Research Article
BibTex RIS Cite
Year 2020, , 287 - 296, 31.12.2020
https://doi.org/10.17350/HJSE19030000198

Abstract

References

  • 1. Williams H. and Smyth W.R. Metamorphic aureoles beneath ophiolite suites and Alpine peridotites: Tectonic implications with west Newfoundland examples. Am. J. Sci. 273, (1973) 594–621.
  • 2. Coleman R.G. Tectonic setting for ophiolite obduction in Oman. J. Geophys. Res. 86, (1981) 2497–2508.
  • 3. Searle M.P. and Cox J. Subduction zone metamorphism during formation and emplacement of the Semail ophiolite in the Oman Mountains. Geol. Mag. 139, 3, (2002) 241–255.
  • 4. Nurlu, N. U–Pb zircon geochronology and geochemistry of the metamorphic sole rocks of the Meydan mélange, South-East Turkey: Implications for ophiolite emplacement and protolith, GEOLOGICA CARPATHICA, 71, 2, (2020) 183–205.
  • 5. Al-Riyami K., Robertson A., Dixon J. and Xenophontos C. Origin and emplacement of the Late Cretaceous Baer–Bassit ophiolite and its metamorphic sole in NW Syria. Lithos 65, 1, (2002) 225–260.
  • 6. Çelik Ö.F. Detailed geochemistry and K-Ar geochronology of the metamorphic sole rocks and their mafic dykes from the Mersin Ophiolite, Southern Turkey: Turk. J. Earth Sci. 17, (2008) 685–708.
  • 7. Sayit, K., Bedi, Y., Tekin, U.K., Göncüoğlu, M.C., Okuyucu, C. Middle Triassic backarcbasalts from the blocks in the Mersin Mélange, southern Turkey: implications for thegeodynamic evolution of the Northern Neotethys. Lithos 268, (2017) 102–113.
  • 8. Nurlu, N. Petrology and LA-ICP-MS zircon geochronology for Late Cretaceous felsic dikes and intermediate volcanic rocks hosted in Mersin ophiolite, South Turkey and its implications. Geosci J (2020). https://doi.org/10.1007/s12303-020-0020-0.
  • 9. Guilmette, C., Smit, M.A., van Hinsbergen, D.J.J., Gürer, D., Corfu, F., Charette, B., Maffione, M., Rabeau, O., and Savard, D. Forced subduction initiation recorded in the sole and crust of the Semail Ophiolite of Oman: Nature Geoscience, v. 11, p. (2018) 688–695, https:// doi.org/10.1038/s41561-018-0209–2.
  • 10. Kim, S., Jang, Y., Kwon, S, Samuel, O. V., Kim, S.W., Park, S., Santosh, M., Kokkalas, S. Petro-tectonic evolution of metamorphic sole of the Semail ophiolite, UAE, Godwana Research, 86 v, (2020) p. 203–221.
  • 11. Howard, D. P. Unravelling ophiolite emplacement history with microfossils - the Baer-Bassit ophiolite of NW Syria. Doctoral thesis, UCL (University College London). (2006) p. 1–232.
  • 12. Chan, G. H., Malpas, J., Xenophontos, C., Lo, C. H. Timing of subduction zone metamorphism during the formation and emplacement of Troodos and Baer–Bassit ophiolites: insights from 40Ar–39Ar geochronology. Geol. Mag. 144 (5), 2007, pp. 797–810.
  • 13. Lytwyn J.N and Casey J.F. The geochemistry of post kinematic mafic dyke swarms and subophiolitic metabasites, Pozanti–Karsanti ophiolite, Turkey: Evidence for ridge subduction. Geol. Soc. Am. Bull. 107, (1995) 830–850.
  • 14. Gnos E., and Peters T. K–Ar ages of the metamorphic sole of the Semail ophiolite: implications for cooling history. Contrib. Mineral. Petrol. 113, (1993) 325–332.
  • 15. Şengör A.M.C. and Yılmaz Y. Tethyan evolution of Turkey: A plate tectonic approach. Tectonophysics 75, (1981) 181–241.
  • 16. Yilmaz, Y. New evidence and model on the evolution of the southeast Anatolian orogen. Geological Society of America Bulletin, 105, (1993) 251–271.
