In this study, crystalline Co2B powder production was carried out by a one-step carbothermal reduction method starting from cheap, easily accessible oxide-based materials. Firstly, to determine the carbothermic CoxB formation conditions, the decomposition temperatures of the raw materials were analysed by TG/DTA, and the temperature-varying Gibbs free energies of the expected reactions were calculated. Then, Co2B production was carried out at constant CoO/B2O3/C (3.22/1.5/1.3) weight ratios at temperature (1273-1473 K) and time (30-270 min). scanning electron microscopy (SEM), X-ray diffraction (XRD), and vibrating sample magnetometer (VSM) were used to characterize the particles. XRD results showed that reaction temperature and time are the primary control on CoxB formation. Single-phase crystalline Co2B particles with crystallite sizes of 88 nm were successfully produced at 1473 K and 150 min. The permanent magnetization, saturation magnetization, and coercivity values of Co2B particles were defined as 16.58 Oe, 35.361 emu/g, 0.501 emu/g, respectively
1. Fisher KG. Cobalt Processing Developments,
in: The Southern African Institute of Mining and Metallurgy.
Paper presented at 6th South African Base Metals Conference,
Marshalltown, 21-22 July, SAIMM, Rosebank, pp. 237–258, 2011.
2. Crundwell FK, Moats MS, Ramachandran V, Robinson
TG, Davenport WG. Cobalt – Occurrence, Production, Use and
Price, in: Crundwell FK, Moats MS, Ramachandran V, Robinson TG,
Davenport WG (Eds.) Extractive Metallurgy of Nickel, Cobalt and
Platinum Group Metals, Elsevier, Amsterdam, pp. 357–63, 2011
3. Mégret A, Vitry V, Delaunois F. Study of the processing of a
recycled WC–Co powder: can it compete with conventional WC–Co
powders Journal of Sustainable Metallurgy 7 (2021) 448–458.
4. Roberts S, Gunn G. Cobalt, in: Gunn G. (Eds). Critical metals
handbook, Wiley, New York, pp. 122–49, 2013.
5. Campos-Silva I, Franco-Raudales O, Meda-Campaña JA, Espino-
Cortés FP, Acosta-Pavón JC. Growth kinetics of CoB-Co2B layers
using the powder-pack boriding process assisted by a direct
current field. High Temperature Materials and Processes 38 (2019)
158–67.
6. Çalik A, Karakas MS, Ucar N, Ünüvar F. Boriding kinetics of pure
cobalt. Kovove Materialy 52 (2014) 107–12.
7. Rodríguez-Castro GA, Reséndiz-Calderon CD, Jiménez-
Tinoco LF, Meneses-Amador A, Gallardo-Hernández EA, Campos-
Silva IE. Micro-abrasive wear resistance of CoB/Co2B coatings
formed in CoCrMo alloy. Surface and Coatings Technology 284
(2015) 258–63.
8. Lv J, Wang Q, Zhao J, Liu W, Chen P, Liu H. The difference in the
improvement of electrochemical hydrogen storage performance
between two methods of coating copper on the surface of
Co2B alloy. Chemical Physics Letters 754 (2020) 137697.
9. Altıntaş Z, Khoshsima S, Schmidt M, Bobnar M, Burkhardt U, Somer
M, et al. Evolution of magnetic properties of crystalline co-ibraolnt
boride nanoparticles via optimization of synthesis conditions using
hydrous metal chlorides. Journal of Magnetism and Magnetic
Materials 523 (2021) 1–8.
10. Oh JH, Kim M, Lee YH, Hong SH, Park SS, Kim TH, et al. Synthesis of
cobalt boride nanoparticles and h-BN nanocage encapsulation by
thermal plasma. Ceramics International 46 (2020) 28792–9.
11. Lv J, Wang Q, Chen P, Liu H, Su Z, Zhao J, et al. Effect of ball-milling
time and Pd addition on electrochemical hydrogen storage
performance of Co2B alloy. Solid State Sciences 103 (2020) 106184.
12. Niu X, Wang X, Guan K, Wei Q, Liu H. Preparation, and electrochemical
hydrogen storage application of mesoporous carbon CMK-3 coated
Co2B alloy composite. Chemical Physics Letters 778 (2021)
138762.
