Review Article
BibTex RIS Cite
Year 2025, Volume: 2 Issue: 1, 1 - 8, 31.01.2025

Abstract

References

  • 1. Wilson, D. M., Cookson, M. R., van den Bosch, L., Zetterberg, H., Holtzman, D. M., & Dewachter, I. (2023). Hallmarks of neurodegenerative diseases. In Cell (Vol. 186, Issue 4). https:// doi.org/10.1016/j.cell.2022.12.032
  • 2. Yau, T. Y., Molina, O., & Courey, A. J. (2020). SUMOylation in development and neurodegeneration. Development(Cambridge), 147(6). https://doi.org/10.1242/ dev.175703
  • 3. Dorval, V., & Fraser, P. E. (2007). SUMO on the road to neurodegeneration. In Biochimica et Biophysica Acta - Molecular Cell Research (Vol. 1773, Issue 6). https://doi.org/10.1016/j. bbamcr.2007.03.017
  • 4. Slanzi, A., Iannoto, G., Rossi, B., Zenaro, E., & Constantin, G. (2020). In vitro Models of Neurodegenerative Diseases. In Frontiers in Cell and Developmental Biology (Vol. 8). https://doi. org/10.3389/fcell.2020.00328
  • 5. Song, J., Durrin, L. K., Wilkinson, T. A., Krontiris, T. G., & Chen, Y. (2004). Identification of a SUMO-binding motif that recognizes SUMO-modified proteins. Proceedings of the National Academy of Sciences of the United States of America, 101(40). https://doi. org/10.1073/pnas.0403498101
  • 6. Correa-Vázquez, J. F., Juárez-Vicente, F., García-Gutiérrez, P., Barysch, S. v., Melchior, F., & García-Domínguez, M. (2021). The Sumo proteome of proliferating and neuronal- differentiating cells reveals Utf1 among key Sumo targets involved in neurogenesis. Cell Death and Disease, 12(4). https://doi. org/10.1038/s41419-021-03590-2
  • 7. Mandel, N., & Agarwal, N. (2022). Role of SUMOylation in Neurodegenerative Diseases. In Cells (Vol. 11, Issue 21). https:// doi.org/10.3390/cells11213395
  • 8. Küçükali, C. I., Salman, B., Yüceer, H., Ulusoy, C., Abacı, N., Ekmekci, S. S., Tüzün, E., Bilgiç, B., & Hanağası, H. A. (2020). Small ubiquitin-related modifier (SUMO) 3 and SUMO4 genepolymorphisms in Parkinson’s disease. Neurological Research, 42(6). https://doi.org/10.1080/01616412.2020.1724464
  • 9. Soares, E. S., Prediger, R. D., Brocardo, P. S., & Cimarosti, H. I. (2022). SUMO- modifying Huntington’s disease. In IBRO Neuroscience Reports (Vol. 12). https://doi.org/10.1016/j. ibneur.2022.03.002
  • 10. Şen, M., Ay, U., Akbayır, E., Şenyer, S., Tüzün, E., & Küçükali, C. İ. (2017). NF-kB, SUMO ve Ubikitinasyon İlişkisi NF-κB SUMO AND UBIQUITINATION RELATIONSHIP. Deneysel Tıp Araştırma Enstitüsü Dergisi, 7(13).
  • 11. Yuan, H., Zhou, J., Deng, M., Liu, X., le Bras, M., de The, H., Chen, S. J., Chen, Z., Liu, T. X., & Zhu, J. (2010). Small ubiquitin-related modifier paralogs are indispensable but functionally redundant during early development of zebrafish. Cell Research, 20(2). https://doi.org/10.1038/cr.2009.101
  • 12. Kolli, N., Mikolajczyk, J., Drag, M., Mukhopadhyay, D., Moffatt, N., Dasso, M., Salvesen, G., & Wilkinson, K. D. (2010). Distribution and paralogue specificity of mammalian deSUMOylating enzymes. Biochemical Journal, 430(2). https://doi. org/10.1042/BJ20100504
  • 13. Yang, W. S., Hsu, H. W., Campbell, M., Cheng, C. Y., & Chang, P. C. (2015). K-bZIP Mediated SUMO-2/3 Specific Modification on the KSHV Genome Negatively Regulates Lytic Gene Expression and Viral Reactivation. PLoS Pathogens, 11(7). https://doi. org/10.1371/journal.ppat.1005051
  • 14. Matic, I., van Hagen, M., Schimmel, J., Macek, B., Ogg, S. C., Tatham, M. H., Hay, R. T., Lamond, A. I., Mann, M., & Vertegaal, A. C. O. (2008). In vivo identification of human small ubiquitinlike modifier polymerization sites by high accuracy mass spectrometry and an in vitro to in vivo strategy. Molecular and Cellular Proteomics, 7(1). https://doi.org/10.1074/mcp.M700173- MCP200
  • 15. Owerbach, D., McKay, E. M., Yeh, E. T. H., Gabbay, K. H., & Bohren, K. M. (2005). A proline-90 residue unique to SUMO-4 prevents maturation and sumoylation. Biochemical and Biophysical Research Communications, 337(2). https://doi.org/10.1016/j. bbrc.2005.09.090
