Lityum İyon Pillerde Termal Kaçak: Modelleme, Deneysel Doğrulama ve Yayılma Üzerindeki Malzeme Etkileri
Year 2025,
Volume: 12 Issue: 4, 209 - 221, 31.12.2025
Sevgi Aydın
,
Kadri Süleyman Yiğit
,
İsmail Hakkı Savcı
Abstract
Lityum-iyon bataryaların (LIB) termal güvenliği, elektrikli araçlar ve sabit enerji depolama sistemleri için kritik bir zorluktur. Aşırı ısı üretimi, hızlandırılmış yaşlanmaya, kapasite kaybına veya yıkıcı termal kaçak (TR) olaylarına neden olabilir. Bu çalışmada, silindirik 18650 tipi LIB’lerin ısı üretimini, sıcaklık tepkisini ve TR davranışını incelemek amacıyla birleşik bir elektrokimyasal–termal model geliştirilmiş ve deneysel olarak doğrulanmıştır.
1S14P batarya modülü üzerinde 1C ve 2C deşarj testleri gerçekleştirilmiş, elde edilen sonuçlar STAR-CCM+ ortamında yapılan sayısal simülasyonlar ve MATLAB Simulink’te uygulanmış Arrhenius tabanlı TR modeli ile karşılaştırılmıştır. Model, ekzotermik reaksiyonların başlangıcını %5 civarında bir maksimum sapma ile başarılı şekilde yakalamıştır. Parametrik analizler, yüksek ortam konveksiyon katsayılarının TR başlangıcını geciktirdiğini ve şiddetini azalttığını göstermiştir. Bu durum, zorlanmış hava soğutmasının termal yönetim sistemlerinde ne kadar önemli olduğunu vurgulamaktadır.
Ayrıca farklı muhafaza malzemelerinin TR yayılımı üzerindeki etkisi incelenmiştir. Seramik elyaf ve aerojel en etkili termal yalıtımı sağlarken, polistiren ise normal çalışma koşullarında ısı dağıtımı ile TR olayları sırasında yalıtım arasında en dengeli performansı göstermiştir. Bulgular, malzeme seçiminin ve termal yönetim tasarımının, TR yayılımını önlemede ve batarya güvenliğini sağlamada belirleyici rol oynadığını ortaya koymaktadır. Bu çalışma, yeni nesil batarya sistemlerinin güvenli ve verimli tasarımı için pratik tasarım ilkeleri sunmaktadır.
Ethical Statement
Yazarlar, bilgileri dahilinde, makalenin değerlendirme sürecini etkileyebilecek herhangi bir kurum/kuruluş veya kişiyle çıkar çatışması veya ortak çıkar ilişkisi olmadığını kabul ederler.
Supporting Institution
Bu çalışma, TÜBİTAK ve Ford Otosan tarafından 2244-TÜBİTAK Sanayi Doktora Programı kapsamında kısmen desteklenmiştir.
Thanks
Bu çalışmanın yürütülmesi sürecinde sağladıkları maddi ve teknik destekler için Kocaeli Üniversitesi’ne, TÜBİTAK ve Ford Otosan’a teşekkür ederiz.
References
-
Lorente DB, Mandil G, Svecova L, Thivel P, Zwolinski P. Life cycle and sustainability. In: Lithium process chemistry: resources, extraction, batteries and recycling. Elsevier; 2015. p. 269–288.
-
Yin Y, Zhang T, Dai Z, Wei T, Qiu X. Experimental and numerical modeling of the heat generation characteristics of lithium iron phosphate battery under nail penetration. Therm Sci. 2024;28(2):1651–1664. doi:10.2298/TSCI230402196Y.
-
Aydın S, Yiğit KS, Savcı İH. Survey of air battery thermal management on the autonomous mobile robots. Therm Sci. 2023;27(5 Pt A):3561–3577. doi:10.2298/TSCI220805022A.
-
United Nations Economic Commission for Europe (UNECE). Regulation No. 100: Uniform provisions concerning the approval of vehicles with regard to specific requirements for the electric power train [2015/505]. Geneva: UNECE; 2015.
