Research Article
BibTex RIS Cite

Year 2025, Volume: 12 Issue: 4, 177 - 183, 31.12.2025
https://doi.org/10.17350/HJSE19030000364

Abstract

Project Number

FEF 19004.16.003

References

  • 1. Read R P, Breedis J F. Behavior of Materials at Cryogenic Temperatures. ASTM Spec-Tech Publ. 1966;60:387.
  • 2. Chang L C, Read T A. Plastic Deformation and Diffusionless Phase Changes in Metals — the Gold-Cadmium Beta Phase. JOM. 1951;3:47−52.
  • 3. Buehler W J, Gilfrich J V, Wiley R C. Effect of Low Temperature Phase Changes on the Mechanical Properties of Alloys near Composition TiNi. J. Appl. Phys. 1963;34(5):1475−77.
  • 4. Himuro Y, Kainuma R, Ishida K. Martensitic Transformation and Shape Memory Effect in Ausaged Fe–Ni–Si Alloys. ISIJ Int. 2002;42:184−90.
  • 5. Golovchiner Y M, Tyapkin Y D. Problem of Metallography and Physics of Metals Fourth Symposium, In: Liubov B J, editor. 1955; Moscow. State Scientific Technical Press; 1955. p. 141.
  • 6. Durlu T N, Christian J W. The Effect of Plastic Deformation on the Martensite–Austenite Transformation in Two Fe–Ni–C Alloys. Met. Sci. 1974;8:1−4.
  • 7. Golovin I S, Nilsson J O, Serzhantova G V, Golovin S A. Anelastic effects connected with isothermal martensitic transformations in 24Ni4Mo austenitic and 12Cr9Ni4Mo maraging steels. J. Alloys Compd. 2000;310:411−7.
  • 8. Kakeshita T, Kuroiwa K, Shimizu K, Ikeda T, Yamagishi A, Date M. Effect of magnetic fields on athermal and isothermal martensitic transformations in Fe–Ni–Mn alloys. Mater. Trans. JIM. 1993;34:415−22.
  • 9. Patterson R L, Wayman G M. The Crystallography and Growth of Partially-Twinned Martensite Plates in Fe-Ni Alloys. Acta Metall. 1966;14(3):347−69.
  • 10. Georgiyeva I Ya, Nikitina I I. Isothermal and athermal martensitic transformations. Met. Sci. Heat Treat. 1972;14:452−8.
  • 11. Golovin S, Golovin I, Seleznev V. Isothermal and Athermal Transformation of FeNiMo Alloys. J. Phys. IV. 1995;5:305−10.
  • 12. Golovin, S, Golovin I. Anelastic effects and martensitic transformations in the Fe-Ni-Mo alloys. Phys. Met. Metallogr.1996;82(2):160−166.
  • 13. Pereloma E V, Stohr R A, Miller M K, Ringer S P. Observation of precipitation evolution in Fe-Ni-Mn-Ti-Al maraging steel by atom probe tomography. Metall. Mater. Trans. A. 2009;40:3069−3075.
  • 14. Aaltio I, Fukuda T, Kakeshita T. Elastocaloric cooling and heating using R-phase transformation in hot rolled Ni-Ti-Fe shape memory alloys with 2 and 4 at% Fe content. J. Alloys Compd. 2019;780:930−936.
  • 15. Padhee S P, Roy A, Pati S. Role of Mn-substitution towards the enhanced hydrogen storage performance in FeTi. Int. J. Hydrogen Energ. 2022;47:9357−9371.
  • 16. Zhang S, Han B, Li M, Zhang Q, Hu C, Niu S, et al. Investigation on solid particles erosion resistance of laser cladded CoCrFeNiTi high entropy alloy coating. Intermetallics. 2021;131:107111.
  • 17. Mishra R K, Shahi R. A systematic approach for enhancing magnetic properties of CoCrFeNiTi-based high entropy alloys via stoichiometric variation and annealing, J. Alloys Compd. 2020;82:153534.
  • 18. Cacciamani G, Keyzer J De, Ferro R, Klotz U E, Lacaze J, Wollants P. Critical evaluation of the Fe-Ni, Fe-Ti and Fe-Ni-Ti alloy systems. Intermetallics. 2006;14:1312–1325.
  • 19. Duarte L I, Klotz U E, Leinenbach C, Palm M, Stein F, Löffler JF. Experimental study of the Fe-Ni-Ti system. Intermetallics. 2010;18:374–384.
  • 20. Li X W, Ruan Y, Wei B. Promotion or suppression of eutectic and peri-eutectic growth in containerlessly processed Fe-Ni-Ti alloys. Metall. Mater. Trans. B. 2022;53:1351–1363,
  • 21. Decker R F. Source Book on Maraging Steels: A Comprehensive Collection of Outstanding Articles from the Periodical and Reference Literature. 2nd edition. New York: American Society for Metals International; 1979.
  • 22. Decker R F, Eash J T, Goldman A J. 18% Nickel maraging steel. Trans. ASM. 1962;55:58–76.
  • 23. Sha W, Z. Guo Z. Maraging steels: modelling of microstructure, properties and applications. First edition. North America: CRC Press; 2009.
