Research Article
BibTex RIS Cite

Year 2025, Volume: 12 Issue: 4, 185 - 195, 31.12.2025
https://doi.org/10.17350/HJSE19030000365

Abstract

References

  • 1. UNEP. Climate action | UNEP - UN Environment Programme [Internet]. 2023 [cited 2024 Oct 11]. Available from: https://www.unep.org/topics/climate-action
  • 2. UNEP. Emissions Gap Report 2023: Broken Record – Temperatures hit new highs, yet world fails to cut emissions (again) [Internet]. United Nations Environment Programme; 2023 [cited 2024 Oct 11]. Available from: https://wedocs.unep.org/20.500.11822/43922
  • 3. IEA. Electricity production – Electricity Information: Overview – Analysis [Internet]. 2021 [cited 2024 Oct 11]. Available from: https://www.iea.org/reports/electricity-information-overview/electricity-production
  • 4. IEA. Shares of residential energy consumption by end use in selected IEA countries, 2019 – Charts – Data & Statistics [Internet]. 2021 [cited 2024 Oct 11]. Available from: https://www.iea.org/data-and-statistics/charts/shares-of-residential-energy-consumption-by-end-use-in-selected-iea-countries-2019
  • 5. EU. Regulation (EU) No 517/2014 of the European Parliament and of the Council of 16 April 2014 on fluorinated greenhouse gases and repealing Regulation (EC) No 842/2006 [Internet]. 517/2014 2014 p. L150/195-230. Available from: http://eur-lex.europa.eu/eli/reg/2014/517/oj
  • 6. EU. Regulation (EU) 2024/573 of the European Parliament and of the Council of 7 February 2024 on fluorinated greenhouse gases, amending Directive (EU) 2019/1937 and repealing Regulation (EU) no 517/2014. 2024/573 2024.
  • 7. WMO. Scientific assessment of ozone depletion: 2022: Executive Summary. Geneva, Switzerland: World Meteorological Organization; 2022.
  • 8. ASHRAE. ANSI/ASHRAE Standard 34-2019: Designation and Safety Classification of Refrigerants. American Society of Heating, Refrigerating and Air-Conditioning Engineers; 2019.
  • 9. Bell IH, Wronski J, Quoilin S, Lemort V. Pure and Pseudo-pure Fluid Thermophysical Property Evaluation and the Open-Source Thermophysical Property Library CoolProp. Ind Eng Chem Res. 2014 Feb 12;53(6):2498–508.
  • 10. Smith C, Nicholls ZRJ, Armour K, Collins W, Forster P, Meinshausen M, et al. The Earth’s Energy Budget, Climate Feedbacks, and Climate Sensitivity Supplementary Material [Internet]. Masson-Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, Berger S, et al., editors. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. 2021 [cited 2024 Mar 26]. Available from: https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_Chapter07_SM.pdf
  • 11. Abdelaziz O, Polonara F, Peixoto R, Kuijpers L. UNEP 2022 Report of the Refrigeration, Air Conditioning And Heat Pumps Technical Options Committee. United Nations Environment Programme; 2023.
  • 12. Hayes C. The Rise of Propane-Based Residential AC in Europe [Internet]. Natural Refrigerants. 2024 [cited 2025 June 17]. Available from: https://naturalrefrigerants.com/the-rise-of-propane-based-residential-ac-in-europe/
  • 13. Garry M. ATMOsphere Releases Market Report Showing Growth of CO2 [Internet]. R744. 2023 [cited 2024 Mar 26]. Available from: https://r744.com/atmosphere-releases-2023-market-report-showing-robust-growth-of-transcritical-co2/
  • 14. Hayes C. ISH 2025: Daikin Adds CO2 to VRF Range [Internet]. Natural Refrigerants. 2025 [cited 2025 June 17]. Available from: https://naturalrefrigerants.com/ish-2025-daikin-backs-co2-as-the-future-of-vrf-systems/
  • 15. Yu B, Ouyang H, Shi J, Liu W, Chen J. Evaluation of low-GWP and mildly flammable mixtures as new alternatives for R410A in air-conditioning and heat pump system. International Journal of Refrigeration. 2021 Jan 1;121:95–104.