-
TÜV SÜD. UN/DOT 38.3 transportation testing – lithium batteries [Internet]. TÜV SÜD; [cited 2025 Sep 30]. Available from: https://www.tuvsud.com/en-us/industries/mobility-and-automotive/automotive-and-oem/automotive-testing-solutions/battery-testing/un-dot-38-3/
-
BBC News. Safety worries lead US airline to ban battery shipments [Internet]. 2015 Mar 3 [cited 2025 Sep 30]. Available from: https://www.bbc.com/news/technology-31709198
-
NBC News. Samsung finally explains the Galaxy Note 7 exploding battery mess [Internet]. 2016 Jan 11 [cited 2025 Sep 30]. Available from: https://www.nbcnews.com/tech/tech-news/samsung-finally-explains-galaxy-note-7-exploding-battery-mess-n710581
-
ETN News. Battery fire risks over the years: concerns & mitigation [Internet]. ETN News; 2021 Dec 27 [cited 2025 Sep 30]. Available from: https://etn.news/e-mobility-blogs/battery-fire-risks-over-the-years-concerns-mitigation
-
Schuler M. Thermal runaway of lithium-ion battery destroys tanker’s bridge [Internet]. gCaptain; 2023 Nov 9 [cited 2025 Sep 30]. Available from: https://gcaptain.com/thermal-runaway-of-lithium-ion-battery-destroys-tankers-bridge/
-
Sundén B. Thermal management of batteries. In: Hydrogen, batteries and fuel cells. United States: Academic Press; 2019. p. 93–110. doi:10.1016/C2018-0-01247-5
-
Siddique ARM, Mahmud S, Van Heyst B. A comprehensive review on a passive (phase change materials) and an active (thermoelectric cooler) battery thermal management system and their limitations. J Power Sources. 2018;401:224–237. doi:10.1016/j.jpowsour.2018.08.094
-
Wu S, Lao L, Wu L, Liu L, Lin C, Zhang Q. Effect analysis on integration efficiency and safety performance of a battery thermal management system based on direct contact liquid cooling. Appl Therm Eng. 2021;201:117788. doi:10.1016/j.applthermaleng.2021.117788
-
Jaguemont J, Bardé F. A critical review of lithium-ion battery safety testing and standards. Appl Therm Eng. 2023;231:121014. doi:10.1016/j.applthermaleng.2023.121014
-
Wang Z, Chen S, He X, Wang C, Zhao D. A multi-factor evaluation method for the thermal runaway risk of lithium-ion batteries. J Energy Storage. 2022;45:103767. doi:10.1016/j.est.2021.103767
-
Stering J, Tattersall L, Bamber N, De Cola F, Murphy A, Millen SLJ. Composite structure failure analysis post lithium-ion battery fire. Eng Fail Anal. 2024;160:108163. doi:10.1016/j.engfailanal.2024.108163
-
Jeon CH, Lee Y, Kim R, Kim S, Kim DK. Development of equivalent circuit model for thermal runaway in lithium-ion batteries. J Energy Storage. 2023;74:109318. doi:10.1016/j.est.2023.109318
-
Moghaddam SMH. Designing battery thermal management systems (BTMS) for cylindrical lithium-ion battery modules using CFD [MSc thesis]. Stockholm: KTH School of Industrial Engineering and Management; 2019. Available from: https://kth.diva-portal.org/smash/record.jsf?pid=diva2:1290856
-
Hatchard TD, MacNeil DD, Basu A, Dahn JR. Thermal model of cylindrical and prismatic lithium-ion cells. J Electrochem Soc. 2001;148(7):A755–A761. doi:10.1149/1.1377592
-
Parhizi M, Jain A, Kilaz G, Ostanek JK. Accelerating the numerical solution of thermal runaway in Li-ion batteries. J Power Sources. 2022;538:231531. doi:10.1016/j.jpowsour.2022.231531
-
Ostanek J, Li W, Mukherjee PP, Crompton KR, Hacker C. Simulating onset and evolution of thermal runaway in Li-ion cells using a coupled thermal and venting model. Appl Energy. 2020;268:114972. doi:10.1016/j.apenergy.2020.114972
-
Kim G, Pesaran A, Spotnitz R. A three-dimensional thermal abuse model for lithium-ion cells. J Power Sources. 2007;170(2):476–489. doi:10.1016/j.jpowsour.2007.04.018
-