  • 17. Yilmaz Y., Yiğitbaş E. and Genç Ş.C. Ophiolitic and Metamorphic Assemblages of Southeast Anatolia and their Significance in the Geological Evolution of the Orogenic Belt. Tectonics 12, (1993) 1280–1297.
  • 18. Robertson, A. H. F., Ustaömer, T., Parlak, O., Ünlügenç, U. C., Tasli, K. and İnan, N. The Berit transect of the Tauride thrust belt, S. Turkey: Late Cretaceous–Early Cenozoic accretionary/ collisional processes related to closure of the Southern Neotethys. Journal of Asian Earth Sciences. (2006)
  • 19. Robertson A.H. F., Parlak O., Rizaoğlu T., Ünlügenç Ü., İnan N., Tasli K. and Ustaömer T. Tectonic evolution of the South Tethyan ocean: evidence from the Eastern Taurus Mountains (Elazığ region, SE Turkey). Geol. Soc. London, Spec. Publ. 272, (2007) 231–270.
  • 20. Yazgan E. and Chessex R. Geology and Tectonic Evolution of the South–eastern Taurides in the Region of Malatya. Turk. Assoc. Petrol. Geol. 3, (1991) 1–42.
  • 21. Bağcı U., Parlak O. and Höck V. Whole-Rock Mineral Chemistry of Cumulates from the Kızıldağ (Hatay) Ophiolite (Turkey): Clues for Multiple Magma Generation During Crustal Accretion in the Southern Neotethyan Ocean. Mineral. Mag. 69, 1, (2005) 53–76.
  • 22. Beyarslan M. and Bingöl A.F. Petrology of a suprasubduction zone ophiolite (Elazığ, Turkey). Canad. J. Earth Sci. 37, (2000) 1411–24.
  • 23. Rızaoğlu, T., Parlak, O., Höck, V., İşler, F. Nature and significance of Late Cretaceous ophiolitic rocks and its relation to the Baskil granitoid in Elazığ region, SE Turkey. In Tectonic Development of the Eastern Mediterranean, Robertson, A.H.F., Mountrakis, D.(eds). Geological Society, London, Special Publication, 260: (2006) 327–350.
  • 24. Parlak O., Rizaoğlu T., Bağci U., Karaoğlan F. and Höck V. Tectonic significance of the geochemistry and petrology of ophiolites in southeast Anatolia, Turkey. Tectonophysics 473, (2009) 173–187.
  • 25. Nurlu N. Geochemistry and Tectonic Signifiance of the Tectonomagmatic Units in the Helete (Kahramanmaraş) Region. PhD Thesis, Çukurova University Intitute of Natural and Applied Sciences, (2016) 1–281. (in Turkish with English abstract).
  • 26. Nurlu N., Parlak O., Robertson A.H.F. and Quadt A. Implications of Late Cretaceous U–Pb zircon ages of granitic intrusions cutting ophiolitic and volcanogenic rocks for the assembly of the Tauride allochton in SE Anatolia (Helete area, Kahramanmaraş Region, SE Turkey). Int. J. Earth Sci. 105, (2016) 283–314.
  • 27. Robertson A.H.F. Overview of the genesis and emplacement of Mesozoic ophiolites in the eastern Mediterranean Tethyan region. Lithos 65, (2002) 1–67.
  • 28. MTA (General Directorate of Mineral Research and Exploration). 1:500.000 scaled 513 Geological Maps of Turkey (Adana map section), Ankara-Turkey. (2002) (in Turkish with 514 English abstract) http://www.mta.gov.tr/eng/maps/geological–500000 .
  • 29. Rızaoğlu, T. Petrography and Geochemistry of the Tectonomagmatic Units Cropping Out Between Baskil and Sivrice (Elaziğ), PhD Thesis, Çukurova University Intitute of Natural and Applied Sciences,(2006) 1–259. (in Turkish with English abstract).
  • 30. Donovan J.J., Snyder D.A and Rivers M.L. An Improved Interference Correction for Trace Element Analysis. Microbeam Analysis 2, (1993) 23–28.
  • 31. Armstrong J.T. Quantitative analysis of silicates and oxide minerals: Comparison of Monte-Carlo, ZAF and Phi-Rho-Z procedures. In: Newbury D.E. (Ed.): Microbeam Analysis. San Francisco Press,(1988) 239–246.