  • 16. Yang K, Zhao Z, Liu Y, Wang Q, Jiang L, Xue Z, et al. Performance investigations on nonflammable CO2/HFOs mixtures for an air-source heat pump water heater during wintertime. International Journal of Refrigeration. 2025 July;175:389–99.
  • 17. Yaïci W, Longo M. Ejector-enhanced air-source heat pump systems using ultra-low-GWP zeotropic mixtures in cold climates. Energy. 2025 Aug 1;328:136492.
  • 18. Bahman AM, Parikhani T, Ziviani D. Multi-objective optimization of a cold-climate two-stage economized heat pump for residential heating applications. Journal of Building Engineering. 2022 Apr;46:103799.
  • 19. Cho IY, Seo H, Kim D, Kim Y. Performance comparison between R410A and R32 multi-heat pumps with a sub-cooler vapor injection in the heating and cooling modes. Energy. 2016 Oct;112:179–87.
  • 20. Wang X, Yu J, Xing M. Performance analysis of a new ejector enhanced vapor injection heat pump cycle. Energy Conversion and Management. 2015 Aug;100:242–8.
  • 21. Fingas R, Haida M, Smolka J, Besagni G, Bodys J, Palacz M, et al. Experimental analysis of the air-to-water ejector-based R290 heat pump system for domestic application. Applied Thermal Engineering. 2024 Jan;236:121800.
  • 22. Adamson KM, Walmsley TG, Carson JK, Chen Q, Schlosser F, Kong L, et al. High-temperature and transcritical heat pump cycles and advancements: A review. Renewable and Sustainable Energy Reviews. 2022 Oct;167:112798.
  • 23. Austin BT, Sumathy K. Transcritical carbon dioxide heat pump systems: A review. Renewable and Sustainable Energy Reviews. 2011 Oct;15(8):4013–29.
  • 24. Agrawal N, Bhattacharyya S, Sarkar J. Optimization of two-stage transcritical carbon dioxide heat pump cycles. International Journal of Thermal Sciences. 2007 Feb;46(2):180–7.
  • 25. Sarkar J, Agrawal N. Performance optimization of transcritical CO2 cycle with parallel compression economization. International Journal of Thermal Sciences. 2010 May;49(5):838–43.
  • 26. Ersoy HK, Bilir N. Performance characteristics of ejector expander transcritical CO2 refrigeration cycle. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy. 2012;226(5):623–35.
  • 27. Zhu Y, Huang Y, Li C, Zhang F, Jiang PX. Experimental investigation on the performance of transcritical CO2 ejector–expansion heat pump water heater system. Energy Conversion and Management. 2018 July;167:147–55.
  • 28. Gürdal M. Hava ve Toprak Kaynaklı Isı Pompası Kullanımı için Teorik Enerji ve Ekserji Analizi: Kastamonu İli Örneği. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2023 Apr 30;28(1):140–53.
  • 29. Tan H, Pehlivanlı ZO. Thermodynamic Analysis of an Air Source Heat Pump for Kırıkkale Province. AKU IJETAS. 2024 June 15;7(1):1–8.
  • 30. Şimşek E, Karaçaylı İ, Mutlu İ. Farklı koşullardaki hava–su–hava kaynaklı ısı pompasının farklı soğutucu akışkanlarla termodinamik analizi. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2017 Oct 17;1–12.
  • 31. Elbi̇r A, Bayrakçı HC, Özgür AE, Deni̇z Ö. Experimental analysis of a transcritical heat pump system with CO2 refrigerant. International Advanced Researches and Engineering Journal. 2022 Dec 15;6(3):186–93.
  • 32. Klein SA. Engineering Equation Solver. F-Chart Software; 2020.
  • 33. Çengel YA, Boles MA. Thermodynamics: an engineering approach. 8. edition in SI units. New York, NY: McGraw-Hill Education; 2015. 996 p.
  • 34. The MathWorks Inc. MATLAB version: R2022b [Internet]. The MathWorks Inc.; 2022. Available from: www.mathworks.com
  • 35. Mitsubishi Electric. Legendera Duvar Tipi Split Klima. 2022.
  • 36. Tsimpoukis D, Syngounas E, Petsanas D, Mitsopoulos G, Anagnostatos S, Bellos E, et al. Energy and environmental investigation of R744 all-in-one configurations for refrigeration and heating/air conditioning needs of a supermarket. Journal of Cleaner Production. 2021 Jan 10;279.