  • 16. Wang, W.; Matunis, M.J. Paralogue-Specific Roles of SUMO1 and SUMO2/3 in Protein Quality Control and Associated Diseases. Cells 2024, 13, 8. https://doi.org/10.3390/cells13010008
  • 17. Hayashi, T., Seki, M., Maeda, D., Wang, W., Kawabe, Y. I., Seki, T., Saitoh, H., Fukagawa, T., Yagi, H., & Enomoto, T. (2002). Ubc9 is essential for viability of higher eukaryotic cells. Experimental Cell Research, 280(2). https://doi. org/10.1006/excr.2002.5634
  • 18. Lamoliatte, F., Bonneil, E., Durette, C., Caron-Lizotte, O., Wildemann, D., Zerweck, J., Wenshuk, H., & Thibault, P. (2013). Targeted identification of SUMOylation sites in human proteins using affinity enrichment and paralog-specific reporter ions. Molecular and Cellular Proteomics, 12(9). https://doi. org/10.1074/mcp.M112.025569
  • 19. Krumova, P., Meulmeester, E., Garrido, M., Tirard, M., Hsiao, H. H., Bossis, G., Urlaub, H., Zweckstetter, M., Kügler, S., Melchior, F., Bähr, M., & Weishaupt, J. H. (2011). Sumoylation inhibits α-synuclein aggregation and toxicity. Journal of Cell Biology, 194(1). https://doi.org/10.1083/jcb.201010117
  • 20. Chang, C. C., Naik, M. T., Huang, Y. S., Jeng, J. C., Liao, P. H., Kuo, H. Y., Ho, C. C., Hsieh, Y. L., Lin, C. H., Huang, N. J., Naik, N. M., Kung, C. C. H., Lin, S. Y., Chen, R. H., Chang, K. S., Huang, T. H., & Shih, H. M. (2011). Structural and Functional Roles of Daxx SIM Phosphorylation in SUMO Paralog-Selective Binding and Apoptosis Modulation. Molecular Cell, 42(1). https://doi. org/10.1016/j.molcel.2011.02.022
  • 21. Wilkinson, K. A., & Henley, J. M. (2010). Mechanisms, regulation and consequences of protein SUMOylation. In Biochemical Journal (Vol. 428, Issue 2). https://doi.org/10.1042/BJ20100158
  • 22. Zhang, F.-P., Mikkonen, L., Toppari, J., Palvimo, J. J., Thesleff, I., & Jänne, O. A. (2008). Sumo-1 Function Is Dispensable in Normal Mouse Development . Molecular and Cellular Biology, 28(17). https://doi.org/10.1128/mcb.00651-08 23. Husnjak, K., & Dikic, I. (2012). Ubiquitin-binding proteins: Decoders of ubiquitin- mediated cellular functions. Annual Review of Biochemistry, 81. https://doi.org/10.1146/annurevbiochem- 051810-094654
  • 24. Kamitani, T., Kito, K., Nguyen, H. P., Fukuda-Kamitani, T., & Yeh, E. T. H. (1998). Characterization of a second member of the sentrin family of ubiquitin- like proteins. Journal of Biological Chemistry, 273(18). https://doi.org/10.1074/ jbc.273.18.11349
  • 25. Varshavsky, A. (2006). The early history of the ubiquitin field. Protein Science, 15(3). https://doi.org/10.1110/ps.052012306
  • 26. Gill, G. (2004). SUMO and ubiquitin in the nucleus: Different functions, similar mechanisms? In Genes and Development(Vol. 18, Issue 17). https://doi.org/10.1101/gad.1214604
  • 27. Hendriks, I. A., Akimov, V., Blagoev, B., & Nielsen, M. L. (2021). MaxQuant.Live Enables Enhanced Selectivity and Identification of Peptides Modified by Endogenous SUMO and Ubiquitin. Journal of Proteome Research, 20(4). https://doi.org/10.1021/ acs.jproteome.0c00892
  • 28. Sriramachandran, A. M., & Dohmen, R. J. (2014). SUMO-targeted ubiquitin ligases. In Biochimica et Biophysica Acta - Molecular Cell Research (Vol. 1843, Issue 1). https://doi.org/10.1016/j. bbamcr.2013.08.022
  • 29. Keiten-Schmitz, J., Wagner, K., Piller, T., Kaulich, M., Alberti, S., & Müller, S. (2020). The Nuclear SUMO-Targeted Ubiquitin Quality Control Network Regulates the Dynamics of Cytoplasmic Stress Granules. Molecular Cell, 79(1). https://doi.org/10.1016/j. molcel.2020.05.017
  • 30. Adalı, A. , Y. A. , K. B. , E. P. (2020). (2020). ALZHEİMER HASTALIĞININ GELİŞİMİNDE BİYOLOJİK AJANLARIN OLASI ETKİLERİ. Journal of Faculty of Pharmacy of Ankara University, 44(1), 167-187. , 167–187.