  • 32. Leterrier, J., Maury, R., Thono, P., Girard, D., and Marchal, M. Clinopyroxene composition as a method of identification of the magmatic affinities of paleovolcanic series: Earth and Planetary Science Letters, v. 59, p. (1982) 139–154.
  • 33. Leake B.E., Woolley A.R., Arps C.E.S., Birch W.D., Gilbert M.C., Grice J.D., Hawthorne F.C., Kato A., Kisch H.J., Krivovichev V.G., Linthout K., Laird J., Mandarino J.A., Maresch W.V., Nickel E.H., Rock N.M.S., Schumacher J.C., Smith D.C., Stephenson N.C.N., Ungaretti L., Whittaker E.J.W. and Youzhi G., Nomenclature of amphiboles; Report of the Subcomm. on Amphiboles Intern. Miner. Ass., Commiss. New Minerals and Mineral Names. Am. Mineral., 82: (1997) 1019-1037.
  • 34. Best M. G. Igneous and metamorphic petrology. Freeman, San Francisco, USA, (1982) 1–458.
  • 35. Brown E.H. The crossite content of ca-amphibole as a guide to pressure of metamorphism. J. Petrol. 18, (1977) 53–72. https://doi. org/10.1093/petrology/18.1.53
  • 36. Fleet, M.E., Barnett, R.L. Partitioning in calciferous amphiboles from the Frood Mine, Sudbury, Ontario. Can. Mineral. 16, (1978) 527–532.
  • 37. Yildirim, M. and Yilmaz, Y. Güneydogu Anadolu orojenik kuşağının ekaylı zonu. Bulletin of Turkish Association of Petroleum Geologists, 3, (1991) 57–73. (in Turkish with English abstract).
  • 38. Robertson, A. H. F., Ustaömer, T., Parlak, O., Ünlügenç, U. C., Tasli, K. and İnan, N. The Berit transect of the Tauride thrust belt, S. Turkey: Late Cretaceous–Early Cenozoic accretionary/ collisional processes related to closure of the Southern Neotethys. Journal of Asian Earth Sciences. (2006)
  • 39. Turan, M., Ve Bingöl, A. F. Kovancılar-Baskil (Elazığ) Arası Bölgenin Tektono-stratigrafik Özellikleri. Ahmet Acar Jeoloji Sempozyumu, Bildiriler, Çukurova Üniversitesi, Adana, (1991) 213–227. (in Turkish with English abstract).
  • 40. Nisbet, E., and Pearce, J. Clinopyroxene composition in mafic lavas from different tectonic settings: Contributions to Mineralogy and Petrology, v. 63, p. (1977) 149–160.
  • 41. Beccaluva, L., Macciotta, G., Piccardo, G.B., and Zeda, O. Clinopyroxene composition of ophiolite basalts as petrogenic indicator: Chemical Geology, v. 77, p. (1989) 165–182
  • 42. Locock A.J. 2014: An Excel spreadsheet to classify chemical analyses of amphiboles following the IMA 2012 recommendations. Comput. Geosci. 62, 1–11.
  • 43. Johnson M.C. and Rutherford M.J. Experimental calibration of the aluminum in hornblende geobarometer with application to long valley caldera (California) Volcanic Rocks. Geology 17, (1989) 837–841.
  • 44. Holland T. and Blundy J. Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contrib. Miner. Petrol. 116, (1994) 433–447.
  • 45. Anderson J.L., Barth A.P., Wooden J.L. and Mazdab F. Thermometers and thermobarometers in granitic systems. Rev. Mineral. Geochem. 69, 1, (2008) 121–142.
  • 46. Ludwig K.R. User’s Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel. Special Publication/Berkeley Geochronology Center (2003) 74.
  • 47. Nurlu N. U–Pb zircon geochronology and geochemistry of the metamorphic sole rocks of the Meydan mélange, South-East Turkey: Implications for ophiolite emplacement and protolith. Geologica Carpathica, 71, 2, (2020) 183–205.
  • 48. Akıncı A. C., Robertson A. H. F., Ünlügenç U. C. Late Cretaceous–Cenozoic subduction–collision history of the Southern Neotethys: new evidence from the Çağlayancerit area, SE Turkey. International Journal of Earth Sciences 105, (2016) 315-337

