int J Mol Sci. 2021;22(7726).
  • Mostafavi E, Zare H. Carbon-based nanomaterials in gene therapy. OpenNano [Internet]. 2022;7(June):100062. Available from: https://doi.org/10.1016/j.onano.2022.100062
  • Holmannova D, Borsky P, Svadlakova T, Borska L, Fiala Z. Carbon Nanoparticles and Their Biomedical Applications. Appl Sci. 2022;12(15):1–21.
  • Sharma M. Understanding the mechanism of toxicity of carbon nanoparticles in humans in the new millennium: A systemic review. Indian J Occup Environ Med. 2010;14(1):3–5.
  • Ali E, Hadis D, Hamzeh K, Mohammad K, Nosratollah Z, Abolfazl A, et al. Carbon nanotubes: properties, synthesis, purification, and medical applications. Nanoscale Res Lett. 2014;9(1):393.
  • Karimi M, Solati N, Amiri M, Mirshekari H, Mohamed E, Taheri M, et al. Carbon nanotubes part I: Preparation of a novel and versatile drug-delivery vehicle. Expert Opin Drug Deliv. 2015;12(7):1071–87.
  • Imani R, Mohabatpour F, Mostafavi F. Graphene-based Nano- Carrier modifications for gene delivery applications. Carbon N Y [Internet]. 2018;140:569–91. Available from: https://doi. org/10.1016/j.carbon.2018.09.019
  • Tiwari SK, Kumar V, Huczko A, Oraon R, Adhikari A De, Nayak GC. Magical Allotropes of Carbon: Prospects and Applications. Crit Rev Solid State Mater Sci [Internet]. 2016;41(4):257–317. Available from: http://dx.doi.org/10.1080/10408436.2015.11272
  • Lu H, Li SD. Two-dimensional carbon allotropes from graphene to graphyne. J Mater Chem C. 2013;1(23):3677–80.
  • De Medeiros T V., Manioudakis J, Noun F, Macairan JR, Victoria F, Naccache R. Microwave-assisted synthesis of carbon dots and their applications. J Mater Chem C. 2019;7(24):7175–95.
  • Zhang Y, Rhee KY, Hui D, Park SJ. A critical review of nanodiamond based nanocomposites: Synthesis, properties and applications [Internet]. Vol. 143, Composites Part B: Engineering. Elsevier Ltd; 2018. 19–27 p. Available from: https://doi.org/10.1016/j. compositesb.2018.01.028
  • Rehman A, Houshyar S, Wang X. Nanodiamond in composite: Biomedical application. J Biomed Mater Res - Part A. 2020;108(4):906–22.
  • Purohit B, Vernekar PR, Shetti NP, Chandra P. Biosensor nanoengineering: Design, operation, and implementation for biomolecular analysis. Sensors Int [Internet]. 2020;1(July):100040. Available from: https://doi.org/10.1016/j. sintl.2020.100040
  • Sharma G. Biogenic carbon nanostructured materials for detection of cancer and medical applications: A mini review. Hybrid Adv [Internet]. 2024;5(February):100166. Available from: https://doi.org/10.1016/j.hybadv.2024.100166
  • Barahuie F, Saifullah B, Dorniani D, Fakurazi S, Karthivashan G, Hussein MZ, et al. Graphene oxide as a nanocarrier for controlled release and targeted delivery of an anticancer active agent, chlorogenic acid. Mater Sci Eng C [Internet]. 2017;74:177–85. Available from: http://dx.doi.org/10.1016/j.msec.2016.11.114
  • Kim S, Ryu H, Tai S, Pedowitz M, Rzasa JR, Pennachio DJ, et al. Real-time ultra-sensitive detection of SARS-CoV-2 by quasifreestanding epitaxial graphene-based biosensor. Biosens Bioelectron [Internet]. 2022;197(November 2021):113803. Available from: https://doi.org/10.1016/j.bios.2021.113803