  • 24. Liu H, Zhang J, Sun P, Zhou C, Liu Y, Fang Z Z. An overview of TiFe alloys for hydrogen storage: structure, processes, properties, and applications. J. Energy Storage. 2023;68:107772.
  • 25. Haraki T, Oishi K, Uchida H, Miyamoto Y, Abe M, Kokaji T, et al. Properties of hydrogen absorption by nano-structured FeTi alloys. Int. J. Mater. Res. 2008;99(5):507–512.
  • 26. Klimm D, Phase Equilibria. In: Nishinaga T, editor. Handbook of Crystal Growth. 2nd edition. New York: Elsevier; 2015. p. 85–136.
  • 27. Zadorozhnyi M Yu, Kaloshkin S D, Klyamkin S N, Bermesheva O V, Zadorozhnyi V Yu. Mechanochemical synthesis of a TiFe nanocrystalline intermetallic compound and its mechanical alloying with third component. Met. Sci. Heat Treat. 2013;54(9–10):461–465.
  • 28. Zadorozhnyy V Yu, Klyamkin S N, Zadorozhnyy M Yu, Bermesheva O V, Kaloshkin S D, Mechanical alloying of nanocrystalline intermetallic compound TiFe doped by aluminum and chromium. J. Alloy Compd. 2014;586:56–60.
  • 29. Arunkumar S, Kumaravel P, Velmurugan C, Senthilkumar V. Microstructures and mechanical properties of nanocrystalline NiTi intermetallics formed by mechanosynthesis. Int. J. Miner. Metall. Mater. 2018;25(1):80–87.
  • 30. Bouchareb N, Hezil N, Hamadi F, Fellah M. Effect of milling time on structural, mechanical and tribological behavior of a newly developed Ti-Ni alloy for biomedical applications. Mater. Today Commun. 2024;38:108201.
  • 31. Subramanian G O, Jang C, Shin J H, Jeong C. Effect of Ti Content on the Microstructure and High-Temperature Creep Property of Cast Fe-Ni-Based Alloys with High-Al Content. Materials. 2021;14:82.
  • 32. Guo Z, Zhao M, Li C, Chen S, Rong L. Mechanism of hydrogen embrittlement in a gamma-prime phase strengthened Fe–Ni based austenitic alloy. Metall. Mater. Trans. A. 2012;555:77– 84.
  • 33. Shekhter A, Aaronson H I, Miller M K, Rınger S P, Pereloma E V. Effect of Aging and Deformation on the Microstructure and Properties of Fe-Ni-Ti Maraging Steel. Metall. Mater. Trans. A. 2004;35a:973.
  • 34. Morito S, Tanaka H, Konishi R, Furuhara T, Maki T. The morphology and crystallography of lath martensite in Fe-C alloys. Acta Mater. 2003;51:1789−99.
  • 35. Ikeda O, Himuro Y, Ohnuma I, Kainuma R, Ishida K. Phase equilibria in the Fe-rich portion of the Fe–Ni–Si system. J. Alloys Compd. 1998;268:130−6.
  • 36. Zhu J W, Xu Y, Liu Y N. Lath martensite in 1.4% C ultra-high carbon steel and its grain size effect. Mater. Sci. Eng. A. 2004;385:440–4.
  • 37. Güngüneş H, Microstructure hyperfine interaction and magnetic transition of Fe-25%Ni-5%Si-x%Co alloys. Hyperfine Interact. 2016;237:11−9.
  • 38. Nishiyama Z. Martensitic transformation. New York: Academic Press; 1978.
  • 39. Bandyopadhyay D, Suwas S, Singru R M, Bhargava S. Mossbauer spectroscopic study of heat-treated and control-cooled Fe3Al alloys. J. Mater. Sci. 1998;33(1):109−16.
  • 40. Akgün I, Gedikoğlu A, Durlu T N. Mössbauer study of martensitic transformations in an Fe-29.6% Ni alloy. J. Mater. Sci. 1982;17:3479–83.
  • 41. Mijovilovich A, Vieira A G, Paniago R, Pfannes H D, Gonzalez B M. Mössbauer study of the retained austenitic phase in multiphase steels. Mater. Sci. Eng. A. 2000;283:65–9.
  • 42. Ishikawa Y, Endoh Y. Antiferromagnetism of γ-iron- manganese alloys. II. Neutron diffraction and Mössbauer effect studies. J. Phys. Soc. Jpn. 1967;23:205−13.
  • 43. Yamauchi K, Mizoguchi T. The Magnetic Moments of Amorphous Metal-Metalloid Alloys. J. Phys. Soc. Jpn. 1975;39:541−2.
  • 44. Güngüneş H, Yasar E, Dikici M, Effect of Si on Austenite Stabilization Martensite Morphology and Magnetic Properties in Fe-26%Ni-x%Si Alloys. Int. J. Miner. Metall. Mater. 2011;18(2):192−6.
  • 45. Yasar E, Güngüneş H, Kilic A, Durlu T N. Effect of Mo on the magnetic properties of martensitic phase in Fe–Ni–Mo alloys. J. Alloys Compd. 2006;424:51−4.
  • 46. Bandyopadhyay D, Suwas S, Singru R M, Bhargava S. Mossbauer spectroscopic study of heat-treated and control-cooled Fe3Al alloys. J. Mater. Sci. 1998;33:109.

