Research Article
BibTex RIS Cite
Year 2020, , 271 - 277, 31.12.2020
https://doi.org/10.17350/HJSE19030000196

Abstract

References

  • 1. Das P. Gupta G, Velu V, Awasthi R, Dua K. Formation of struvite urinary stones and approaches towards the inhibition-A review. Biomed. Pharmacother. 96 (2017) 361-370.
  • 2. Manzoor MAP, Mujeeburahiman M, Ram Duwal S, Rekha P. D. Investigation on growth and morphology of in vitro generated struvite crystals. Biocatal. Agric. Biotechnol. 17 (2019) 566-570.
  • 3. Griffith DP. Struvite stones. Kidney International. 13 (1978) 372-382.
  • 4. Clapham L, Mclean RJC, Nickel JC, Downey J, Costerton, JW. The influence of bacteria on struvite crystal habit and its importance in urinary stone formation. J. Cryst. Growth. 104 (1990) 475-484.
  • 5. Prwyer J, Olszynski M. Influence of disodium EDTA on the nucleation and growth of struvite and carbonate apatite. J. Cryst. Growth. 375 (2013) 108-114.
  • 6. Siener R, Struwe F, Hesse A. Effect of L-methionine on the risk of phosphate formation. Urology. 98 (2016) 39-43.
  • 7. Olszynski M, Prywer J, Mielniczek-Brzoska E. Inhibition of struvite crystallization by tetrasodium pyrophosphate in artificial urine: Chemical and physical aspects of nucleation and growth. Cryst. Growth Des. 16 (2016) 3519-3529.
  • 8. Olszynski M, Prwyer J, Torzewska A. Effects of size and shape of nanosilver particles on struvite and carbonate apatite precipitation. Cryst. Growth Des. 15 (2015) 3307-3320.
  • 9. Abbona F, Boistelle R. Growth morphology and crystal habit of struvite crystal (MgNH4PO4.6H2O). J. Cryst. Growth. 46 (1979) 339-354.
  • 10. Li H, Yao QZ, Wang YY, Li YL, Zhou GT. Biomimetic synthesis of struvite with biogenic morphology and implication for pathological biomineralization. Sci. Rep. 5 (2018) 7718.
  • 11. Olszynski M, Prywer J, Torzewska A. Effect of size and shape of nanosilver particles on struvite and carbonate apatite precipitation. Cryst. Growth Des. 15 (2015) 3307-3320.
  • 12. Manzoor MAP, Duwal SR, Mujeeburahiman M, Rekha PD. Vitamin C inhibits crystallization of struvite from artificial urine in the presence of Pseudomanas aeruginosa. Int. Braz. J. Urol. 44 (2018) 1234-1242.
  • 13. Titiz-Sargut S, Sayan P, Masum A, Kiran B. Effect of Amino Acids on Magnesium Ammonium Phosphate Hexahydrate (Struvite) Crystallization. Iranian Journal of Chemical Engineering. 11 (2014) 3-18.
  • 14. Kumari S, Jose S, Tyagi M, Jagadevan S. A holistic and sustainable approach for recovery of phosphorus via struvite crystallization from synthetic distillery wastewater. J. Clean. Prod. 254 (2020) 120037.
  • 15. Prywer J, Torzewska A. Biomineralization of struvite crystals by Proteus mirabilis from artificial urine and their mesoscopic structure. Cryst. Res. Technol. 45 (2012) 1283-1289.
  • 16. Chauhan CK, Joshi MJ. In vitro crystallization, characterization and growth-inhibition study of urinary type struvite crystals. J. Cryst. Growth. 362 (2013) 330-337.
  • 17. Bindhu B, Thambi TA. Formation and Microanalysis of Struvite Urinary Calculi. International Journal of Engineering Research and Applications. 2 (2012) 1480-1485.
  • 18. Polat S, Sayan P. Application of response surface methodology with a Box–Behnken design for struvite precipitation. Adv. Powder Technol. 30 (2019) 2396-2407.
  • 19. Tansel B, Lunn G, Monje O. Review: struvite formation and decomposition characteristics for ammonia and phosphorus recovery: a review of magnesium-ammonia phosphate interactions. Chemosphere. 194 (2018) 504–514.
  • 20. Frost RL, Weier ML, Erickson KL. Thermal Decomposition of Struvite- Implications for the decomposition of kidney stones. J. Therm. Anal. Calorim. 76 (2004) 1025–1033.
  • 21. Horowitz HH, Metzger G. A new analysis of thermogravimetric traces. Anal. Chem. 35 (1963) 1464–1468.
  • 22. Fernandez A, Mazza G, Rodriguez, R. Thermal decomposition under oxidative atmosphere of lignocellulosic wastes: different kinetic model application. J. Environ. Chem. Eng. 6 (2018) 404-415.

In Vitro Study on the Influence of Proline on Struvite Crystals

Year 2020, , 271 - 277, 31.12.2020
https://doi.org/10.17350/HJSE19030000196

Abstract

This study investigated the effect of amino acid proline, as crystal modifier, on the struvite crystallization in vitro conditions. The struvite crystals were evaluated experimentally through XRD, SEM, and FTIR to determine the structure, morphology, and chemical composition, respectively. XRD analysis pointed out that struvite crystals belonged to the orthorhombic Pmn21 space group. SEM analysis depicted that proline had a significant influence on the morphology as well as the particle size of the struvite. Moreover, the length and width of struvite crystals varied with different concentrations of proline. The length of struvite crystals decreased, and their width thickened in the presence of the crystal modifier. The negativity of the zeta potential value became less negative in the presence of proline and the values were determined to be –6.10 mV and -4.00 mV for 25 and 100 ppm, respectively. According to BET analysis results, the surface area of the struvite decreased in the proline media when compared with the crystals formed without the crystal modifier. In addition, the thermal degradation of the formed crystals was examined. Regarding the results of the thermodynamic analysis, the average ∆H , ∆G , and ∆S were 92.17 kJ/mol, 197.85 kJ/mol, and −254.63 J/mol K, respectively. As a result, this study could provide a potential crystal modifier for the inhibition of struvite stones.