13. Ghafar FA, Etherton D, Liu S, Buckley CE,
English NJ, Silvester DS, et al. Tuning the catalytic activity of
bifunctional cobalt boride nanoflakes for overall water splitting over
a wide pH range. Journal of The Electrochemical Society 169
(2022) 096507.
14. Masa J, Weide P, Peeters D, Sinev I, Xia W, Sun Z, et al. Amorphous
cobalt boride (Co2B) as a highly efficient nonprecious catalyst for
electrochemical water splitting: oxygen and hydrogen evolution.
Advanced Energy Materials 6 (2016) 1502313.
15. Simsek , T Barış M. Synthesis of Co2B nanostructures and their
catalytic properties for hydrogen generation. Journal of Boron 2(1)
(2017) 28–36.
16. Kartal L. Synthesis of cobalt boride particles by molten salt assisted
calciothermic reduction. Transactions of the Indian Institute of
Metals 76(3) (2022) 757–764.
17. Kartal L. Single Fe2B Phase Particle Production by Calciothermic
Reduction in Molten Salt. Hittite Journal of Science and
Engineering 9(2)(2022) 145–50.
18. Kartal L. Single step calciothermic synthesis of nickel boride particles in
molten salt. Journal of the Australian Ceramic Society (2023) https://
doi.org/10.1007/s41779-023-00893-9.
19. Sharifi H, Rabiei Faradonbeh S, Tayebi M. Production,
and characterization of cobalt/vanadium boride
nanocomposite powder by mechanochemical method.
Materials Chemistry and Physics 202 (2017) 251–257.
20. Wu C, Bai Y, Wang X, Wu F, Zhang C. Comparisons of Co-B alloys
synthesized via different methods for secondary alkaline batteries.
Solid State Ionics 179 (2008) 924–927.
21. Doñu-Ruiz MA, López-Perrusquia N, Renteria-Salcedo A,
Flores-Martinez M, Rodriguez-De Anda E, Muhl S, et al.
Tribocorrosion behavior of boride coating on CoCrMo alloy
produced by thermochemical process in 0.35% NaCl solution.
Surface and Coatings Technology 425 (2021) 127698.
22. Simsek T , Barış M, Akkurt A. Co2B nanopartikülleri ile kaplanmış
S235JRC karbon çelik malzemelerin farklı kesme yöntemleri ile
işlenebilirlik özelliklerinin araştırılması. Journal of Polytechnic 22(1)
(2019) 169–177.
23. Khoshsima S, Altıntaş Z, Burkhardt U, Schmidt M, Prashanth KG,
Somer M, et al. CToiBB2- crystalline powders: Synthesis,
microstructural analysis and their utilization as reinforcement agent.
Advanced Powder Technology 31 (202906) 4–22972.
24. Altıntaş Z, Khoshima S, Somer M, Balcı Ö. The synthesis of binary
and ternary coba-lbt ased metal borides by inorganic molten salt
technique. Journal Boron 5(1) (2020) 12–22.
25. Yolcular S, Karaoglu S. Hydrogen generation from
sodium borohydride with cobalt boride catalysts. ALKU Fen Bilim
Dergisi 2(2) (2020) 84–96.
26. Yılmaz D, Savacı U, Koç N, Turan S. Investigation of Boro/
carbothermic and carbothermic reduction synthesized calcium
hexaborides. Journal of Boron 3(2) (2018) 103–108.
27. Balcı, Özge AD. Borür-Karbür esaslı kompozit tozların öşütme
destekli karbotermik redüksiyon yöntemi ile ekonomik yoldan
üretimi. Metalurji 178 (2016) 40–44.
28. Verma PC, Mishra SK. Synthesis of iron boride powder by
carbothermic reduction method. Materials Today: Proceedings
28 (2019) 902–906.
29. Yucel O, Addemir O, Tekin A. The optimization of parameters for
the carbothermic production of ferroboron. Paper presented at
proceedings of the 6th international ferroalloys congress, Cape
Town, pp. 285–289, 1992.