Peng P, Sun Y, Jiang F. Thermal analyses of LiCoO₂ lithium-ion battery during oven tests. Heat Mass Transfer. 2014;50(10):1405–1416. doi:10.1007/s00231-014-1353-x
-
Özdemir T, Ekici Ö, Köksal M. Numerical and experimental investigation of the electrical and thermal behaviors of Li-ion batteries under normal and abuse operating conditions. J Energy Storage. 2024;77:109880. doi:10.1016/j.est.2023.109880
-
Shen M, Gao Q. Structure design and effect analysis on refrigerant cooling enhancement of battery thermal management system for electric vehicles. J Energy Storage. 2020;32:101940. doi:10.1016/j.est.2020.101940
-
Chen W, Hou S, Shi J, Han P, Liu B, Wu B, Lin X. Numerical analysis of novel air-based Li-ion battery thermal management. Batteries. 2022;8(9):128. doi:10.3390/batteries8090128
-
Bugryniec P, Davidson JN, Brown SF. Computational modelling of thermal runaway propagation potential in lithium iron phosphate battery packs. Energy Rep. 2020;6(5):189–197. doi:10.1016/j.egyr.2020.03.024
-
Jaguemont J, Van Mierlo J. A comprehensive review of future thermal management systems for battery-electrified vehicles. J Energy Storage. 2020;31:101551. doi:10.1016/j.est.2020.101551
-
Li A, Yuen ACY, Wang W, Weng J, Lai CS, Kook S, Yeoh GH. Thermal propagation modelling of abnormal heat generation in various battery cell locations. Batteries. 2022;8(11):216. doi:10.3390/batteries8110216
-
Zhong G, Li H, Wang C, Xu K, Wang Q. Experimental analysis of thermal runaway propagation risk within 18650 lithium-ion battery modules. J Electrochem Soc. 2018;165(9):A1925–A1934. doi:10.1149/2.0461809jes
-
Silva GM, Lima TJ, Silva DD, Henriques IB. Assessment of thermal runaway propagation in lithium-ion battery modules with different separator materials. Int J Therm Sci. 2024;197:108836. doi:10.1016/j.ijthermalsci.2024.108836
-
Lee C, Said AO, Stoliarov SI. Passive mitigation of thermal runaway propagation in dense 18650 lithium-ion cell assemblies. J Electrochem Soc. 2020;167:090524. doi:10.1149/1945-7111/ab8978
-
Quan T, Xia Q, Wei X, Zhu Y. Recent development of thermal insulating materials for Li-ion batteries. Energies. 2024;17(17):4412. doi:10.3390/en17174412
-
Li Q, Yang C, Smith K, Keyse M, Pesaran A. Numerical investigation of thermal runaway propagation induced by internal short circuits in Li-ion cells. ECS Meet Abstr. 2017;MA2017-01:288. doi:10.1149/MA2017-01
-
Yuan C, Wang Q, Wang Y, Zhao Y. Inhibition effect of different interstitial materials on thermal runaway propagation in the cylindrical lithium-ion battery module. Appl Therm Eng. 2019;153:39–50. doi:10.1016/j.applthermaleng.2019.02.127
-
Zhao L, Li W, Luo W, Zheng M, Chen M. Numerical study of critical conditions for thermal runaway of lithium-ion battery pack during storage. J Energy Storage. 2024;84:110901. doi:10.1016/j.est.2024.110901
-
Nambisan PHM, Ravadi PR, Reddy HPGM, Kulkarni MA, Sundaram S. Characterization of commercial thermal barrier materials to prevent thermal runaway propagation in large format lithium-ion cells. J Energy Storage. 2023;74:109414. doi:10.1016/j.est.2023.109414
-
Yang T, Xu H, Xie C, Xu L, Liu M, Chen L, Xin Q, Zeng J, Zhang H, Xiao J. A thermal runaway protection strategy for prismatic lithium-ion battery modules based on phase change and thermal decomposition of sodium acetate trihydrate. Batteries. 2025;11:198.
-
Liu X, Zhou Z, Wu WT, Wei L, Wu W, Li Y, Gao L, Li Y, Song Y. Modelling for the mitigation of lithium-ion battery thermal runaway propagation by using phase change material or liquid immersion cooling. Case Stud Therm Eng. 2023;52:103749.
-
Ji W, Dang Y, Yu Y, Zhou X, Li L. Combination of phase change composite material and liquid-cooled plate prevents thermal runaway propagation of high-specific-energy battery. Appl Sci. 2025;15:1274.