References

  • 1. Das P. Gupta G, Velu V, Awasthi R, Dua K. Formation of struvite urinary stones and approaches towards the inhibition-A review. Biomed. Pharmacother. 96 (2017) 361-370.
  • 2. Manzoor MAP, Mujeeburahiman M, Ram Duwal S, Rekha P. D. Investigation on growth and morphology of in vitro generated struvite crystals. Biocatal. Agric. Biotechnol. 17 (2019) 566-570.
  • 3. Griffith DP. Struvite stones. Kidney International. 13 (1978) 372-382.
  • 4. Clapham L, Mclean RJC, Nickel JC, Downey J, Costerton, JW. The influence of bacteria on struvite crystal habit and its importance in urinary stone formation. J. Cryst. Growth. 104 (1990) 475-484.
  • 5. Prwyer J, Olszynski M. Influence of disodium EDTA on the nucleation and growth of struvite and carbonate apatite. J. Cryst. Growth. 375 (2013) 108-114.
  • 6. Siener R, Struwe F, Hesse A. Effect of L-methionine on the risk of phosphate formation. Urology. 98 (2016) 39-43.
  • 7. Olszynski M, Prywer J, Mielniczek-Brzoska E. Inhibition of struvite crystallization by tetrasodium pyrophosphate in artificial urine: Chemical and physical aspects of nucleation and growth. Cryst. Growth Des. 16 (2016) 3519-3529.
  • 8. Olszynski M, Prwyer J, Torzewska A. Effects of size and shape of nanosilver particles on struvite and carbonate apatite precipitation. Cryst. Growth Des. 15 (2015) 3307-3320.
  • 9. Abbona F, Boistelle R. Growth morphology and crystal habit of struvite crystal (MgNH4PO4.6H2O). J. Cryst. Growth. 46 (1979) 339-354.
  • 10. Li H, Yao QZ, Wang YY, Li YL, Zhou GT. Biomimetic synthesis of struvite with biogenic morphology and implication for pathological biomineralization. Sci. Rep. 5 (2018) 7718.
  • 11. Olszynski M, Prywer J, Torzewska A. Effect of size and shape of nanosilver particles on struvite and carbonate apatite precipitation. Cryst. Growth Des. 15 (2015) 3307-3320.
  • 12. Manzoor MAP, Duwal SR, Mujeeburahiman M, Rekha PD. Vitamin C inhibits crystallization of struvite from artificial urine in the presence of Pseudomanas aeruginosa. Int. Braz. J. Urol. 44 (2018) 1234-1242.
  • 13. Titiz-Sargut S, Sayan P, Masum A, Kiran B. Effect of Amino Acids on Magnesium Ammonium Phosphate Hexahydrate (Struvite) Crystallization. Iranian Journal of Chemical Engineering. 11 (2014) 3-18.
  • 14. Kumari S, Jose S, Tyagi M, Jagadevan S. A holistic and sustainable approach for recovery of phosphorus via struvite crystallization from synthetic distillery wastewater. J. Clean. Prod. 254 (2020) 120037.
  • 15. Prywer J, Torzewska A. Biomineralization of struvite crystals by Proteus mirabilis from artificial urine and their mesoscopic structure. Cryst. Res. Technol. 45 (2012) 1283-1289.
  • 16. Chauhan CK, Joshi MJ. In vitro crystallization, characterization and growth-inhibition study of urinary type struvite crystals. J. Cryst. Growth. 362 (2013) 330-337.
  • 17. Bindhu B, Thambi TA. Formation and Microanalysis of Struvite Urinary Calculi. International Journal of Engineering Research and Applications. 2 (2012) 1480-1485.
  • 18. Polat S, Sayan P. Application of response surface methodology with a Box–Behnken design for struvite precipitation. Adv. Powder Technol. 30 (2019) 2396-2407.
  • 19. Tansel B, Lunn G, Monje O. Review: struvite formation and decomposition characteristics for ammonia and phosphorus recovery: a review of magnesium-ammonia phosphate interactions. Chemosphere. 194 (2018) 504–514.
  • 20. Frost RL, Weier ML, Erickson KL. Thermal Decomposition of Struvite- Implications for the decomposition of kidney stones. J. Therm. Anal. Calorim. 76 (2004) 1025–1033.
  • 21. Horowitz HH, Metzger G. A new analysis of thermogravimetric traces. Anal. Chem. 35 (1963) 1464–1468.
  • 22. Fernandez A, Mazza G, Rodriguez, R. Thermal decomposition under oxidative atmosphere of lignocellulosic wastes: different kinetic model application. J. Environ. Chem. Eng. 6 (2018) 404-415.
There are 22 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Sevgi Polat 0000-0002-0934-2125

Perviz Sayan This is me 0000-0003-4407-6464

Publication Date December 31, 2020
Submission Date May 3, 2020
Published in Issue Year 2020

Cite

Vancouver Polat S, Sayan P. In Vitro Study on the Influence of Proline on Struvite Crystals. Hittite J Sci Eng. 2020;7(4):271-7.

Hittite Journal of Science and Engineering is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY NC).