Effect of Ti Element on Martensitic Transformations in Fe-Ni-x%Ti Alloys

Year 2025, Volume: 12 Issue: 4, 177 - 183, 31.12.2025
https://doi.org/10.17350/HJSE19030000364

Abstract

This study investigated the morphological, magnetic, mechanical, and thermal properties of Fe-28.2%Ni-0.5%Ti, Fe-26.8%Ni-1.5%Ti, and Fe-27.6%Ni-4.2%Ti alloys. Scanning Electron Microscope (SEM), Mössbauer Spectrometer, Differential Scanning Calorimetry (DSC), and Vickers hardness were used to determine the physical properties of the alloys. In SEM examinations, a high amount of lath (rod) type martensite formation was observed in Fe-28.2%Ni-0.5%Ti, Fe-26.8%Ni-1.5%Ti alloys. In contrast, in Fe-27.6%Ni-4.2%Ti alloy, lenticular (spindle) type martensite formation with partial twinning was observed in addition to rod (lath) martensites. We determined Mössbauer parameters such as Hyperfine Magnetic Field (Heff), Quadrupole Shift (Q.S), Isomer Shift (I.S), Line Width (W), and percent fraction fields of phases. It has been found that Mössbauer spectra at room temperature are formed by the overlap of two sextet spectra belonging to the ferromagnetic or antiferromagnetic martensite phase and one single spectrum belonging to the paramagnetic austenite phase. We determined morphological change, martensitic transformation start temperature (Ms), austenite phase transformation start temperature (As), and hardness values depending on Ti amount.