  • 31. Wang, J., Gu, B. J., Masters, C. L., & Wang, Y. J. (2017). A systemic view of Alzheimer disease - Insights from amyloid-β metabolism beyond the brain. In Nature Reviews Neurology (Vol. 13, Issue 10). https://doi.org/10.1038/nrneurol.2017.111
  • 32. Özpak, L., Pazarbaşı, A., & Keser, N. (2017). Alzheimer Hastalığının Genetiği ve Epigenetiği. Arşiv Kaynak Tarama Dergisi, 26(1). https://doi.org/10.17827/aktd.280520
  • 33. Trejo-Lopez, J. A., Yachnis, A. T., & Prokop, S. (2022). Neuropathology of Alzheimer’s Disease. In Neurotherapeutics(Vol. 19, Issue 1). https://doi.org/10.1007/ s13311-021- 01146-y
  • 34. Tahami Monfared, A. A., Byrnes, M. J., White, L. A., & Zhang, Q. (2022). Alzheimer’s Disease: Epidemiology and Clinical Progression. In Neurology and Therapy (Vol. 11, Issue 2). https:// doi.org/10.1007/s40120-022-00338-8
  • 35. Porsteinsson, A. P., Isaacson, R. S., Knox, S., Sabbagh, M. N., & Rubino, I. (2021). Diagnosis of Early Alzheimer’s Disease: Clinical Practice in 2021. In Journal of Prevention of Alzheimer’s Disease (Vol. 8, Issue 3). https://doi.org/10.14283/jpad.2021.23
  • 36. Zhang, X. X., Tian, Y., Wang, Z. T., Ma, Y. H., Tan, L., & Yu, J. T. (2021). The Epidemiology of Alzheimer’s Disease Modifiable Risk Factors and Prevention. In Journal of Prevention of Alzheimer’s Disease (Vol. 8, Issue 3). https://doi.org/10.14283/jpad.2021.15
  • 37. Deture, M. A., & Dickson, D. W. (2019). The neuropathological diagnosis of Alzheimer’s disease. In Molecular Neurodegeneration (Vol. 14, Issue 1). https://doi.org/10.1186/ s13024-019-0333-5
  • 38. Weller, J., & Budson, A. (2018). Current understanding of Alzheimer’s disease diagnosis and treatment. I n F1000Research (Vol. 7). https://doi.org/10.12688/ f1000research.14506.1
  • 39. Chen, Z. R., Huang, J. B., Yang, S. L., & Hong, F. F. (2022). Role of Cholinergic Signaling in Alzheimer’s Disease. In Molecules (Vol. 27, Issue 6). https://doi.org/10.3390/molecules27061816
  • 40. Jeong, D. U., Lee, J. E., Lee, S. E., Chang, W. S., Kim, S. J., & Chang, J. W. (2014). Improvements in memory after medial septum stimulation are associated with changes in hippocampal cholinergic activity and neurogenesis. BioMed ResearchInternational, 2014. https://doi.org/10.1155/2014/568587
  • 41. Lee, L., Sakurai, M., Matsuzaki, S., Arancio, O., & Fraser, P. (2013). SUMO and alzheimer’s disease. In NeuroMolecular Medicine (Vol. 15, Issue 4). https://doi.org/10.1007/s12017-013-8257-7
  • 42. Liang, Z., Chan, H. Y. E., Lee, M. M., & Chan, M. K. (2021). A SUMO1-Derived Peptide Targeting SUMO-Interacting Motif Inhibits α-Synuclein Aggregation. Cell Chemical Biology, 28(2). https://doi.org/10.1016/j.chembiol.2020.12.010
  • 43. Hong, Y., Rogers, R., Matunis, M. J., Mayhew, C. N., Goodson, M., Park-Sarge, O. K., & Sarge, K. D. (2001). Regulation of Heat Shock Transcription Factor 1 by Stress- induced SUMO-1 Modification. Journal of Biological Chemistry, 276(43). https:// doi.org/10.1074/jbc.M104714200
  • 44. Sarge, K. D., & Park-Sarge, O. K. (2005). Gene bookmarking: Keeping the pages open. In Trends in Biochemical Sciences (Vol. 30, Issue 11). https://doi.org/10.1016/j.tibs.2005.09.004
  • 45. Sarge, K. D., & Park-Sarge, O. K. (2009). Sumoylation and human disease pathogenesis. In Trends in Biochemical Sciences (Vol. 34, Issue 4). https://doi.org/10.1016/j.tibs.2009.01.004
  • 46. Holton, P., Ryten, M., Nalls, M., Trabzuni, D., Weale, M. E., Hernandez, D., Crehan, H., Gibbs, J. R., Mayeux, R., Haines, J. L., Farrer, L. A., Pericak-Vance, M. A., Schellenberg, G. D., Ramirez-Restrepo, M., Engel, A., Myers, A. J., Corneveaux, J. J., Huentelman, M. J., Dillman, A., … Guerreiro, R. (2013). Initial Assessment of the Pathogenic Mechanisms of the Recently Identified Alzheimer Risk Loci. Annals of Human Genetics, 77(2). https://doi.org/10.1111/ahg.12000
  • 47. Vijayakumaran, S., Wong, M. B., Antony, H., & Pountney, D. L. (2015). Direct and/or indirect roles for SUMO in modulating alpha-synuclein toxicity. In Biomolecules (Vol. 5, Issue 3). https://doi.org/10.3390/biom5031697
