Research Article
BibTex RIS Cite

Electronic and Magnetic Properties of 2D/3D MnB: An Ab-initio & Monte Carlo Study

Year 2022, , 103 - 110, 30.06.2022
https://doi.org/10.17350/HJSE19030000260

Abstract

Defect-induced magnetic phases of 2D and 3D MnB were discussed. The exciting ferromagnetic behavior of MnB MBene is particularly tracked, including high-rated Mn defects via ab-initio calculations and Monte Carlo simulations. Ground state solution was achieved through GGA in PBESol scheme resulting in magnetic state and moments of Mn ions including the density of states around Fermi level. Magnetic susceptibility and magnetization behavior related to temperature was obtained through Monte Carlo simulations based on the Heisenberg model applying Metropolis criteria. The authors focused on controlling the Curie temperature considering the location of Mn defects. The coexistence of the various defect locations opened a realistic window to estimate Curie temperature consistent with experimental values. Exchange energies of 2D MnB different defect locations quite differ from each other. In addition, magnetic moments of the sheet material were found to be higher than 3D bulk MnB.

References

  • [1] Swartz AG, Odenthal PM, Hao Y, Ruoff RS, Kawakami RK. Integration of the ferromagnetic insulator EuO onto graphene. ACS Nano 6 (2012) 10063–10069.
  • [2] Gao, P.; Song, M.; Wang, X.; Liu, Q.; He, S.; Su, Y.; Qian, P. Theoretical Study on the Electronic Structure and Magnetic Properties Regulation of Janus Structure of M’MCO2 2D MXenes. Nanomaterials (12) 2022 556.
  • [3] Van Hove L. The occurrence of singularities in the elastic frequency distribution of a crystal. Physical Review 89 (1953) 1189–1193.
  • [4] Miao NH, Sun ZM, Computational design of two dimensional magnetic materials. Wiley Interdisciplinary Reviews. WIREs Computational Molecular Science. 5 (2021) e1545.
  • [5] Yazyev OV, Helm L. Defect-induced magnetism in graphene. Physical Review B 75 (2007) 125408.
  • [6] Wang Y, Huang Y, Song Y, Zhang X, Ma Y, Liang J, et al. Room-temperature ferromagnetism of graphene. Nano Letters 9 (2009) 220–224.
  • [7] Kou L, Tang C, Guo W, Chen C. Tunable magnetism in strained graphene with topological line defect. ACS Nano 5 (2011) 1012–1017.
  • [8] Zhang Z, Zou X, Crespi VH, Yakobson BI. Intrinsic magnetism of grain boundaries in two-dimensional metal dichalcogenides. ACS Nano 7 (2013) 10475–10481.
  • [9] Zhang M, Wang X, Sun H, Wang N, He J, Wang N, Long Y, Huang C, Li Y. Induced ferromagnetic order of graphdiyne semiconductors by introducing a heteroatom. ACS Central Science 6 (2020) 950–958.
  • [10] Legrand E, Neov S. Neutron diffraction study of MnB2. Solid State Communications 10 (1972) 883-885.
  • [11] Khmelevskyi S, Mohn P. Magnetic ordering in MnB2: an ab initio study. Solid State Communications 113 (2000) 509-512.
  • [12] Khmelevskyi S, Mohn P. Covalent magnetism, exchange interactions and anisotropy of the high temperature layered antiferromagnet MnB2. Journal of Physics: Condensed Matter 24 (2012) 016001.
  • [13] Khmelevskyi S, Redinger J, Shick AB, Mohn P. One-dimensional magnetism of one-dimensional metallic chains in bulk MnB4. Condensed Matter 1-11 (2013)