  • 37. Brunin O, Feidt M, Hivet B. Comparison of the working domains of some compression heat pumps and a compression-absorption heat pump. International Journal of Refrigeration. 1997 Aug;20(5):308–18.
  • 38. Richter MR, Bullard CW, Hrnjak PS. Comparison of R744 and R410A for Residential Heating and Cooling Applications. University of Illinois Urbana-Champaign: University of Illinois Urbana-Champaign Air Conditioning and Refrigeration Center; 2001 June. Report No.: ACRC CR-39.
  • 39. Mitsopoulos G, Syngounas E, Tsimpoukis D, Bellos E, Tzivanidis C, Anagnostatos S. Annual performance of a supermarket refrigeration system using different configurations with CO2 refrigerant. Energy Conversion and Management: X. 2019 Jan;1:100006.
  • 40. Karampour M, Sawalha S. State-of-the-art integrated CO2 refrigeration system for supermarkets: A comparative analysis. International Journal of Refrigeration. 2018 Feb;86:239–57.
  • 41. Said SAM, Habib MA, Iqbal MO. Database for building energy prediction in Saudi Arabia. Energy Conversion and Management. 2003 Jan;44(1):191–201.
  • 42. Zottl A, Lindahl M, Nordman R, Rivière P, Miara M. Evaluation method for comparison of heat pump systems with conventional heating systems, D4.3. Concept for evaluation of CO2-reduction potential. European Commission; 2011. (Seasonal Performance Factor and Monitoring for Heat Pump Systems in the Building Sector SEPEMO-Build).
  • 43. Zhao L, Zeng W, Yuan Z. Reduction of potential greenhouse gas emissions of room air-conditioner refrigerants: a life cycle carbon footprint analysis. Journal of Cleaner Production. 2015 Aug 1;100:262–8.
  • 44. Liu X, Hu Y, Wang Q, Yao L, Li M. Energetic, environmental and economic comparative analyses of modified transcritical CO2 heat pump system to replace R134a system for home heating. Energy. 2021 Aug;229:120544.
  • 45. Pabon JJG, Khosravi A, Belman-Flores JM, Machado L, Revellin R. Applications of refrigerant R1234yf in heating, air conditioning and refrigeration systems: A decade of researches. International Journal of Refrigeration. 2020 Oct;118:104–13.
  • 46. Johnson EP. Air-source heat pump carbon footprints: HFC impacts and comparison to other heat sources. Energy Policy. 2011 Mar;39(3):1369–81.
  • 47. ETKB. Türkiye elektrik üretimi ve elektrik tüketim noktası emisyon faktörleri bilgi formu. Ankara, Türkiye: Ministry of Energy and Natural Resources; 2022. Report No.: ETKB-EVÇED-FRM-042 Rev.00.
  • 48. Troch S, Lee H, Hwang Y, Radermacher R. Harmonization of Life Cycle Climate Performance (LCCP) Methodology. In Purdue; 2016.
  • 49. Daikin. Air Conditioning Technical Data RXA-A [Internet]. Daikin Europe N.V.; 2018 [cited 2025 June 8]. Available from: http://www.daikintech.co.uk/Data/Split-Sky-Air-Indoor/FTXA/2019/RXA-A2V1B(B2V1B)/RXA-A2V1B_Databook_EEDEN18.pdf
  • 50. Lu L, Cai W, Xie L, Li S, Soh YC. HVAC system optimization—in-building section. Energy and Buildings. 2005 Jan;37(1):11–22.
  • 51. Rongling Li, Ryozo Ooka. Multi-variable Optimization of HVAC System Using a Genetic Algorithm. JEPE [Internet]. 2014 Feb 28 [cited 2025 July 31];8(2). Available from: http://www.davidpublisher.org/index.php/Home/Article/index?id=18954.html
  • 52. Chapra SC, Canale RP. Numerical methods for engineers. Seventh edition. New York, NY: McGraw-Hill Education; 2015. 970 p.
  • 53. Çalışkan O, Ersoy HK. Energy, environmental, and exergoeconomic (3E) analysis of transcritical CO2 booster and parallel compression supermarket refrigeration cycles in climate zones of Türkiye. KONJES. 2024 Jan 19;12(1):123–37.