  • 48. Ahner, A., Gong, X., & Frizzell, R. A. (2016). Divergent signaling via SUMO modification: Potential for CFTR modulation. In American Journal of Physiology - Cell Physiology (Vol. 310, Issue 3). https://doi.org/10.1152/ajpcell.00124.2015
  • 49. Alonso, A., Greenlee, M., Matts, J., Kline, J., Davis, K. J., & Miller, R. K. (2015). Emerging roles of sumoylation in the regulation of actin, microtubules, intermediate filaments, and septins. In Cytoskeleton (Vol. 72, Issue 7). https://doi.org/10.1002/cm.21226
  • 50. Mah, D., Zhao, J., Liu, X., Zhang, F., Liu, J., Wang, L., Linhardt, R., & Wang, C. (2021). The Sulfation Code of Tauopathies: Heparan Sulfate Proteoglycans in the Prion Like Spread of Tau Pathology. In Frontiers in Molecular Biosciences (Vol. 8). https:// doi.org/10.3389/fmolb.2021.671458
  • 51. Mandel, N., & Agarwal, N. (2022). Role of SUMOylation in Neurodegenerative Diseases. In Cells (Vol. 11, Issue 21). https:// doi.org/10.3390/cells11213395
  • 52. Huang, C. H., Yang, T. T., & Lin, K. I. (2024). Mechanisms and functions of SUMOylation in health and disease: a review focusing on immune cells. In Journal of Biomedical Science (Vol. 31, Issue 1). https://doi.org/10.1186/s12929-024-01003-y
  • 53. Reiman, E. M., Arboleda-Velasquez, J. F., Quiroz, Y. T., Huentelman, M. J., Beach, T. G., Caselli, R. J., Chen, Y., Su, Y., Myers, A. J., Hardy, J., Paul Vonsattel, J., Younkin, S. G., Bennett, D. A., De Jager, P. L., Larson, E. B., Crane, P. K., Keene, C. D., Kamboh, M. I., Kofler, J. K., Duque, L., … Alzheimer’s Disease Genetics Consortium (2020). Exceptionally low likelihood of Alzheimer’s dementia in APOE2 homozygotes from a 5,000-person neuropathological study. Nature communications, 11(1), 667. https://doi.org/10.1038/ s41467-019-14279-8
  • 54. Baranello, R. J., Bharani, K. L., Padmaraju, V., Chopra, N., Lahiri, D. K., Greig, N. H., Pappolla, M. A., & Sambamurti, K. (2015). Amyloid-beta protein clearance and degradation (ABCD) pathways and their role in Alzheimer’s disease. Current Alzheimer research, 12(1), 32–46. https://doi.org/10.2174/15672 05012666141218140953
  • 55. Chen, G. F., Xu, T. H., Yan, Y., Zhou, Y. R., Jiang, Y., Melcher, K., & Xu, H. E. (2017). Amyloid beta: structure, biology and structurebased therapeutic development. Acta pharmacologica Sinica, 38(9), 1205–1235. https://doi.org/10.1038/aps.2017.28 56. Malpetti, M., Kievit, R. A., Passamonti, L., Jones, P. S., Tsvetanov, K. A., Rittman, T., Mak, E., Nicastro, N., Bevan-Jones, W. R., Su, L., Hong, Y. T., Fryer, T. D., Aigbirhio, F. I., O’Brien, J. T., & Rowe, J. B. (2020). Microglial activation and tau burden predict cognitive decline in Alzheimer’s disease. Brain : a journal of neurology, 143(5), 1588–1602. https://doi.org/10.1093/brain/awaa088
  • 57. Hayden, E. Y., & Teplow, D. B. (2013). Amyloid β-protein oligomers and Alzheimer’s disease. Alzheimer’s research & therapy, 5(6), 60. https://doi.org/10.1186/alzrt226
  • 58. Fagiani, F., Lanni, C., Racchi, M., & Govoni, S. (2021). (Dys) regulation of Synaptic Activity and Neurotransmitter Release by β-Amyloid: A Look Beyond Alzheimer’s Disease Pathogenesis. Frontiers in molecular neuroscience, 14, 635880. https://doi. org/10.3389/fnmol.2021.635880
  • 59. Ali, J.; Choe, K.; Park, J.S.; Park, H.Y.; Kang, H.; Park, T.J.; Kim, M.O. The Interplay of Protein Aggregation, Genetics, and Oxidative Stress in Alzheimer’s Disease: Role for Natural Antioxidants and Immunotherapeutics. Antioxidants 2024, 13, 862. https://doi. org/10.3390/antiox13070862
  • 60. Vignon, A., Salvador-Prince, L., Lehmann, S., Perrier, V., & Torrent, J. (2021). Deconstructing alzheimer’s disease: How to bridge the gap between experimental models and the human pathology? In International Journal of Molecular Sciences(Vol. 22, Issue 16). https://doi.org/10.3390