Mineral Chemistry–thermobarometry and Petrography of Metamorphic Sole Rocks of Kömürhan Ophiolite (SE Turkey): Constraints to Evolution and Emplacement

Year 2020, , 287 - 296, 31.12.2020
https://doi.org/10.17350/HJSE19030000198

Abstract

This paper presents the generation of metamorphic sole rocks through the detailed geochemical and petrographical analysis of field work carried out on the Kömürhan ophiolite. The metamorphic sole rocks of Kömürhan ophiolite are defined as amphibo-lite (Pl+Mg–Hbl+Ttn±Ap) plagioclase–amphibole schist (Pl+Mg–Hbl+Cpx+Ttn±Zrn±Ap), plagioclase–clinopyroxene–amphibole schist (Pl+Di+Mg–Hbl+Ttn±Ap), and epidote–plagioclase amphibole schist (Ep+Pl+Mg–Hbl+Ttn±Ap±Qtz±Zrn). This research mainly reports comprehensive petrography and mineral chemistry analyses of metamorphic sole rocks of Kömürhan ophiolite of SAOB (Southeast Anatolian Orogenic Belt) together with a goal of presenting geothermobarometric examination and unravelling the mineral sys-tematics. The metamorphic sole rocks have been observed as a thin slice and these rocks are seen at the base of the tectonites, metamorphosed in amphibolites facies throughout the intra–oceanic supra-subduction geodynamic environment. The Kömürhan ophiolite includes from the top to bottom volcanics, sheeted dike complex, isotropic gabbros cumulates, and tectonites and shows a complete oceanic lithospheric fragments. Analyses of mineral chemistry and petrography of metamorphic sole rocks have been used to exhibit the metamorphic processes of these rocks. Mineral chemistry analyses of pyroxene phenocrysts in the metamorphic sole rocks of Kömürhan ophiolite present similarities island arc tholeiite (IAT), proposing that protolith of the sole rocks was related to the supra-subduction geodynamic environment. The amphibolites were occurred by metamorphism of island arc tholeiite–type volcanics that separated from the front of the obducted ophiolite (Kömürhan ophiolite) and after that underplated.