Comparative Energetic and Environmental Investigation of Air-to-Air Heat Pump Cycles Using Ultra-Low GWP Refrigerants

Year 2025, Volume: 12 Issue: 4, 185 - 195, 31.12.2025
https://doi.org/10.17350/HJSE19030000365

Abstract

Global warming has become a worldwide problem in recent years, and authorities are taking action to overcome this problem. Refrigerants with high global warming potential (GWP) are continuously prohibited, and as a result, ultra-low GWP refrigerants stand out in the heating, cooling, refrigeration, and air conditioning (HVAC-R) industry. This paper presents a theoretical analysis of air-to-air heat pump cycles using 2024 F-Gas regulation-compliant ultra-low GWP refrigerants, including hydrocarbons and transcritical CO2, with three different configurations. Annual energy consumption and total equivalent warming impact (TEWI) values were calculated for three provinces in Türkiye with different climates using bin-hour data. The results were compared in both cooling and heating modes with R410A and R32 cycles as well. Up to 11.7% and 14.5% improvement in annual energy consumption was achieved using parallel compression and booster cycle, respectively. Cycles with booster configuration using R290 and R600a refrigerants achieved the best performance.

References

  • 1. UNEP. Climate action | UNEP - UN Environment Programme [Internet]. 2023 [cited 2024 Oct 11]. Available from: https://www.unep.org/topics/climate-action
  • 2. UNEP. Emissions Gap Report 2023: Broken Record – Temperatures hit new highs, yet world fails to cut emissions (again) [Internet]. United Nations Environment Programme; 2023 [cited 2024 Oct 11]. Available from: https://wedocs.unep.org/20.500.11822/43922
  • 3. IEA. Electricity production – Electricity Information: Overview – Analysis [Internet]. 2021 [cited 2024 Oct 11]. Available from: https://www.iea.org/reports/electricity-information-overview/electricity-production
  • 4. IEA. Shares of residential energy consumption by end use in selected IEA countries, 2019 – Charts – Data & Statistics [Internet]. 2021 [cited 2024 Oct 11]. Available from: https://www.iea.org/data-and-statistics/charts/shares-of-residential-energy-consumption-by-end-use-in-selected-iea-countries-2019
  • 5. EU. Regulation (EU) No 517/2014 of the European Parliament and of the Council of 16 April 2014 on fluorinated greenhouse gases and repealing Regulation (EC) No 842/2006 [Internet]. 517/2014 2014 p. L150/195-230. Available from: http://eur-lex.europa.eu/eli/reg/2014/517/oj
  • 6. EU. Regulation (EU) 2024/573 of the European Parliament and of the Council of 7 February 2024 on fluorinated greenhouse gases, amending Directive (EU) 2019/1937 and repealing Regulation (EU) no 517/2014. 2024/573 2024.
  • 7. WMO. Scientific assessment of ozone depletion: 2022: Executive Summary. Geneva, Switzerland: World Meteorological Organization; 2022.
  • 8. ASHRAE. ANSI/ASHRAE Standard 34-2019: Designation and Safety Classification of Refrigerants. American Society of Heating, Refrigerating and Air-Conditioning Engineers; 2019.
  • 9. Bell IH, Wronski J, Quoilin S, Lemort V. Pure and Pseudo-pure Fluid Thermophysical Property Evaluation and the Open-Source Thermophysical Property Library CoolProp. Ind Eng Chem Res. 2014 Feb 12;53(6):2498–508.