-
Aydın S, Samancıoğlu UE, Savcı İH, Yiğit KS, Çetkin E. Impact of cooling strategies and cell housing materials on lithium-ion battery thermal management performance. Energies. 2025;18(6):1379. doi:10.3390/en18061379
-
Zhang S, Sun J, Jia Y, Liu H, Sun G, Li L, Bai D. Low shrinkage and robust polyimide/ultrafine glass fiber aerogel for efficient heat resistance and oil/water separation. ACS Appl Polym Mater. 2025;7(2):622–631. doi:10.1021/acsapm.4c02744
-
Shi W, Wan M, Tang Y, Chen W. Ceramic fiber-reinforced polyimide aerogel composites with improved shape stability against shrinkage. Gels. 2024;10:327. doi:10.3390/gels10050327
-
Li J, Guo P, Hu C, Pang S, Ma J, Zhao R, Tang S, Cheng HM. Fabrication of large aerogel-like carbon/carbon composites with excellent load-bearing capacity and thermal-insulating performance at 1800 °C. ACS Nano. 2022;16(4):6565–6577. doi:10.1021/acsnano.2c00943
-
Liu F, Jiang Y, Peng F, Feng J, Li L, Feng J. Fiber-reinforced alumina–carbon core-shell aerogel composite with heat-induced gradient structure for thermal protection up to 1800 °C. Chem Eng J. 2023;461:141721. doi:10.1016/j.cej.2023.141721
-
Cao Y, Wang K, Wang Z, Wang J, Yang Y, Xu X. Utilization of liquid nitrogen as efficient inhibitor upon thermal runaway of 18650 lithium-ion battery in open space. Renew Energy. 2023;206:1097–1105. doi:10.1016/j.renene.2023.02.117
-
Chen G, Richardson TJ. Thermal instability of olivine-type LiMnPO₄ cathodes. J Power Sources. 2010;195(4):1221–1224. doi:10.1016/j.jpowsour.2009.08.046
-
Koluman Plastik. Poliamid 66 [Internet]. Available from: http://www.kolumanplastik.com/tr/urunler/poliamid-66 [cited 2025 Sep 30].
-
Nguyen PL, Vu XH, Ferrier E. Thermo-mechanical performance of carbon fiber reinforced polymer (CFRP), with and without fire protection material, under combined elevated temperature and mechanical loading conditions. Compos Part B Eng. 2019;169:164–173. doi:10.1016/j.compositesb.2019.03.075
-
Kim Y, Ryu K, Na W, Yu J, Lee MW. Origami-inspired reforming method for carbon fiber-reinforced thermoplastics via simple thermal stitching. Compos Part B Eng. 2020;193:108043. doi:10.1016/j.compositesb.2020.108043
-
Kim H, Kim J, Lee J, Lee MWL. Thermal barrier coating for carbon fiber-reinforced composite materials. Compos Part B Eng. 2021;225:109308. doi:10.1016/j.compositesb.2021.109308
Thermal Runaway in Lithium-Ion Batteries: Modeling, Experimental Validation, and Material Effects on Propagation
Year 2025,
Volume: 12 Issue: 4, 209 - 221, 31.12.2025
Sevgi Aydın
,
Kadri Süleyman Yiğit
,
İsmail Hakkı Savcı
Abstract
The thermal safety of lithium-ion batteries (LIBs) is a crucial challenge for electric vehicles and stationary energy storage systems, as excessive heat generation may cause accelerated aging, capacity loss, or catastrophic thermal runaway (TR). This study develops and validates a coupled electrochemical–thermal model to investigate the heat generation, temperature response, and TR behavior of cylindrical 18650-type LIBs. Experimental discharge tests (1C and 2C) were performed on a 1S14P battery module, and the results were compared with numerical simulations in STAR-CCM+ and an Arrhenius-based TR model implemented in MATLAB Simulink. The model accurately captured the onset of exothermic reactions, with a maximum deviation of ~5% from experimental data. Parametric analyses revealed that higher ambient convection coefficients delay TR initiation and reduce its severity, highlighting the importance of forced-air cooling in thermal management systems. Furthermore, the effect of different enclosure materials on TR propagation was investigated. While ceramic fiber and aerogel provided the most effective thermal insulation, polystyrene demonstrated the best overall balance between heat dissipation under normal operation and insulation during TR events. The findings confirm that material selection and thermal management design play a decisive role in preventing TR propagation and ensuring battery safety. This work contributes practical guidelines for the safe and efficient design of next-generation battery systems.