  • Wu YF, Wu HC, Kuan CH, Lin CJ, Wang LW, Chang CW, et al. Multi-functionalized carbon dots as theranostic nanoagent for gene delivery in lung cancer therapy. Sci Rep [Internet]. 2016;6(October 2015):1–12. Available from: http://dx.doi. org/10.1038/srep21170
  • Alagappan M, Immanuel S, Sivasubramanian R, Kandaswamy A. Development of cholesterol biosensor using Au nanoparticles decorated f-MWCNT covered with polypyrrole network. Arab J Chem [Internet]. 2020;13(1):2001–10. Available from: https://doi. org/10.1016/j.arabjc.2018.02.018
  • Lin Y, Lu F, Tu Y, Ren Z. Glucose Biosensors Based on Carbon Nanotube Nanoelectrode Ensembles. Nano Lett. 2004;4(2):191–5.
  • Malina T, Poláková K, Hirsch C, Svoboda L, Zbořil R. Toxicity of carbon nanomaterials—towards reliable viability assessment via new approach in flow cytometry. Int J Mol Sci. 2021;22(14).
  • Yuan X, Zhang X, Sun L, Wei Y, Wei X. Cellular Toxicity and Immunological Effects of Carbon-based Nanomaterials. Part Fibre Toxicol. 2019;16(1).
  • Jiang T, Lin Y, Amadei CA, Gou N, Rahman SM, Lan J, et al. Comparative and mechanistic toxicity assessment of structure dependent toxicity of carbon-based nanomaterials. J Hazard Mater [Internet]. 2021;418(March):126282. Available from: https://doi.org/10.1016/j.jhazmat.2021.126282
  • Garriga R, Herrero-Continente T, Palos M, Cebolla VL, Osada J, Muñoz E, et al. Toxicity of carbon nanomaterials and their potential application as drug delivery systems: In vitro studies in caco-2 and mcf-7 cell lines. Nanomaterials. 2020;10(8):1–21.
  • Côa F, Bortolozzo L de S, Ávila DS, Souza Filho AG, Martinez DST. Toxicology of carbon nanomaterials in the Caenorhabditis elegans model: current status, characterization, and perspectives for testing harmonization. Front Carbon. 2023;2(September):1–13.
  • Sweeney S, Berhanu D, Misra SK, Thorley AJ, Valsami-Jones E, Tetley TD. Multi-walled carbon nanotube length as a critical determinant of bioreactivity with primary human pulmonary alveolar cells. Carbon N Y [Internet]. 2014;78:26–37. Available from: http://dx.doi.org/10.1016/j.carbon.2014.06.033
  • Montes-Fonseca SL, Sánchez-Ramírez B, Luna-Velasco A, Arzate-Quintana C, Silva-Cazares MB, González Horta C, et al. Cytotoxicity of protein-carbon nanotubes on J774 macrophages is a functionalization grade-dependent effect. Biomed Res Int. 2015;2015.
  • Hiraku Y, Nishikawa Y, Ma N, Afroz T, Mizobuchi K, Ishiyama R, et al. Nitrative DNA damage induced by carbon-black nanoparticles in macrophages and lung epithelial cells. Mutat Res - Genet Toxicol Environ Mutagen [Internet]. 2017;818(March):7–16. Available from: http://dx.doi.org/10.1016/j.mrgentox.2017.04.002
  • Jiang T, Amadei CA, Gou N, Lin Y, Lan J, Vecitis CD, et al. Toxicity of single-walled carbon nanotubes (SWCNTs): effect of lengths, functional groups and electronic structures revealed by a quantitative toxicogenomics assay. Environ Sci Nano. 2020;7(5):1348–64.
  • Adamson SXF, Wang R, Wu W, Cooper B, Shannahan J. Metabolomic insights of macrophage responses to graphene nanoplatelets: Role of scavenger receptor CD36. PLoS One. 2018;13(11):1–30.