Ethical Statement

Ethical permission is not required for this study.

Supporting Institution

Hitit University

Project Number

FEF 19004.16.003

Thanks

This study was supported by Hitit University Scientific Research Projects Coordination Office with Project number FEF 19004.16.003.

References

  • 1. Read R P, Breedis J F. Behavior of Materials at Cryogenic Temperatures. ASTM Spec-Tech Publ. 1966;60:387.
  • 2. Chang L C, Read T A. Plastic Deformation and Diffusionless Phase Changes in Metals — the Gold-Cadmium Beta Phase. JOM. 1951;3:47−52.
  • 3. Buehler W J, Gilfrich J V, Wiley R C. Effect of Low Temperature Phase Changes on the Mechanical Properties of Alloys near Composition TiNi. J. Appl. Phys. 1963;34(5):1475−77.
  • 4. Himuro Y, Kainuma R, Ishida K. Martensitic Transformation and Shape Memory Effect in Ausaged Fe–Ni–Si Alloys. ISIJ Int. 2002;42:184−90.
  • 5. Golovchiner Y M, Tyapkin Y D. Problem of Metallography and Physics of Metals Fourth Symposium, In: Liubov B J, editor. 1955; Moscow. State Scientific Technical Press; 1955. p. 141.
  • 6. Durlu T N, Christian J W. The Effect of Plastic Deformation on the Martensite–Austenite Transformation in Two Fe–Ni–C Alloys. Met. Sci. 1974;8:1−4.
  • 7. Golovin I S, Nilsson J O, Serzhantova G V, Golovin S A. Anelastic effects connected with isothermal martensitic transformations in 24Ni4Mo austenitic and 12Cr9Ni4Mo maraging steels. J. Alloys Compd. 2000;310:411−7.
  • 8. Kakeshita T, Kuroiwa K, Shimizu K, Ikeda T, Yamagishi A, Date M. Effect of magnetic fields on athermal and isothermal martensitic transformations in Fe–Ni–Mn alloys. Mater. Trans. JIM. 1993;34:415−22.
  • 9. Patterson R L, Wayman G M. The Crystallography and Growth of Partially-Twinned Martensite Plates in Fe-Ni Alloys. Acta Metall. 1966;14(3):347−69.
  • 10. Georgiyeva I Ya, Nikitina I I. Isothermal and athermal martensitic transformations. Met. Sci. Heat Treat. 1972;14:452−8.
  • 11. Golovin S, Golovin I, Seleznev V. Isothermal and Athermal Transformation of FeNiMo Alloys. J. Phys. IV. 1995;5:305−10.
  • 12. Golovin, S, Golovin I. Anelastic effects and martensitic transformations in the Fe-Ni-Mo alloys. Phys. Met. Metallogr.1996;82(2):160−166.
  • 13. Pereloma E V, Stohr R A, Miller M K, Ringer S P. Observation of precipitation evolution in Fe-Ni-Mn-Ti-Al maraging steel by atom probe tomography. Metall. Mater. Trans. A. 2009;40:3069−3075.
  • 14. Aaltio I, Fukuda T, Kakeshita T. Elastocaloric cooling and heating using R-phase transformation in hot rolled Ni-Ti-Fe shape memory alloys with 2 and 4 at% Fe content. J. Alloys Compd. 2019;780:930−936.
  • 15. Padhee S P, Roy A, Pati S. Role of Mn-substitution towards the enhanced hydrogen storage performance in FeTi. Int. J. Hydrogen Energ. 2022;47:9357−9371.
  • 16. Zhang S, Han B, Li M, Zhang Q, Hu C, Niu S, et al. Investigation on solid particles erosion resistance of laser cladded CoCrFeNiTi high entropy alloy coating. Intermetallics. 2021;131:107111.