Ethical Statement
Authors approve that to the best of their knowledge, there is not any conflict of interest or common interest with an institution/organization or a person that may affect the review process of the paper.
Supporting Institution
This work was partially supported by the TUBİTAK and Ford Otosan through a research 2244-TÜBİTAK Industrial PhD Program.
Thanks
The authors would like to acknowledge the financial and technical support provided by Kocaeli University, TÜBİTAK, and Ford Otosan during the execution of this study.
References
-
Lorente DB, Mandil G, Svecova L, Thivel P, Zwolinski P. Life cycle and sustainability. In: Lithium process chemistry: resources, extraction, batteries and recycling. Elsevier; 2015. p. 269–288.
-
Yin Y, Zhang T, Dai Z, Wei T, Qiu X. Experimental and numerical modeling of the heat generation characteristics of lithium iron phosphate battery under nail penetration. Therm Sci. 2024;28(2):1651–1664. doi:10.2298/TSCI230402196Y.
-
Aydın S, Yiğit KS, Savcı İH. Survey of air battery thermal management on the autonomous mobile robots. Therm Sci. 2023;27(5 Pt A):3561–3577. doi:10.2298/TSCI220805022A.
-
United Nations Economic Commission for Europe (UNECE). Regulation No. 100: Uniform provisions concerning the approval of vehicles with regard to specific requirements for the electric power train [2015/505]. Geneva: UNECE; 2015.
-
TÜV SÜD. UN/DOT 38.3 transportation testing – lithium batteries [Internet]. TÜV SÜD; [cited 2025 Sep 30]. Available from: https://www.tuvsud.com/en-us/industries/mobility-and-automotive/automotive-and-oem/automotive-testing-solutions/battery-testing/un-dot-38-3/
-
BBC News. Safety worries lead US airline to ban battery shipments [Internet]. 2015 Mar 3 [cited 2025 Sep 30]. Available from: https://www.bbc.com/news/technology-31709198
-
NBC News. Samsung finally explains the Galaxy Note 7 exploding battery mess [Internet]. 2016 Jan 11 [cited 2025 Sep 30]. Available from: https://www.nbcnews.com/tech/tech-news/samsung-finally-explains-galaxy-note-7-exploding-battery-mess-n710581
-
ETN News. Battery fire risks over the years: concerns & mitigation [Internet]. ETN News; 2021 Dec 27 [cited 2025 Sep 30]. Available from: https://etn.news/e-mobility-blogs/battery-fire-risks-over-the-years-concerns-mitigation
-
Schuler M. Thermal runaway of lithium-ion battery destroys tanker’s bridge [Internet]. gCaptain; 2023 Nov 9 [cited 2025 Sep 30]. Available from: https://gcaptain.com/thermal-runaway-of-lithium-ion-battery-destroys-tankers-bridge/
-
Sundén B. Thermal management of batteries. In: Hydrogen, batteries and fuel cells. United States: Academic Press; 2019. p. 93–110. doi:10.1016/C2018-0-01247-5
-
Siddique ARM, Mahmud S, Van Heyst B. A comprehensive review on a passive (phase change materials) and an active (thermoelectric cooler) battery thermal management system and their limitations. J Power Sources. 2018;401:224–237. doi:10.1016/j.jpowsour.2018.08.094
-
Wu S, Lao L, Wu L, Liu L, Lin C, Zhang Q. Effect analysis on integration efficiency and safety performance of a battery thermal management system based on direct contact liquid cooling. Appl Therm Eng. 2021;201:117788. doi:10.1016/j.applthermaleng.2021.117788
-
Jaguemont J, Bardé F. A critical review of lithium-ion battery safety testing and standards. Appl Therm Eng. 2023;231:121014. doi:10.1016/j.applthermaleng.2023.121014
-
Wang Z, Chen S, He X, Wang C, Zhao D. A multi-factor evaluation method for the thermal runaway risk of lithium-ion batteries. J Energy Storage. 2022;45:103767. doi:10.1016/j.est.2021.103767
-
Stering J, Tattersall L, Bamber N, De Cola F, Murphy A, Millen SLJ. Composite structure failure analysis post lithium-ion battery fire. Eng Fail Anal. 2024;160:108163. doi:10.1016/j.engfailanal.2024.108163
-
Jeon CH, Lee Y, Kim R, Kim S, Kim DK. Development of equivalent circuit model for thermal runaway in lithium-ion batteries. J Energy Storage. 2023;74:109318. doi:10.1016/j.est.2023.109318
-
Moghaddam SMH. Designing battery thermal management systems (BTMS) for cylindrical lithium-ion battery modules using CFD [MSc thesis]. Stockholm: KTH School of Industrial Engineering and Management; 2019. Available from: https://kth.diva-portal.org/smash/record.jsf?pid=diva2:1290856