Toxicity Assessments of Carbon-Based Nanomaterials: A mini review

Year 2024, Volume: 1 Issue: 1, 39 - 43, 31.07.2024

Abstract

Carbon-based nanomaterials (CNMs) are materials with exceptional properties that play an important role in the development of new technologies. Their widespread use, however, has raised concerns about their possible harmful effects on the environment and human health. Safe use of CNMs can be possible by performing toxicity tests and determining an attitude based on the test results. There are different types of toxicity tests currently used. A uniform international protocol is still a requirement. This study will present various research on the toxic effects of CNMs and provide an overarching perspective.

References

  • Maria Diez-Pascual A. Carbon-Based Nanomaterials. Int J Mol Sci. 2021;22(7726).
  • Mostafavi E, Zare H. Carbon-based nanomaterials in gene therapy. OpenNano [Internet]. 2022;7(June):100062. Available from: https://doi.org/10.1016/j.onano.2022.100062
  • Holmannova D, Borsky P, Svadlakova T, Borska L, Fiala Z. Carbon Nanoparticles and Their Biomedical Applications. Appl Sci. 2022;12(15):1–21.
  • Sharma M. Understanding the mechanism of toxicity of carbon nanoparticles in humans in the new millennium: A systemic review. Indian J Occup Environ Med. 2010;14(1):3–5.
  • Ali E, Hadis D, Hamzeh K, Mohammad K, Nosratollah Z, Abolfazl A, et al. Carbon nanotubes: properties, synthesis, purification, and medical applications. Nanoscale Res Lett. 2014;9(1):393.
  • Karimi M, Solati N, Amiri M, Mirshekari H, Mohamed E, Taheri M, et al. Carbon nanotubes part I: Preparation of a novel and versatile drug-delivery vehicle. Expert Opin Drug Deliv. 2015;12(7):1071–87.
  • Imani R, Mohabatpour F, Mostafavi F. Graphene-based Nano- Carrier modifications for gene delivery applications. Carbon N Y [Internet]. 2018;140:569–91. Available from: https://doi. org/10.1016/j.carbon.2018.09.019
  • Tiwari SK, Kumar V, Huczko A, Oraon R, Adhikari A De, Nayak GC. Magical Allotropes of Carbon: Prospects and Applications. Crit Rev Solid State Mater Sci [Internet]. 2016;41(4):257–317. Available from: http://dx.doi.org/10.1080/10408436.2015.11272
  • Lu H, Li SD. Two-dimensional carbon allotropes from graphene to graphyne. J Mater Chem C. 2013;1(23):3677–80.
  • De Medeiros T V., Manioudakis J, Noun F, Macairan JR, Victoria F, Naccache R. Microwave-assisted synthesis of carbon dots and their applications. J Mater Chem C. 2019;7(24):7175–95.
  • Zhang Y, Rhee KY, Hui D, Park SJ. A critical review of nanodiamond based nanocomposites: Synthesis, properties and applications [Internet]. Vol. 143, Composites Part B: Engineering. Elsevier Ltd; 2018. 19–27 p. Available from: https://doi.org/10.1016/j. compositesb.2018.01.028
  • Rehman A, Houshyar S, Wang X. Nanodiamond in composite: Biomedical application. J Biomed Mater Res - Part A. 2020;108(4):906–22.
  • Purohit B, Vernekar PR, Shetti NP, Chandra P. Biosensor nanoengineering: Design, operation, and implementation for biomolecular analysis. Sensors Int [Internet]. 2020;1(July):100040. Available from: https://doi.org/10.1016/j. sintl.2020.100040
  • Sharma G. Biogenic carbon nanostructured materials for detection of cancer and medical applications: A mini review. Hybrid Adv [Internet]. 2024;5(February):100166. Available from: https://doi.org/10.1016/j.hybadv.2024.100166
  • Barahuie F, Saifullah B, Dorniani D, Fakurazi S, Karthivashan G, Hussein MZ, et al. Graphene oxide as a nanocarrier for controlled release and targeted delivery of an anticancer active agent, chlorogenic acid. Mater Sci Eng C [Internet]. 2017;74:177–85. Available from: http://dx.doi.org/10.1016/j.msec.2016.11.114