  • 10. Smith C, Nicholls ZRJ, Armour K, Collins W, Forster P, Meinshausen M, et al. The Earth’s Energy Budget, Climate Feedbacks, and Climate Sensitivity Supplementary Material [Internet]. Masson-Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, Berger S, et al., editors. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. 2021 [cited 2024 Mar 26]. Available from: https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_Chapter07_SM.pdf
  • 11. Abdelaziz O, Polonara F, Peixoto R, Kuijpers L. UNEP 2022 Report of the Refrigeration, Air Conditioning And Heat Pumps Technical Options Committee. United Nations Environment Programme; 2023.
  • 12. Hayes C. The Rise of Propane-Based Residential AC in Europe [Internet]. Natural Refrigerants. 2024 [cited 2025 June 17]. Available from: https://naturalrefrigerants.com/the-rise-of-propane-based-residential-ac-in-europe/
  • 13. Garry M. ATMOsphere Releases Market Report Showing Growth of CO2 [Internet]. R744. 2023 [cited 2024 Mar 26]. Available from: https://r744.com/atmosphere-releases-2023-market-report-showing-robust-growth-of-transcritical-co2/
  • 14. Hayes C. ISH 2025: Daikin Adds CO2 to VRF Range [Internet]. Natural Refrigerants. 2025 [cited 2025 June 17]. Available from: https://naturalrefrigerants.com/ish-2025-daikin-backs-co2-as-the-future-of-vrf-systems/
  • 15. Yu B, Ouyang H, Shi J, Liu W, Chen J. Evaluation of low-GWP and mildly flammable mixtures as new alternatives for R410A in air-conditioning and heat pump system. International Journal of Refrigeration. 2021 Jan 1;121:95–104.
  • 16. Yang K, Zhao Z, Liu Y, Wang Q, Jiang L, Xue Z, et al. Performance investigations on nonflammable CO2/HFOs mixtures for an air-source heat pump water heater during wintertime. International Journal of Refrigeration. 2025 July;175:389–99.
  • 17. Yaïci W, Longo M. Ejector-enhanced air-source heat pump systems using ultra-low-GWP zeotropic mixtures in cold climates. Energy. 2025 Aug 1;328:136492.
  • 18. Bahman AM, Parikhani T, Ziviani D. Multi-objective optimization of a cold-climate two-stage economized heat pump for residential heating applications. Journal of Building Engineering. 2022 Apr;46:103799.
  • 19. Cho IY, Seo H, Kim D, Kim Y. Performance comparison between R410A and R32 multi-heat pumps with a sub-cooler vapor injection in the heating and cooling modes. Energy. 2016 Oct;112:179–87.
  • 20. Wang X, Yu J, Xing M. Performance analysis of a new ejector enhanced vapor injection heat pump cycle. Energy Conversion and Management. 2015 Aug;100:242–8.
  • 21. Fingas R, Haida M, Smolka J, Besagni G, Bodys J, Palacz M, et al. Experimental analysis of the air-to-water ejector-based R290 heat pump system for domestic application. Applied Thermal Engineering. 2024 Jan;236:121800.
  • 22. Adamson KM, Walmsley TG, Carson JK, Chen Q, Schlosser F, Kong L, et al. High-temperature and transcritical heat pump cycles and advancements: A review. Renewable and Sustainable Energy Reviews. 2022 Oct;167:112798.
  • 23. Austin BT, Sumathy K. Transcritical carbon dioxide heat pump systems: A review. Renewable and Sustainable Energy Reviews. 2011 Oct;15(8):4013–29.