  • [14] Gueddouh A. The effects of magnetic moment collapse under high pressure on physical properties in mono-borides TMB (TM = Mn, Fe): a first-principles. Phase Transitions 9 (2017) 984-1000.
  • [15] Ma S, Bao K, Tao Q, Zhu P, Ma T, Liu B, Liu Y, Cui T. Manganese mono-boride, an inexpensive room temperature ferromagnetic hard material. Scientific Reports 7 (2017) 43759.
  • [16] Jiang Z, Wang P, Jiang X*, Zhao J, MBene (MnB): a new type of 2D metallic ferromagnet with high Curie temperature. Nanoscale Horizons 3 (2018) 335.
  • [17] Bocarsly JD, Levin EE, Humphrey SA, Faske T, Donner W, Wilson SD, Seshadri R. Magnetostructural coupling drives magnetocaloric behavior: The case of MnB versus FeB. Chemistry of Materials 31 (2019) 4873–4881.
  • [18] Abdullahi YZ, Vatansever ZD, Aktürk E, Akıncı Ü, Aktürk OÜ. A tetragonal phase Mn2B2 sheet: a stable room temperature ferromagnet with sizable magnetic anisotropy. Physical Chemistry and Chemical Physics 22 (2020) 10893-10899.
  • [19] Ahmoum H, Boughrara M, Su’ait MS, Li G, Rai DP, Kerouad M, Wang Q. Monte Carlo and Density functional theory investigation on the magnetic nature properties of MnB2. Applied Journal of Environmental Engineering Science 6 (2020) 429-435.
  • [20] Klemenz S, Fries M, Dürrschnabel M, Skokov K, Kleebe HJ et al., Low-temperature synthesis of nanoscale ferromagnetic α'-MnB. Dalton Transactions 9 (2020) 131-135.
  • [21] Jiang X, Liu Q, Xing J, Liu N, Guo Y, Liu Z, Zhao J. Recent progress on 2D magnets: Fundamental mechanism, structural design and modification. Applied Physics Review 8 (2021) 031305.
  • [22] Clark SJ, Segall MD, Pickard CJ, Hasnip PJ, Probert MIJ, R Keith, CP Mike. First-principles methods using CASTEP. Zeitschrift fuer Kristallographie 220 (2005) 567-570.
  • [23] Momma K, Izumi F. VESTA: a three-dimensional visualization system for electronic and structural analysis. Journal of Applied Crystallography 41 (2008) 653-658.
  • [24] Blochl PE. Projector augmented-wave method. Physical Review B 50 (1994) 17953.
  • [25] Kresse G, Furthmuller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science 6 (1996) 15.
  • [26] Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B 59 (1999) 1758.
  • [27] Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E. Journal of Chemical Physics 21 (1953) 1087.
  • [28] Park J, Hong Y-K, Kim H-K, Lee W, Yeo C-D, Kim S-G, Jung M-H, Choi C-J, Mryasov ON. Electronic structures of MnB soft magnet. AIP Advances 6 (2016) 055911.
  • [29] Simsek T, Ozcan S. Structural and Magnetic Properties of MnxB100−x Alloys. IEEE Transactions on magnetism 51 (2015) 2001903.
  • [30] Duru IP, Ozugurlu E, Arda L. A first-principles study of magnetic properties of Zn0.94Mg0.01Mn0.05O. Materials Research Express 6 (2019) 126118.
  • [31] Duru IP, Ozugurlu E, Arda L, A first-principles study of Mg/Ni induced magnetic properties of Zn0. 95− xMgxNi0. 05O. Journal of Magnetism and Magnetic Materials 504 (2020) 166653.
  • [32] Duru IP, Ozugurlu E, Arda L. Size effect on magnetic properties of Zn0.95−xMgxNi0.05O nanoparticles by Monte Carlo simulation. Ceramics International 45 (2019) 5259-5265.
  • [33] Mermin ND, Wagner H. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Physical Review Letters 17 (1966) 1133–1136.
Year 2022, , 103 - 110, 30.06.2022
https://doi.org/10.17350/HJSE19030000260