A Novel Review: Association of Alzheimer's Disease with the SUMO Protein Family

Year 2025, Volume: 2 Issue: 1, 1 - 8, 31.01.2025

Abstract

Neurodegenerative diseases are disorders characterized by progressive neuron loss, which, in advanced stages, lead to cognitive and motor behavioral abnormalities. These diseases can arise from both internal and external factors such as genetics, aging, nutrition, and stress. Numerous studies have indicated that protein aggregation is a common hallmark of neurodegenerative diseases. Misfolded or improperly expressed proteins significantly impact the progression of these diseases. Recent studies have provided evidence that certain paralogs of SUMO proteins play a significant role in neurodegenerative diseases. This review focuses on Alzheimer's disease, a prominent neurodegenerative condition, and explores the impact of SUMO proteins on this disease. It has been observed that this protein family regulates cellular processes through post-translational modifications, influencing Alzheimer's disease both positively and negatively. Alzheimer's disease is a multifactorial neurodegenerative disorder, and its prevalence is increasing globally with the aging population. From this perspective, investigating the effects of SUMO proteins offers promising insights into potential treatments for these currently incurable diseases.

Ethical Statement

There are no ethical conflicts.

Supporting Institution

There are no Support.

References

  • 1. Wilson, D. M., Cookson, M. R., van den Bosch, L., Zetterberg, H., Holtzman, D. M., & Dewachter, I. (2023). Hallmarks of neurodegenerative diseases. In Cell (Vol. 186, Issue 4). https:// doi.org/10.1016/j.cell.2022.12.032
  • 2. Yau, T. Y., Molina, O., & Courey, A. J. (2020). SUMOylation in development and neurodegeneration. Development(Cambridge), 147(6). https://doi.org/10.1242/ dev.175703
  • 3. Dorval, V., & Fraser, P. E. (2007). SUMO on the road to neurodegeneration. In Biochimica et Biophysica Acta - Molecular Cell Research (Vol. 1773, Issue 6). https://doi.org/10.1016/j. bbamcr.2007.03.017
  • 4. Slanzi, A., Iannoto, G., Rossi, B., Zenaro, E., & Constantin, G. (2020). In vitro Models of Neurodegenerative Diseases. In Frontiers in Cell and Developmental Biology (Vol. 8). https://doi. org/10.3389/fcell.2020.00328
  • 5. Song, J., Durrin, L. K., Wilkinson, T. A., Krontiris, T. G., & Chen, Y. (2004). Identification of a SUMO-binding motif that recognizes SUMO-modified proteins. Proceedings of the National Academy of Sciences of the United States of America, 101(40). https://doi. org/10.1073/pnas.0403498101
  • 6. Correa-Vázquez, J. F., Juárez-Vicente, F., García-Gutiérrez, P., Barysch, S. v., Melchior, F., & García-Domínguez, M. (2021). The Sumo proteome of proliferating and neuronal- differentiating cells reveals Utf1 among key Sumo targets involved in neurogenesis. Cell Death and Disease, 12(4). https://doi. org/10.1038/s41419-021-03590-2
  • 7. Mandel, N., & Agarwal, N. (2022). Role of SUMOylation in Neurodegenerative Diseases. In Cells (Vol. 11, Issue 21). https:// doi.org/10.3390/cells11213395
  • 8. Küçükali, C. I., Salman, B., Yüceer, H., Ulusoy, C., Abacı, N., Ekmekci, S. S., Tüzün, E., Bilgiç, B., & Hanağası, H. A. (2020). Small ubiquitin-related modifier (SUMO) 3 and SUMO4 genepolymorphisms in Parkinson’s disease. Neurological Research, 42(6). https://doi.org/10.1080/01616412.2020.1724464
  • 9. Soares, E. S., Prediger, R. D., Brocardo, P. S., & Cimarosti, H. I. (2022). SUMO- modifying Huntington’s disease. In IBRO Neuroscience Reports (Vol. 12). https://doi.org/10.1016/j. ibneur.2022.03.002
  • 10. Şen, M., Ay, U., Akbayır, E., Şenyer, S., Tüzün, E., & Küçükali, C. İ. (2017). NF-kB, SUMO ve Ubikitinasyon İlişkisi NF-κB SUMO AND UBIQUITINATION RELATIONSHIP. Deneysel Tıp Araştırma Enstitüsü Dergisi, 7(13).
  • 11. Yuan, H., Zhou, J., Deng, M., Liu, X., le Bras, M., de The, H., Chen, S. J., Chen, Z., Liu, T. X., & Zhu, J. (2010). Small ubiquitin-related modifier paralogs are indispensable but functionally redundant during early development of zebrafish. Cell Research, 20(2). https://doi.org/10.1038/cr.2009.101
  • 12. Kolli, N., Mikolajczyk, J., Drag, M., Mukhopadhyay, D., Moffatt, N., Dasso, M., Salvesen, G., & Wilkinson, K. D. (2010). Distribution and paralogue specificity of mammalian deSUMOylating enzymes. Biochemical Journal, 430(2). https://doi. org/10.1042/BJ20100504