30. Ross JRH. Catalyst Characterization in: Ross JRH (Eds)
Contemporary Catalysis fundamentals and current applications,
Elsevier, Amsterdam, pp.121–132, 2019.
32. Petit C, Pileni MP. Nanosize cobalt boride particles: Control
of the size and properties. Journal of Magnetism and Magnetic
Materials 166 (1997) 82–90.
33. Baris M, Simsek T, Akkurt A. Mechanochemical synthesis and
characterization of pure Co2B nanocrystals. Bulletin of
Materials Science 39(4) (2016) 1119–1126.
1. Fisher KG. Cobalt Processing Developments,
in: The Southern African Institute of Mining and Metallurgy.
Paper presented at 6th South African Base Metals Conference,
Marshalltown, 21-22 July, SAIMM, Rosebank, pp. 237–258, 2011.
2. Crundwell FK, Moats MS, Ramachandran V, Robinson
TG, Davenport WG. Cobalt – Occurrence, Production, Use and
Price, in: Crundwell FK, Moats MS, Ramachandran V, Robinson TG,
Davenport WG (Eds.) Extractive Metallurgy of Nickel, Cobalt and
Platinum Group Metals, Elsevier, Amsterdam, pp. 357–63, 2011
3. Mégret A, Vitry V, Delaunois F. Study of the processing of a
recycled WC–Co powder: can it compete with conventional WC–Co
powders Journal of Sustainable Metallurgy 7 (2021) 448–458.
4. Roberts S, Gunn G. Cobalt, in: Gunn G. (Eds). Critical metals
handbook, Wiley, New York, pp. 122–49, 2013.
5. Campos-Silva I, Franco-Raudales O, Meda-Campaña JA, Espino-
Cortés FP, Acosta-Pavón JC. Growth kinetics of CoB-Co2B layers
using the powder-pack boriding process assisted by a direct
current field. High Temperature Materials and Processes 38 (2019)
158–67.
6. Çalik A, Karakas MS, Ucar N, Ünüvar F. Boriding kinetics of pure
cobalt. Kovove Materialy 52 (2014) 107–12.
7. Rodríguez-Castro GA, Reséndiz-Calderon CD, Jiménez-
Tinoco LF, Meneses-Amador A, Gallardo-Hernández EA, Campos-
Silva IE. Micro-abrasive wear resistance of CoB/Co2B coatings
formed in CoCrMo alloy. Surface and Coatings Technology 284
(2015) 258–63.
8. Lv J, Wang Q, Zhao J, Liu W, Chen P, Liu H. The difference in the
improvement of electrochemical hydrogen storage performance
between two methods of coating copper on the surface of
Co2B alloy. Chemical Physics Letters 754 (2020) 137697.
9. Altıntaş Z, Khoshsima S, Schmidt M, Bobnar M, Burkhardt U, Somer
M, et al. Evolution of magnetic properties of crystalline co-ibraolnt
boride nanoparticles via optimization of synthesis conditions using
hydrous metal chlorides. Journal of Magnetism and Magnetic
Materials 523 (2021) 1–8.
10. Oh JH, Kim M, Lee YH, Hong SH, Park SS, Kim TH, et al. Synthesis of
cobalt boride nanoparticles and h-BN nanocage encapsulation by
thermal plasma. Ceramics International 46 (2020) 28792–9.
11. Lv J, Wang Q, Chen P, Liu H, Su Z, Zhao J, et al. Effect of ball-milling
time and Pd addition on electrochemical hydrogen storage
performance of Co2B alloy. Solid State Sciences 103 (2020) 106184.
12. Niu X, Wang X, Guan K, Wei Q, Liu H. Preparation, and electrochemical
hydrogen storage application of mesoporous carbon CMK-3 coated
Co2B alloy composite. Chemical Physics Letters 778 (2021)
138762.
13. Ghafar FA, Etherton D, Liu S, Buckley CE,
English NJ, Silvester DS, et al. Tuning the catalytic activity of
bifunctional cobalt boride nanoflakes for overall water splitting over
a wide pH range. Journal of The Electrochemical Society 169
(2022) 096507.
14. Masa J, Weide P, Peeters D, Sinev I, Xia W, Sun Z, et al. Amorphous
cobalt boride (Co2B) as a highly efficient nonprecious catalyst for
electrochemical water splitting: oxygen and hydrogen evolution.