  • 24. Agrawal N, Bhattacharyya S, Sarkar J. Optimization of two-stage transcritical carbon dioxide heat pump cycles. International Journal of Thermal Sciences. 2007 Feb;46(2):180–7.
  • 25. Sarkar J, Agrawal N. Performance optimization of transcritical CO2 cycle with parallel compression economization. International Journal of Thermal Sciences. 2010 May;49(5):838–43.
  • 26. Ersoy HK, Bilir N. Performance characteristics of ejector expander transcritical CO2 refrigeration cycle. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy. 2012;226(5):623–35.
  • 27. Zhu Y, Huang Y, Li C, Zhang F, Jiang PX. Experimental investigation on the performance of transcritical CO2 ejector–expansion heat pump water heater system. Energy Conversion and Management. 2018 July;167:147–55.
  • 28. Gürdal M. Hava ve Toprak Kaynaklı Isı Pompası Kullanımı için Teorik Enerji ve Ekserji Analizi: Kastamonu İli Örneği. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2023 Apr 30;28(1):140–53.
  • 29. Tan H, Pehlivanlı ZO. Thermodynamic Analysis of an Air Source Heat Pump for Kırıkkale Province. AKU IJETAS. 2024 June 15;7(1):1–8.
  • 30. Şimşek E, Karaçaylı İ, Mutlu İ. Farklı koşullardaki hava–su–hava kaynaklı ısı pompasının farklı soğutucu akışkanlarla termodinamik analizi. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2017 Oct 17;1–12.
  • 31. Elbi̇r A, Bayrakçı HC, Özgür AE, Deni̇z Ö. Experimental analysis of a transcritical heat pump system with CO2 refrigerant. International Advanced Researches and Engineering Journal. 2022 Dec 15;6(3):186–93.
  • 32. Klein SA. Engineering Equation Solver. F-Chart Software; 2020.
  • 33. Çengel YA, Boles MA. Thermodynamics: an engineering approach. 8. edition in SI units. New York, NY: McGraw-Hill Education; 2015. 996 p.
  • 34. The MathWorks Inc. MATLAB version: R2022b [Internet]. The MathWorks Inc.; 2022. Available from: www.mathworks.com
  • 35. Mitsubishi Electric. Legendera Duvar Tipi Split Klima. 2022.
  • 36. Tsimpoukis D, Syngounas E, Petsanas D, Mitsopoulos G, Anagnostatos S, Bellos E, et al. Energy and environmental investigation of R744 all-in-one configurations for refrigeration and heating/air conditioning needs of a supermarket. Journal of Cleaner Production. 2021 Jan 10;279.
  • 37. Brunin O, Feidt M, Hivet B. Comparison of the working domains of some compression heat pumps and a compression-absorption heat pump. International Journal of Refrigeration. 1997 Aug;20(5):308–18.
  • 38. Richter MR, Bullard CW, Hrnjak PS. Comparison of R744 and R410A for Residential Heating and Cooling Applications. University of Illinois Urbana-Champaign: University of Illinois Urbana-Champaign Air Conditioning and Refrigeration Center; 2001 June. Report No.: ACRC CR-39.
  • 39. Mitsopoulos G, Syngounas E, Tsimpoukis D, Bellos E, Tzivanidis C, Anagnostatos S. Annual performance of a supermarket refrigeration system using different configurations with CO2 refrigerant. Energy Conversion and Management: X. 2019 Jan;1:100006.
  • 40. Karampour M, Sawalha S. State-of-the-art integrated CO2 refrigeration system for supermarkets: A comparative analysis. International Journal of Refrigeration. 2018 Feb;86:239–57.
  • 41. Said SAM, Habib MA, Iqbal MO. Database for building energy prediction in Saudi Arabia. Energy Conversion and Management. 2003 Jan;44(1):191–201.