  • 17. Mishra R K, Shahi R. A systematic approach for enhancing magnetic properties of CoCrFeNiTi-based high entropy alloys via stoichiometric variation and annealing, J. Alloys Compd. 2020;82:153534.
  • 18. Cacciamani G, Keyzer J De, Ferro R, Klotz U E, Lacaze J, Wollants P. Critical evaluation of the Fe-Ni, Fe-Ti and Fe-Ni-Ti alloy systems. Intermetallics. 2006;14:1312–1325.
  • 19. Duarte L I, Klotz U E, Leinenbach C, Palm M, Stein F, Löffler JF. Experimental study of the Fe-Ni-Ti system. Intermetallics. 2010;18:374–384.
  • 20. Li X W, Ruan Y, Wei B. Promotion or suppression of eutectic and peri-eutectic growth in containerlessly processed Fe-Ni-Ti alloys. Metall. Mater. Trans. B. 2022;53:1351–1363,
  • 21. Decker R F. Source Book on Maraging Steels: A Comprehensive Collection of Outstanding Articles from the Periodical and Reference Literature. 2nd edition. New York: American Society for Metals International; 1979.
  • 22. Decker R F, Eash J T, Goldman A J. 18% Nickel maraging steel. Trans. ASM. 1962;55:58–76.
  • 23. Sha W, Z. Guo Z. Maraging steels: modelling of microstructure, properties and applications. First edition. North America: CRC Press; 2009.
  • 24. Liu H, Zhang J, Sun P, Zhou C, Liu Y, Fang Z Z. An overview of TiFe alloys for hydrogen storage: structure, processes, properties, and applications. J. Energy Storage. 2023;68:107772.
  • 25. Haraki T, Oishi K, Uchida H, Miyamoto Y, Abe M, Kokaji T, et al. Properties of hydrogen absorption by nano-structured FeTi alloys. Int. J. Mater. Res. 2008;99(5):507–512.
  • 26. Klimm D, Phase Equilibria. In: Nishinaga T, editor. Handbook of Crystal Growth. 2nd edition. New York: Elsevier; 2015. p. 85–136.
  • 27. Zadorozhnyi M Yu, Kaloshkin S D, Klyamkin S N, Bermesheva O V, Zadorozhnyi V Yu. Mechanochemical synthesis of a TiFe nanocrystalline intermetallic compound and its mechanical alloying with third component. Met. Sci. Heat Treat. 2013;54(9–10):461–465.
  • 28. Zadorozhnyy V Yu, Klyamkin S N, Zadorozhnyy M Yu, Bermesheva O V, Kaloshkin S D, Mechanical alloying of nanocrystalline intermetallic compound TiFe doped by aluminum and chromium. J. Alloy Compd. 2014;586:56–60.
  • 29. Arunkumar S, Kumaravel P, Velmurugan C, Senthilkumar V. Microstructures and mechanical properties of nanocrystalline NiTi intermetallics formed by mechanosynthesis. Int. J. Miner. Metall. Mater. 2018;25(1):80–87.
  • 30. Bouchareb N, Hezil N, Hamadi F, Fellah M. Effect of milling time on structural, mechanical and tribological behavior of a newly developed Ti-Ni alloy for biomedical applications. Mater. Today Commun. 2024;38:108201.
  • 31. Subramanian G O, Jang C, Shin J H, Jeong C. Effect of Ti Content on the Microstructure and High-Temperature Creep Property of Cast Fe-Ni-Based Alloys with High-Al Content. Materials. 2021;14:82.
  • 32. Guo Z, Zhao M, Li C, Chen S, Rong L. Mechanism of hydrogen embrittlement in a gamma-prime phase strengthened Fe–Ni based austenitic alloy. Metall. Mater. Trans. A. 2012;555:77– 84.