  • 13. Yang, W. S., Hsu, H. W., Campbell, M., Cheng, C. Y., & Chang, P. C. (2015). K-bZIP Mediated SUMO-2/3 Specific Modification on the KSHV Genome Negatively Regulates Lytic Gene Expression and Viral Reactivation. PLoS Pathogens, 11(7). https://doi. org/10.1371/journal.ppat.1005051
  • 14. Matic, I., van Hagen, M., Schimmel, J., Macek, B., Ogg, S. C., Tatham, M. H., Hay, R. T., Lamond, A. I., Mann, M., & Vertegaal, A. C. O. (2008). In vivo identification of human small ubiquitinlike modifier polymerization sites by high accuracy mass spectrometry and an in vitro to in vivo strategy. Molecular and Cellular Proteomics, 7(1). https://doi.org/10.1074/mcp.M700173- MCP200
  • 15. Owerbach, D., McKay, E. M., Yeh, E. T. H., Gabbay, K. H., & Bohren, K. M. (2005). A proline-90 residue unique to SUMO-4 prevents maturation and sumoylation. Biochemical and Biophysical Research Communications, 337(2). https://doi.org/10.1016/j. bbrc.2005.09.090
  • 16. Wang, W.; Matunis, M.J. Paralogue-Specific Roles of SUMO1 and SUMO2/3 in Protein Quality Control and Associated Diseases. Cells 2024, 13, 8. https://doi.org/10.3390/cells13010008
  • 17. Hayashi, T., Seki, M., Maeda, D., Wang, W., Kawabe, Y. I., Seki, T., Saitoh, H., Fukagawa, T., Yagi, H., & Enomoto, T. (2002). Ubc9 is essential for viability of higher eukaryotic cells. Experimental Cell Research, 280(2). https://doi. org/10.1006/excr.2002.5634
  • 18. Lamoliatte, F., Bonneil, E., Durette, C., Caron-Lizotte, O., Wildemann, D., Zerweck, J., Wenshuk, H., & Thibault, P. (2013). Targeted identification of SUMOylation sites in human proteins using affinity enrichment and paralog-specific reporter ions. Molecular and Cellular Proteomics, 12(9). https://doi. org/10.1074/mcp.M112.025569
  • 19. Krumova, P., Meulmeester, E., Garrido, M., Tirard, M., Hsiao, H. H., Bossis, G., Urlaub, H., Zweckstetter, M., Kügler, S., Melchior, F., Bähr, M., & Weishaupt, J. H. (2011). Sumoylation inhibits α-synuclein aggregation and toxicity. Journal of Cell Biology, 194(1). https://doi.org/10.1083/jcb.201010117
  • 20. Chang, C. C., Naik, M. T., Huang, Y. S., Jeng, J. C., Liao, P. H., Kuo, H. Y., Ho, C. C., Hsieh, Y. L., Lin, C. H., Huang, N. J., Naik, N. M., Kung, C. C. H., Lin, S. Y., Chen, R. H., Chang, K. S., Huang, T. H., & Shih, H. M. (2011). Structural and Functional Roles of Daxx SIM Phosphorylation in SUMO Paralog-Selective Binding and Apoptosis Modulation. Molecular Cell, 42(1). https://doi. org/10.1016/j.molcel.2011.02.022
  • 21. Wilkinson, K. A., & Henley, J. M. (2010). Mechanisms, regulation and consequences of protein SUMOylation. In Biochemical Journal (Vol. 428, Issue 2). https://doi.org/10.1042/BJ20100158
  • 22. Zhang, F.-P., Mikkonen, L., Toppari, J., Palvimo, J. J., Thesleff, I., & Jänne, O. A. (2008). Sumo-1 Function Is Dispensable in Normal Mouse Development . Molecular and Cellular Biology, 28(17). https://doi.org/10.1128/mcb.00651-08 23. Husnjak, K., & Dikic, I. (2012). Ubiquitin-binding proteins: Decoders of ubiquitin- mediated cellular functions. Annual Review of Biochemistry, 81. https://doi.org/10.1146/annurevbiochem- 051810-094654
  • 24. Kamitani, T., Kito, K., Nguyen, H. P., Fukuda-Kamitani, T., & Yeh, E. T. H. (1998). Characterization of a second member of the sentrin family of ubiquitin- like proteins. Journal of Biological Chemistry, 273(18). https://doi.org/10.1074/ jbc.273.18.11349
  • 25. Varshavsky, A. (2006). The early history of the ubiquitin field. Protein Science, 15(3). https://doi.org/10.1110/ps.052012306
  • 26. Gill, G. (2004). SUMO and ubiquitin in the nucleus: Different functions, similar mechanisms? In Genes and Development(Vol. 18, Issue 17). https://doi.org/10.1101/gad.1214604
  • 27. Hendriks, I. A., Akimov, V., Blagoev, B., & Nielsen, M. L. (2021). MaxQuant.Live Enables Enhanced Selectivity and Identification of Peptides Modified by Endogenous SUMO and Ubiquitin. Journal of Proteome Research, 20(4). https://doi.org/10.1021/ acs.jproteome.0c00892
  • 28. Sriramachandran, A. M., & Dohmen, R. J. (2014). SUMO-targeted ubiquitin ligases. In Biochimica et Biophysica Acta - Molecular Cell Research (Vol. 1843, Issue 1). https://doi.org/10.1016/j. bbamcr.2013.08.022