  • Kim S, Ryu H, Tai S, Pedowitz M, Rzasa JR, Pennachio DJ, et al. Real-time ultra-sensitive detection of SARS-CoV-2 by quasifreestanding epitaxial graphene-based biosensor. Biosens Bioelectron [Internet]. 2022;197(November 2021):113803. Available from: https://doi.org/10.1016/j.bios.2021.113803
  • Wu YF, Wu HC, Kuan CH, Lin CJ, Wang LW, Chang CW, et al. Multi-functionalized carbon dots as theranostic nanoagent for gene delivery in lung cancer therapy. Sci Rep [Internet]. 2016;6(October 2015):1–12. Available from: http://dx.doi. org/10.1038/srep21170
  • Alagappan M, Immanuel S, Sivasubramanian R, Kandaswamy A. Development of cholesterol biosensor using Au nanoparticles decorated f-MWCNT covered with polypyrrole network. Arab J Chem [Internet]. 2020;13(1):2001–10. Available from: https://doi. org/10.1016/j.arabjc.2018.02.018
  • Lin Y, Lu F, Tu Y, Ren Z. Glucose Biosensors Based on Carbon Nanotube Nanoelectrode Ensembles. Nano Lett. 2004;4(2):191–5.
  • Malina T, Poláková K, Hirsch C, Svoboda L, Zbořil R. Toxicity of carbon nanomaterials—towards reliable viability assessment via new approach in flow cytometry. Int J Mol Sci. 2021;22(14).
  • Yuan X, Zhang X, Sun L, Wei Y, Wei X. Cellular Toxicity and Immunological Effects of Carbon-based Nanomaterials. Part Fibre Toxicol. 2019;16(1).
  • Jiang T, Lin Y, Amadei CA, Gou N, Rahman SM, Lan J, et al. Comparative and mechanistic toxicity assessment of structure dependent toxicity of carbon-based nanomaterials. J Hazard Mater [Internet]. 2021;418(March):126282. Available from: https://doi.org/10.1016/j.jhazmat.2021.126282
  • Garriga R, Herrero-Continente T, Palos M, Cebolla VL, Osada J, Muñoz E, et al. Toxicity of carbon nanomaterials and their potential application as drug delivery systems: In vitro studies in caco-2 and mcf-7 cell lines. Nanomaterials. 2020;10(8):1–21.
  • Côa F, Bortolozzo L de S, Ávila DS, Souza Filho AG, Martinez DST. Toxicology of carbon nanomaterials in the Caenorhabditis elegans model: current status, characterization, and perspectives for testing harmonization. Front Carbon. 2023;2(September):1–13.
  • Sweeney S, Berhanu D, Misra SK, Thorley AJ, Valsami-Jones E, Tetley TD. Multi-walled carbon nanotube length as a critical determinant of bioreactivity with primary human pulmonary alveolar cells. Carbon N Y [Internet]. 2014;78:26–37. Available from: http://dx.doi.org/10.1016/j.carbon.2014.06.033
  • Montes-Fonseca SL, Sánchez-Ramírez B, Luna-Velasco A, Arzate-Quintana C, Silva-Cazares MB, González Horta C, et al. Cytotoxicity of protein-carbon nanotubes on J774 macrophages is a functionalization grade-dependent effect. Biomed Res Int. 2015;2015.
  • Hiraku Y, Nishikawa Y, Ma N, Afroz T, Mizobuchi K, Ishiyama R, et al. Nitrative DNA damage induced by carbon-black nanoparticles in macrophages and lung epithelial cells. Mutat Res - Genet Toxicol Environ Mutagen [Internet]. 2017;818(March):7–16. Available from: http://dx.doi.org/10.1016/j.mrgentox.2017.04.002
  • Jiang T, Amadei CA, Gou N, Lin Y, Lan J, Vecitis CD, et al. Toxicity of single-walled carbon nanotubes (SWCNTs): effect of lengths, functional groups and electronic structures revealed by a quantitative toxicogenomics assay. Environ Sci Nano. 2020;7(5):1348–64.
  • Adamson SXF, Wang R, Wu W, Cooper B, Shannahan J. Metabolomic insights of macrophage responses to graphene nanoplatelets: Role of scavenger receptor CD36. PLoS One. 2018;13(11):1–30.
There are 29 citations in total.

Details

Primary Language English
Subjects Nanochemistry
Journal Section Reviews
Authors

Selma Nacak 0000-0001-8934-1212

Publication Date July 31, 2024
Submission Date June 29, 2024
Acceptance Date July 23, 2024
Published in Issue Year 2024 Volume: 1 Issue: 1

Cite

Vancouver Nacak S. Toxicity Assessments of Carbon-Based Nanomaterials: A mini review. HJS. 2024;1(1):39-43.