  • 33. Shekhter A, Aaronson H I, Miller M K, Rınger S P, Pereloma E V. Effect of Aging and Deformation on the Microstructure and Properties of Fe-Ni-Ti Maraging Steel. Metall. Mater. Trans. A. 2004;35a:973.
  • 34. Morito S, Tanaka H, Konishi R, Furuhara T, Maki T. The morphology and crystallography of lath martensite in Fe-C alloys. Acta Mater. 2003;51:1789−99.
  • 35. Ikeda O, Himuro Y, Ohnuma I, Kainuma R, Ishida K. Phase equilibria in the Fe-rich portion of the Fe–Ni–Si system. J. Alloys Compd. 1998;268:130−6.
  • 36. Zhu J W, Xu Y, Liu Y N. Lath martensite in 1.4% C ultra-high carbon steel and its grain size effect. Mater. Sci. Eng. A. 2004;385:440–4.
  • 37. Güngüneş H, Microstructure hyperfine interaction and magnetic transition of Fe-25%Ni-5%Si-x%Co alloys. Hyperfine Interact. 2016;237:11−9.
  • 38. Nishiyama Z. Martensitic transformation. New York: Academic Press; 1978.
  • 39. Bandyopadhyay D, Suwas S, Singru R M, Bhargava S. Mossbauer spectroscopic study of heat-treated and control-cooled Fe3Al alloys. J. Mater. Sci. 1998;33(1):109−16.
  • 40. Akgün I, Gedikoğlu A, Durlu T N. Mössbauer study of martensitic transformations in an Fe-29.6% Ni alloy. J. Mater. Sci. 1982;17:3479–83.
  • 41. Mijovilovich A, Vieira A G, Paniago R, Pfannes H D, Gonzalez B M. Mössbauer study of the retained austenitic phase in multiphase steels. Mater. Sci. Eng. A. 2000;283:65–9.
  • 42. Ishikawa Y, Endoh Y. Antiferromagnetism of γ-iron- manganese alloys. II. Neutron diffraction and Mössbauer effect studies. J. Phys. Soc. Jpn. 1967;23:205−13.
  • 43. Yamauchi K, Mizoguchi T. The Magnetic Moments of Amorphous Metal-Metalloid Alloys. J. Phys. Soc. Jpn. 1975;39:541−2.
  • 44. Güngüneş H, Yasar E, Dikici M, Effect of Si on Austenite Stabilization Martensite Morphology and Magnetic Properties in Fe-26%Ni-x%Si Alloys. Int. J. Miner. Metall. Mater. 2011;18(2):192−6.
  • 45. Yasar E, Güngüneş H, Kilic A, Durlu T N. Effect of Mo on the magnetic properties of martensitic phase in Fe–Ni–Mo alloys. J. Alloys Compd. 2006;424:51−4.
  • 46. Bandyopadhyay D, Suwas S, Singru R M, Bhargava S. Mossbauer spectroscopic study of heat-treated and control-cooled Fe3Al alloys. J. Mater. Sci. 1998;33:109.
There are 46 citations in total.

Details

Primary Language English
Subjects Physical Metallurgy, Material Characterization, Metals and Alloy Materials
Journal Section Research Article
Authors

Ozan Önal 0009-0001-2613-1944

Osman Armağan 0000-0002-7860-0909

Hakan Güngüneş 0000-0002-5803-3193

Talip Kırındı 0000-0001-8574-1673

Project Number FEF 19004.16.003
Submission Date March 23, 2025
Acceptance Date September 11, 2025
Publication Date December 31, 2025
Published in Issue Year 2025 Volume: 12 Issue: 4

Cite

Vancouver Önal O, Armağan O, Güngüneş H, Kırındı T. Effect of Ti Element on Martensitic Transformations in Fe-Ni-x%Ti Alloys. Hittite J Sci Eng. 2025;12(4):177-83.

Hittite Journal of Science and Engineering is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY NC).