  • 29. Keiten-Schmitz, J., Wagner, K., Piller, T., Kaulich, M., Alberti, S., & Müller, S. (2020). The Nuclear SUMO-Targeted Ubiquitin Quality Control Network Regulates the Dynamics of Cytoplasmic Stress Granules. Molecular Cell, 79(1). https://doi.org/10.1016/j. molcel.2020.05.017
  • 30. Adalı, A. , Y. A. , K. B. , E. P. (2020). (2020). ALZHEİMER HASTALIĞININ GELİŞİMİNDE BİYOLOJİK AJANLARIN OLASI ETKİLERİ. Journal of Faculty of Pharmacy of Ankara University, 44(1), 167-187. , 167–187.
  • 31. Wang, J., Gu, B. J., Masters, C. L., & Wang, Y. J. (2017). A systemic view of Alzheimer disease - Insights from amyloid-β metabolism beyond the brain. In Nature Reviews Neurology (Vol. 13, Issue 10). https://doi.org/10.1038/nrneurol.2017.111
  • 32. Özpak, L., Pazarbaşı, A., & Keser, N. (2017). Alzheimer Hastalığının Genetiği ve Epigenetiği. Arşiv Kaynak Tarama Dergisi, 26(1). https://doi.org/10.17827/aktd.280520
  • 33. Trejo-Lopez, J. A., Yachnis, A. T., & Prokop, S. (2022). Neuropathology of Alzheimer’s Disease. In Neurotherapeutics(Vol. 19, Issue 1). https://doi.org/10.1007/ s13311-021- 01146-y
  • 34. Tahami Monfared, A. A., Byrnes, M. J., White, L. A., & Zhang, Q. (2022). Alzheimer’s Disease: Epidemiology and Clinical Progression. In Neurology and Therapy (Vol. 11, Issue 2). https:// doi.org/10.1007/s40120-022-00338-8
  • 35. Porsteinsson, A. P., Isaacson, R. S., Knox, S., Sabbagh, M. N., & Rubino, I. (2021). Diagnosis of Early Alzheimer’s Disease: Clinical Practice in 2021. In Journal of Prevention of Alzheimer’s Disease (Vol. 8, Issue 3). https://doi.org/10.14283/jpad.2021.23
  • 36. Zhang, X. X., Tian, Y., Wang, Z. T., Ma, Y. H., Tan, L., & Yu, J. T. (2021). The Epidemiology of Alzheimer’s Disease Modifiable Risk Factors and Prevention. In Journal of Prevention of Alzheimer’s Disease (Vol. 8, Issue 3). https://doi.org/10.14283/jpad.2021.15
  • 37. Deture, M. A., & Dickson, D. W. (2019). The neuropathological diagnosis of Alzheimer’s disease. In Molecular Neurodegeneration (Vol. 14, Issue 1). https://doi.org/10.1186/ s13024-019-0333-5
  • 38. Weller, J., & Budson, A. (2018). Current understanding of Alzheimer’s disease diagnosis and treatment. I n F1000Research (Vol. 7). https://doi.org/10.12688/ f1000research.14506.1
  • 39. Chen, Z. R., Huang, J. B., Yang, S. L., & Hong, F. F. (2022). Role of Cholinergic Signaling in Alzheimer’s Disease. In Molecules (Vol. 27, Issue 6). https://doi.org/10.3390/molecules27061816
  • 40. Jeong, D. U., Lee, J. E., Lee, S. E., Chang, W. S., Kim, S. J., & Chang, J. W. (2014). Improvements in memory after medial septum stimulation are associated with changes in hippocampal cholinergic activity and neurogenesis. BioMed ResearchInternational, 2014. https://doi.org/10.1155/2014/568587
  • 41. Lee, L., Sakurai, M., Matsuzaki, S., Arancio, O., & Fraser, P. (2013). SUMO and alzheimer’s disease. In NeuroMolecular Medicine (Vol. 15, Issue 4). https://doi.org/10.1007/s12017-013-8257-7
  • 42. Liang, Z., Chan, H. Y. E., Lee, M. M., & Chan, M. K. (2021). A SUMO1-Derived Peptide Targeting SUMO-Interacting Motif Inhibits α-Synuclein Aggregation. Cell Chemical Biology, 28(2). https://doi.org/10.1016/j.chembiol.2020.12.010
  • 43. Hong, Y., Rogers, R., Matunis, M. J., Mayhew, C. N., Goodson, M., Park-Sarge, O. K., & Sarge, K. D. (2001). Regulation of Heat Shock Transcription Factor 1 by Stress- induced SUMO-1 Modification. Journal of Biological Chemistry, 276(43). https:// doi.org/10.1074/jbc.M104714200
  • 44. Sarge, K. D., & Park-Sarge, O. K. (2005). Gene bookmarking: Keeping the pages open. In Trends in Biochemical Sciences (Vol. 30, Issue 11). https://doi.org/10.1016/j.tibs.2005.09.004
  • 45. Sarge, K. D., & Park-Sarge, O. K. (2009). Sumoylation and human disease pathogenesis. In Trends in Biochemical Sciences (Vol. 34, Issue 4). https://doi.org/10.1016/j.tibs.2009.01.004
  • 46. Holton, P., Ryten, M., Nalls, M., Trabzuni, D., Weale, M. E., Hernandez, D., Crehan, H., Gibbs, J. R., Mayeux, R., Haines, J. L., Farrer, L. A., Pericak-Vance, M. A., Schellenberg, G. D., Ramirez-Restrepo, M., Engel, A., Myers, A. J., Corneveaux, J. J., Huentelman, M. J., Dillman, A., … Guerreiro, R. (2013). Initial Assessment of the Pathogenic Mechanisms of the Recently Identified Alzheimer Risk Loci. Annals of Human Genetics, 77(2). https://doi.org/10.1111/ahg.12000