Abstract

References

  • [1] Swartz AG, Odenthal PM, Hao Y, Ruoff RS, Kawakami RK. Integration of the ferromagnetic insulator EuO onto graphene. ACS Nano 6 (2012) 10063–10069.
  • [2] Gao, P.; Song, M.; Wang, X.; Liu, Q.; He, S.; Su, Y.; Qian, P. Theoretical Study on the Electronic Structure and Magnetic Properties Regulation of Janus Structure of M’MCO2 2D MXenes. Nanomaterials (12) 2022 556.
  • [3] Van Hove L. The occurrence of singularities in the elastic frequency distribution of a crystal. Physical Review 89 (1953) 1189–1193.
  • [4] Miao NH, Sun ZM, Computational design of two dimensional magnetic materials. Wiley Interdisciplinary Reviews. WIREs Computational Molecular Science. 5 (2021) e1545.
  • [5] Yazyev OV, Helm L. Defect-induced magnetism in graphene. Physical Review B 75 (2007) 125408.
  • [6] Wang Y, Huang Y, Song Y, Zhang X, Ma Y, Liang J, et al. Room-temperature ferromagnetism of graphene. Nano Letters 9 (2009) 220–224.
  • [7] Kou L, Tang C, Guo W, Chen C. Tunable magnetism in strained graphene with topological line defect. ACS Nano 5 (2011) 1012–1017.
  • [8] Zhang Z, Zou X, Crespi VH, Yakobson BI. Intrinsic magnetism of grain boundaries in two-dimensional metal dichalcogenides. ACS Nano 7 (2013) 10475–10481.
  • [9] Zhang M, Wang X, Sun H, Wang N, He J, Wang N, Long Y, Huang C, Li Y. Induced ferromagnetic order of graphdiyne semiconductors by introducing a heteroatom. ACS Central Science 6 (2020) 950–958.
  • [10] Legrand E, Neov S. Neutron diffraction study of MnB2. Solid State Communications 10 (1972) 883-885.
  • [11] Khmelevskyi S, Mohn P. Magnetic ordering in MnB2: an ab initio study. Solid State Communications 113 (2000) 509-512.
  • [12] Khmelevskyi S, Mohn P. Covalent magnetism, exchange interactions and anisotropy of the high temperature layered antiferromagnet MnB2. Journal of Physics: Condensed Matter 24 (2012) 016001.
  • [13] Khmelevskyi S, Redinger J, Shick AB, Mohn P. One-dimensional magnetism of one-dimensional metallic chains in bulk MnB4. Condensed Matter 1-11 (2013)
  • [14] Gueddouh A. The effects of magnetic moment collapse under high pressure on physical properties in mono-borides TMB (TM = Mn, Fe): a first-principles. Phase Transitions 9 (2017) 984-1000.
  • [15] Ma S, Bao K, Tao Q, Zhu P, Ma T, Liu B, Liu Y, Cui T. Manganese mono-boride, an inexpensive room temperature ferromagnetic hard material. Scientific Reports 7 (2017) 43759.
  • [16] Jiang Z, Wang P, Jiang X*, Zhao J, MBene (MnB): a new type of 2D metallic ferromagnet with high Curie temperature. Nanoscale Horizons 3 (2018) 335.
  • [17] Bocarsly JD, Levin EE, Humphrey SA, Faske T, Donner W, Wilson SD, Seshadri R. Magnetostructural coupling drives magnetocaloric behavior: The case of MnB versus FeB. Chemistry of Materials 31 (2019) 4873–4881.
  • [18] Abdullahi YZ, Vatansever ZD, Aktürk E, Akıncı Ü, Aktürk OÜ. A tetragonal phase Mn2B2 sheet: a stable room temperature ferromagnet with sizable magnetic anisotropy. Physical Chemistry and Chemical Physics 22 (2020) 10893-10899.
  • [19] Ahmoum H, Boughrara M, Su’ait MS, Li G, Rai DP, Kerouad M, Wang Q. Monte Carlo and Density functional theory investigation on the magnetic nature properties of MnB2. Applied Journal of Environmental Engineering Science 6 (2020) 429-435.
  • [20] Klemenz S, Fries M, Dürrschnabel M, Skokov K, Kleebe HJ et al., Low-temperature synthesis of nanoscale ferromagnetic α'-MnB. Dalton Transactions 9 (2020) 131-135.
  • [21] Jiang X, Liu Q, Xing J, Liu N, Guo Y, Liu Z, Zhao J. Recent progress on 2D magnets: Fundamental mechanism, structural design and modification. Applied Physics Review 8 (2021) 031305.
  • [22] Clark SJ, Segall MD, Pickard CJ, Hasnip PJ, Probert MIJ, R Keith, CP Mike. First-principles methods using CASTEP. Zeitschrift fuer Kristallographie 220 (2005) 567-570.
  • [23] Momma K, Izumi F. VESTA: a three-dimensional visualization system for electronic and structural analysis. Journal of Applied Crystallography 41 (2008) 653-658.
  • [24] Blochl PE. Projector augmented-wave method. Physical Review B 50 (1994) 17953.
  • [25] Kresse G, Furthmuller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science 6 (1996) 15.
  • [26] Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B 59 (1999) 1758.
  • [27] Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E. Journal of Chemical Physics 21 (1953) 1087.
  • [28] Park J, Hong Y-K, Kim H-K, Lee W, Yeo C-D, Kim S-G, Jung M-H, Choi C-J, Mryasov ON. Electronic structures of MnB soft magnet. AIP Advances 6 (2016) 055911.
  • [29] Simsek T, Ozcan S. Structural and Magnetic Properties of MnxB100−x Alloys. IEEE Transactions on magnetism 51 (2015) 2001903.
  • [30] Duru IP, Ozugurlu E, Arda L. A first-principles study of magnetic properties of Zn0.94Mg0.01Mn0.05O. Materials Research Express 6 (2019) 126118.
  • [31] Duru IP, Ozugurlu E, Arda L, A first-principles study of Mg/Ni induced magnetic properties of Zn0. 95− xMgxNi0. 05O. Journal of Magnetism and Magnetic Materials 504 (2020) 166653.
  • [32] Duru IP, Ozugurlu E, Arda L. Size effect on magnetic properties of Zn0.95−xMgxNi0.05O nanoparticles by Monte Carlo simulation. Ceramics International 45 (2019) 5259-5265.
  • [33] Mermin ND, Wagner H. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Physical Review Letters 17 (1966) 1133–1136.
There are 33 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

İzzet Paruğ Duru 0000-0002-9227-2497

Publication Date June 30, 2022
Submission Date December 29, 2021
Published in Issue Year 2022

Cite

Vancouver Duru İP. Electronic and Magnetic Properties of 2D/3D MnB: An Ab-initio & Monte Carlo Study. Hittite J Sci Eng. 2022;9(2):103-10.

Hittite Journal of Science and Engineering is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY NC).