-
Hatchard TD, MacNeil DD, Basu A, Dahn JR. Thermal model of cylindrical and prismatic lithium-ion cells. J Electrochem Soc. 2001;148(7):A755–A761. doi:10.1149/1.1377592
-
Parhizi M, Jain A, Kilaz G, Ostanek JK. Accelerating the numerical solution of thermal runaway in Li-ion batteries. J Power Sources. 2022;538:231531. doi:10.1016/j.jpowsour.2022.231531
-
Ostanek J, Li W, Mukherjee PP, Crompton KR, Hacker C. Simulating onset and evolution of thermal runaway in Li-ion cells using a coupled thermal and venting model. Appl Energy. 2020;268:114972. doi:10.1016/j.apenergy.2020.114972
-
Kim G, Pesaran A, Spotnitz R. A three-dimensional thermal abuse model for lithium-ion cells. J Power Sources. 2007;170(2):476–489. doi:10.1016/j.jpowsour.2007.04.018
-
Peng P, Sun Y, Jiang F. Thermal analyses of LiCoO₂ lithium-ion battery during oven tests. Heat Mass Transfer. 2014;50(10):1405–1416. doi:10.1007/s00231-014-1353-x
-
Özdemir T, Ekici Ö, Köksal M. Numerical and experimental investigation of the electrical and thermal behaviors of Li-ion batteries under normal and abuse operating conditions. J Energy Storage. 2024;77:109880. doi:10.1016/j.est.2023.109880
-
Shen M, Gao Q. Structure design and effect analysis on refrigerant cooling enhancement of battery thermal management system for electric vehicles. J Energy Storage. 2020;32:101940. doi:10.1016/j.est.2020.101940
-
Chen W, Hou S, Shi J, Han P, Liu B, Wu B, Lin X. Numerical analysis of novel air-based Li-ion battery thermal management. Batteries. 2022;8(9):128. doi:10.3390/batteries8090128
-
Bugryniec P, Davidson JN, Brown SF. Computational modelling of thermal runaway propagation potential in lithium iron phosphate battery packs. Energy Rep. 2020;6(5):189–197. doi:10.1016/j.egyr.2020.03.024
-
Jaguemont J, Van Mierlo J. A comprehensive review of future thermal management systems for battery-electrified vehicles. J Energy Storage. 2020;31:101551. doi:10.1016/j.est.2020.101551
-
Li A, Yuen ACY, Wang W, Weng J, Lai CS, Kook S, Yeoh GH. Thermal propagation modelling of abnormal heat generation in various battery cell locations. Batteries. 2022;8(11):216. doi:10.3390/batteries8110216
-
Zhong G, Li H, Wang C, Xu K, Wang Q. Experimental analysis of thermal runaway propagation risk within 18650 lithium-ion battery modules. J Electrochem Soc. 2018;165(9):A1925–A1934. doi:10.1149/2.0461809jes
-
Silva GM, Lima TJ, Silva DD, Henriques IB. Assessment of thermal runaway propagation in lithium-ion battery modules with different separator materials. Int J Therm Sci. 2024;197:108836. doi:10.1016/j.ijthermalsci.2024.108836
-
Lee C, Said AO, Stoliarov SI. Passive mitigation of thermal runaway propagation in dense 18650 lithium-ion cell assemblies. J Electrochem Soc. 2020;167:090524. doi:10.1149/1945-7111/ab8978
-
Quan T, Xia Q, Wei X, Zhu Y. Recent development of thermal insulating materials for Li-ion batteries. Energies. 2024;17(17):4412. doi:10.3390/en17174412
-
Li Q, Yang C, Smith K, Keyse M, Pesaran A. Numerical investigation of thermal runaway propagation induced by internal short circuits in Li-ion cells. ECS Meet Abstr. 2017;MA2017-01:288. doi:10.1149/MA2017-01
-
Yuan C, Wang Q, Wang Y, Zhao Y. Inhibition effect of different interstitial materials on thermal runaway propagation in the cylindrical lithium-ion battery module. Appl Therm Eng. 2019;153:39–50. doi:10.1016/j.applthermaleng.2019.02.127
-
Zhao L, Li W, Luo W, Zheng M, Chen M. Numerical study of critical conditions for thermal runaway of lithium-ion battery pack during storage. J Energy Storage. 2024;84:110901. doi:10.1016/j.est.2024.110901
-
Nambisan PHM, Ravadi PR, Reddy HPGM, Kulkarni MA, Sundaram S. Characterization of commercial thermal barrier materials to prevent thermal runaway propagation in large format lithium-ion cells. J Energy Storage. 2023;74:109414. doi:10.1016/j.est.2023.109414
-
Yang T, Xu H, Xie C, Xu L, Liu M, Chen L, Xin Q, Zeng J, Zhang H, Xiao J. A thermal runaway protection strategy for prismatic lithium-ion battery modules based on phase change and thermal decomposition of sodium acetate trihydrate. Batteries. 2025;11:198.