Advanced Energy Materials 6 (2016) 1502313.
15. Simsek , T Barış M. Synthesis of Co2B nanostructures and their
catalytic properties for hydrogen generation. Journal of Boron 2(1)
(2017) 28–36.
16. Kartal L. Synthesis of cobalt boride particles by molten salt assisted
calciothermic reduction. Transactions of the Indian Institute of
Metals 76(3) (2022) 757–764.
17. Kartal L. Single Fe2B Phase Particle Production by Calciothermic
Reduction in Molten Salt. Hittite Journal of Science and
Engineering 9(2)(2022) 145–50.
18. Kartal L. Single step calciothermic synthesis of nickel boride particles in
molten salt. Journal of the Australian Ceramic Society (2023) https://
doi.org/10.1007/s41779-023-00893-9.
19. Sharifi H, Rabiei Faradonbeh S, Tayebi M. Production,
and characterization of cobalt/vanadium boride
nanocomposite powder by mechanochemical method.
Materials Chemistry and Physics 202 (2017) 251–257.
20. Wu C, Bai Y, Wang X, Wu F, Zhang C. Comparisons of Co-B alloys
synthesized via different methods for secondary alkaline batteries.
Solid State Ionics 179 (2008) 924–927.
21. Doñu-Ruiz MA, López-Perrusquia N, Renteria-Salcedo A,
Flores-Martinez M, Rodriguez-De Anda E, Muhl S, et al.
Tribocorrosion behavior of boride coating on CoCrMo alloy
produced by thermochemical process in 0.35% NaCl solution.
Surface and Coatings Technology 425 (2021) 127698.
22. Simsek T , Barış M, Akkurt A. Co2B nanopartikülleri ile kaplanmış
S235JRC karbon çelik malzemelerin farklı kesme yöntemleri ile
işlenebilirlik özelliklerinin araştırılması. Journal of Polytechnic 22(1)
(2019) 169–177.
23. Khoshsima S, Altıntaş Z, Burkhardt U, Schmidt M, Prashanth KG,
Somer M, et al. CToiBB2- crystalline powders: Synthesis,
microstructural analysis and their utilization as reinforcement agent.
Advanced Powder Technology 31 (202906) 4–22972.
24. Altıntaş Z, Khoshima S, Somer M, Balcı Ö. The synthesis of binary
and ternary coba-lbt ased metal borides by inorganic molten salt
technique. Journal Boron 5(1) (2020) 12–22.
25. Yolcular S, Karaoglu S. Hydrogen generation from
sodium borohydride with cobalt boride catalysts. ALKU Fen Bilim
Dergisi 2(2) (2020) 84–96.
26. Yılmaz D, Savacı U, Koç N, Turan S. Investigation of Boro/
carbothermic and carbothermic reduction synthesized calcium
hexaborides. Journal of Boron 3(2) (2018) 103–108.
27. Balcı, Özge AD. Borür-Karbür esaslı kompozit tozların öşütme
destekli karbotermik redüksiyon yöntemi ile ekonomik yoldan
üretimi. Metalurji 178 (2016) 40–44.
28. Verma PC, Mishra SK. Synthesis of iron boride powder by
carbothermic reduction method. Materials Today: Proceedings
28 (2019) 902–906.
29. Yucel O, Addemir O, Tekin A. The optimization of parameters for
the carbothermic production of ferroboron. Paper presented at
proceedings of the 6th international ferroalloys congress, Cape
Town, pp. 285–289, 1992.
30. Ross JRH. Catalyst Characterization in: Ross JRH (Eds)
Contemporary Catalysis fundamentals and current applications,
Elsevier, Amsterdam, pp.121–132, 2019.
32. Petit C, Pileni MP. Nanosize cobalt boride particles: Control
of the size and properties. Journal of Magnetism and Magnetic
Materials 166 (1997) 82–90.
33. Baris M, Simsek T, Akkurt A. Mechanochemical synthesis and
characterization of pure Co2B nanocrystals. Bulletin of
Materials Science 39(4) (2016) 1119–1126.