  • 47. Vijayakumaran, S., Wong, M. B., Antony, H., & Pountney, D. L. (2015). Direct and/or indirect roles for SUMO in modulating alpha-synuclein toxicity. In Biomolecules (Vol. 5, Issue 3). https://doi.org/10.3390/biom5031697
  • 48. Ahner, A., Gong, X., & Frizzell, R. A. (2016). Divergent signaling via SUMO modification: Potential for CFTR modulation. In American Journal of Physiology - Cell Physiology (Vol. 310, Issue 3). https://doi.org/10.1152/ajpcell.00124.2015
  • 49. Alonso, A., Greenlee, M., Matts, J., Kline, J., Davis, K. J., & Miller, R. K. (2015). Emerging roles of sumoylation in the regulation of actin, microtubules, intermediate filaments, and septins. In Cytoskeleton (Vol. 72, Issue 7). https://doi.org/10.1002/cm.21226
  • 50. Mah, D., Zhao, J., Liu, X., Zhang, F., Liu, J., Wang, L., Linhardt, R., & Wang, C. (2021). The Sulfation Code of Tauopathies: Heparan Sulfate Proteoglycans in the Prion Like Spread of Tau Pathology. In Frontiers in Molecular Biosciences (Vol. 8). https:// doi.org/10.3389/fmolb.2021.671458
  • 51. Mandel, N., & Agarwal, N. (2022). Role of SUMOylation in Neurodegenerative Diseases. In Cells (Vol. 11, Issue 21). https:// doi.org/10.3390/cells11213395
  • 52. Huang, C. H., Yang, T. T., & Lin, K. I. (2024). Mechanisms and functions of SUMOylation in health and disease: a review focusing on immune cells. In Journal of Biomedical Science (Vol. 31, Issue 1). https://doi.org/10.1186/s12929-024-01003-y
  • 53. Reiman, E. M., Arboleda-Velasquez, J. F., Quiroz, Y. T., Huentelman, M. J., Beach, T. G., Caselli, R. J., Chen, Y., Su, Y., Myers, A. J., Hardy, J., Paul Vonsattel, J., Younkin, S. G., Bennett, D. A., De Jager, P. L., Larson, E. B., Crane, P. K., Keene, C. D., Kamboh, M. I., Kofler, J. K., Duque, L., … Alzheimer’s Disease Genetics Consortium (2020). Exceptionally low likelihood of Alzheimer’s dementia in APOE2 homozygotes from a 5,000-person neuropathological study. Nature communications, 11(1), 667. https://doi.org/10.1038/ s41467-019-14279-8
  • 54. Baranello, R. J., Bharani, K. L., Padmaraju, V., Chopra, N., Lahiri, D. K., Greig, N. H., Pappolla, M. A., & Sambamurti, K. (2015). Amyloid-beta protein clearance and degradation (ABCD) pathways and their role in Alzheimer’s disease. Current Alzheimer research, 12(1), 32–46. https://doi.org/10.2174/15672 05012666141218140953
  • 55. Chen, G. F., Xu, T. H., Yan, Y., Zhou, Y. R., Jiang, Y., Melcher, K., & Xu, H. E. (2017). Amyloid beta: structure, biology and structurebased therapeutic development. Acta pharmacologica Sinica, 38(9), 1205–1235. https://doi.org/10.1038/aps.2017.28 56. Malpetti, M., Kievit, R. A., Passamonti, L., Jones, P. S., Tsvetanov, K. A., Rittman, T., Mak, E., Nicastro, N., Bevan-Jones, W. R., Su, L., Hong, Y. T., Fryer, T. D., Aigbirhio, F. I., O’Brien, J. T., & Rowe, J. B. (2020). Microglial activation and tau burden predict cognitive decline in Alzheimer’s disease. Brain : a journal of neurology, 143(5), 1588–1602. https://doi.org/10.1093/brain/awaa088
  • 57. Hayden, E. Y., & Teplow, D. B. (2013). Amyloid β-protein oligomers and Alzheimer’s disease. Alzheimer’s research & therapy, 5(6), 60. https://doi.org/10.1186/alzrt226
  • 58. Fagiani, F., Lanni, C., Racchi, M., & Govoni, S. (2021). (Dys) regulation of Synaptic Activity and Neurotransmitter Release by β-Amyloid: A Look Beyond Alzheimer’s Disease Pathogenesis. Frontiers in molecular neuroscience, 14, 635880. https://doi. org/10.3389/fnmol.2021.635880
  • 59. Ali, J.; Choe, K.; Park, J.S.; Park, H.Y.; Kang, H.; Park, T.J.; Kim, M.O. The Interplay of Protein Aggregation, Genetics, and Oxidative Stress in Alzheimer’s Disease: Role for Natural Antioxidants and Immunotherapeutics. Antioxidants 2024, 13, 862. https://doi. org/10.3390/antiox13070862
  • 60. Vignon, A., Salvador-Prince, L., Lehmann, S., Perrier, V., & Torrent, J. (2021). Deconstructing alzheimer’s disease: How to bridge the gap between experimental models and the human pathology? In International Journal of Molecular Sciences(Vol. 22, Issue 16). https://doi.org/10.3390
There are 58 citations in total.

Details

Primary Language English
Subjects Neurogenetics
Journal Section Reviews
Authors

Beyza Aydin

Publication Date January 31, 2025
Submission Date June 16, 2024
Acceptance Date November 17, 2024
Published in Issue Year 2025 Volume: 2 Issue: 1

Cite

Vancouver Aydin B. A Novel Review: Association of Alzheimer’s Disease with the SUMO Protein Family. HJS. 2025;2(1):1-8.