  • 42. Zottl A, Lindahl M, Nordman R, Rivière P, Miara M. Evaluation method for comparison of heat pump systems with conventional heating systems, D4.3. Concept for evaluation of CO2-reduction potential. European Commission; 2011. (Seasonal Performance Factor and Monitoring for Heat Pump Systems in the Building Sector SEPEMO-Build).
  • 43. Zhao L, Zeng W, Yuan Z. Reduction of potential greenhouse gas emissions of room air-conditioner refrigerants: a life cycle carbon footprint analysis. Journal of Cleaner Production. 2015 Aug 1;100:262–8.
  • 44. Liu X, Hu Y, Wang Q, Yao L, Li M. Energetic, environmental and economic comparative analyses of modified transcritical CO2 heat pump system to replace R134a system for home heating. Energy. 2021 Aug;229:120544.
  • 45. Pabon JJG, Khosravi A, Belman-Flores JM, Machado L, Revellin R. Applications of refrigerant R1234yf in heating, air conditioning and refrigeration systems: A decade of researches. International Journal of Refrigeration. 2020 Oct;118:104–13.
  • 46. Johnson EP. Air-source heat pump carbon footprints: HFC impacts and comparison to other heat sources. Energy Policy. 2011 Mar;39(3):1369–81.
  • 47. ETKB. Türkiye elektrik üretimi ve elektrik tüketim noktası emisyon faktörleri bilgi formu. Ankara, Türkiye: Ministry of Energy and Natural Resources; 2022. Report No.: ETKB-EVÇED-FRM-042 Rev.00.
  • 48. Troch S, Lee H, Hwang Y, Radermacher R. Harmonization of Life Cycle Climate Performance (LCCP) Methodology. In Purdue; 2016.
  • 49. Daikin. Air Conditioning Technical Data RXA-A [Internet]. Daikin Europe N.V.; 2018 [cited 2025 June 8]. Available from: http://www.daikintech.co.uk/Data/Split-Sky-Air-Indoor/FTXA/2019/RXA-A2V1B(B2V1B)/RXA-A2V1B_Databook_EEDEN18.pdf
  • 50. Lu L, Cai W, Xie L, Li S, Soh YC. HVAC system optimization—in-building section. Energy and Buildings. 2005 Jan;37(1):11–22.
  • 51. Rongling Li, Ryozo Ooka. Multi-variable Optimization of HVAC System Using a Genetic Algorithm. JEPE [Internet]. 2014 Feb 28 [cited 2025 July 31];8(2). Available from: http://www.davidpublisher.org/index.php/Home/Article/index?id=18954.html
  • 52. Chapra SC, Canale RP. Numerical methods for engineers. Seventh edition. New York, NY: McGraw-Hill Education; 2015. 970 p.
  • 53. Çalışkan O, Ersoy HK. Energy, environmental, and exergoeconomic (3E) analysis of transcritical CO2 booster and parallel compression supermarket refrigeration cycles in climate zones of Türkiye. KONJES. 2024 Jan 19;12(1):123–37.
There are 53 citations in total.

Details

Primary Language English
Subjects Energy Generation, Conversion and Storage (Excl. Chemical and Electrical)
Journal Section Research Article
Authors

Oğuz Çalışkan 0000-0002-3364-1360

H. Kürşad Ersoy 0000-0001-8588-296X

Submission Date June 26, 2025
Acceptance Date September 21, 2025
Publication Date December 31, 2025
Published in Issue Year 2025 Volume: 12 Issue: 4

Cite

Vancouver Çalışkan O, Ersoy HK. Comparative Energetic and Environmental Investigation of Air-to-Air Heat Pump Cycles Using Ultra-Low GWP Refrigerants. Hittite J Sci Eng. 2025;12(4):185-9.

Hittite Journal of Science and Engineering is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY NC).