-
Liu X, Zhou Z, Wu WT, Wei L, Wu W, Li Y, Gao L, Li Y, Song Y. Modelling for the mitigation of lithium-ion battery thermal runaway propagation by using phase change material or liquid immersion cooling. Case Stud Therm Eng. 2023;52:103749.
-
Ji W, Dang Y, Yu Y, Zhou X, Li L. Combination of phase change composite material and liquid-cooled plate prevents thermal runaway propagation of high-specific-energy battery. Appl Sci. 2025;15:1274.
-
Aydın S, Samancıoğlu UE, Savcı İH, Yiğit KS, Çetkin E. Impact of cooling strategies and cell housing materials on lithium-ion battery thermal management performance. Energies. 2025;18(6):1379. doi:10.3390/en18061379
-
Zhang S, Sun J, Jia Y, Liu H, Sun G, Li L, Bai D. Low shrinkage and robust polyimide/ultrafine glass fiber aerogel for efficient heat resistance and oil/water separation. ACS Appl Polym Mater. 2025;7(2):622–631. doi:10.1021/acsapm.4c02744
-
Shi W, Wan M, Tang Y, Chen W. Ceramic fiber-reinforced polyimide aerogel composites with improved shape stability against shrinkage. Gels. 2024;10:327. doi:10.3390/gels10050327
-
Li J, Guo P, Hu C, Pang S, Ma J, Zhao R, Tang S, Cheng HM. Fabrication of large aerogel-like carbon/carbon composites with excellent load-bearing capacity and thermal-insulating performance at 1800 °C. ACS Nano. 2022;16(4):6565–6577. doi:10.1021/acsnano.2c00943
-
Liu F, Jiang Y, Peng F, Feng J, Li L, Feng J. Fiber-reinforced alumina–carbon core-shell aerogel composite with heat-induced gradient structure for thermal protection up to 1800 °C. Chem Eng J. 2023;461:141721. doi:10.1016/j.cej.2023.141721
-
Cao Y, Wang K, Wang Z, Wang J, Yang Y, Xu X. Utilization of liquid nitrogen as efficient inhibitor upon thermal runaway of 18650 lithium-ion battery in open space. Renew Energy. 2023;206:1097–1105. doi:10.1016/j.renene.2023.02.117
-
Chen G, Richardson TJ. Thermal instability of olivine-type LiMnPO₄ cathodes. J Power Sources. 2010;195(4):1221–1224. doi:10.1016/j.jpowsour.2009.08.046
-
Koluman Plastik. Poliamid 66 [Internet]. Available from: http://www.kolumanplastik.com/tr/urunler/poliamid-66 [cited 2025 Sep 30].
-
Nguyen PL, Vu XH, Ferrier E. Thermo-mechanical performance of carbon fiber reinforced polymer (CFRP), with and without fire protection material, under combined elevated temperature and mechanical loading conditions. Compos Part B Eng. 2019;169:164–173. doi:10.1016/j.compositesb.2019.03.075
-
Kim Y, Ryu K, Na W, Yu J, Lee MW. Origami-inspired reforming method for carbon fiber-reinforced thermoplastics via simple thermal stitching. Compos Part B Eng. 2020;193:108043. doi:10.1016/j.compositesb.2020.108043
-
Kim H, Kim J, Lee J, Lee MWL. Thermal barrier coating for carbon fiber-reinforced composite materials. Compos Part B Eng. 2021;225:109308. doi:10.1016/j.compositesb.2021.109308