References

  • 1. Williams H. and Smyth W.R. Metamorphic aureoles beneath ophiolite suites and Alpine peridotites: Tectonic implications with west Newfoundland examples. Am. J. Sci. 273, (1973) 594–621.
  • 2. Coleman R.G. Tectonic setting for ophiolite obduction in Oman. J. Geophys. Res. 86, (1981) 2497–2508.
  • 3. Searle M.P. and Cox J. Subduction zone metamorphism during formation and emplacement of the Semail ophiolite in the Oman Mountains. Geol. Mag. 139, 3, (2002) 241–255.
  • 4. Nurlu, N. U–Pb zircon geochronology and geochemistry of the metamorphic sole rocks of the Meydan mélange, South-East Turkey: Implications for ophiolite emplacement and protolith, GEOLOGICA CARPATHICA, 71, 2, (2020) 183–205.
  • 5. Al-Riyami K., Robertson A., Dixon J. and Xenophontos C. Origin and emplacement of the Late Cretaceous Baer–Bassit ophiolite and its metamorphic sole in NW Syria. Lithos 65, 1, (2002) 225–260.
  • 6. Çelik Ö.F. Detailed geochemistry and K-Ar geochronology of the metamorphic sole rocks and their mafic dykes from the Mersin Ophiolite, Southern Turkey: Turk. J. Earth Sci. 17, (2008) 685–708.
  • 7. Sayit, K., Bedi, Y., Tekin, U.K., Göncüoğlu, M.C., Okuyucu, C. Middle Triassic backarcbasalts from the blocks in the Mersin Mélange, southern Turkey: implications for thegeodynamic evolution of the Northern Neotethys. Lithos 268, (2017) 102–113.
  • 8. Nurlu, N. Petrology and LA-ICP-MS zircon geochronology for Late Cretaceous felsic dikes and intermediate volcanic rocks hosted in Mersin ophiolite, South Turkey and its implications. Geosci J (2020). https://doi.org/10.1007/s12303-020-0020-0.
  • 9. Guilmette, C., Smit, M.A., van Hinsbergen, D.J.J., Gürer, D., Corfu, F., Charette, B., Maffione, M., Rabeau, O., and Savard, D. Forced subduction initiation recorded in the sole and crust of the Semail Ophiolite of Oman: Nature Geoscience, v. 11, p. (2018) 688–695, https:// doi.org/10.1038/s41561-018-0209–2.
  • 10. Kim, S., Jang, Y., Kwon, S, Samuel, O. V., Kim, S.W., Park, S., Santosh, M., Kokkalas, S. Petro-tectonic evolution of metamorphic sole of the Semail ophiolite, UAE, Godwana Research, 86 v, (2020) p. 203–221.
  • 11. Howard, D. P. Unravelling ophiolite emplacement history with microfossils - the Baer-Bassit ophiolite of NW Syria. Doctoral thesis, UCL (University College London). (2006) p. 1–232.
  • 12. Chan, G. H., Malpas, J., Xenophontos, C., Lo, C. H. Timing of subduction zone metamorphism during the formation and emplacement of Troodos and Baer–Bassit ophiolites: insights from 40Ar–39Ar geochronology. Geol. Mag. 144 (5), 2007, pp. 797–810.
  • 13. Lytwyn J.N and Casey J.F. The geochemistry of post kinematic mafic dyke swarms and subophiolitic metabasites, Pozanti–Karsanti ophiolite, Turkey: Evidence for ridge subduction. Geol. Soc. Am. Bull. 107, (1995) 830–850.
  • 14. Gnos E., and Peters T. K–Ar ages of the metamorphic sole of the Semail ophiolite: implications for cooling history. Contrib. Mineral. Petrol. 113, (1993) 325–332.
  • 15. Şengör A.M.C. and Yılmaz Y. Tethyan evolution of Turkey: A plate tectonic approach. Tectonophysics 75, (1981) 181–241.
  • 16. Yilmaz, Y. New evidence and model on the evolution of the southeast Anatolian orogen. Geological Society of America Bulletin, 105, (1993) 251–271.
  • 17. Yilmaz Y., Yiğitbaş E. and Genç Ş.C. Ophiolitic and Metamorphic Assemblages of Southeast Anatolia and their Significance in the Geological Evolution of the Orogenic Belt. Tectonics 12, (1993) 1280–1297.
  • 18. Robertson, A. H. F., Ustaömer, T., Parlak, O., Ünlügenç, U. C., Tasli, K. and İnan, N. The Berit transect of the Tauride thrust belt, S. Turkey: Late Cretaceous–Early Cenozoic accretionary/ collisional processes related to closure of the Southern Neotethys. Journal of Asian Earth Sciences. (2006)
  • 19. Robertson A.H. F., Parlak O., Rizaoğlu T., Ünlügenç Ü., İnan N., Tasli K. and Ustaömer T. Tectonic evolution of the South Tethyan ocean: evidence from the Eastern Taurus Mountains (Elazığ region, SE Turkey). Geol. Soc. London, Spec. Publ. 272, (2007) 231–270.
  • 20. Yazgan E. and Chessex R. Geology and Tectonic Evolution of the South–eastern Taurides in the Region of Malatya. Turk. Assoc. Petrol. Geol. 3, (1991) 1–42.
  • 21. Bağcı U., Parlak O. and Höck V. Whole-Rock Mineral Chemistry of Cumulates from the Kızıldağ (Hatay) Ophiolite (Turkey): Clues for Multiple Magma Generation During Crustal Accretion in the Southern Neotethyan Ocean. Mineral. Mag. 69, 1, (2005) 53–76.
  • 22. Beyarslan M. and Bingöl A.F. Petrology of a suprasubduction zone ophiolite (Elazığ, Turkey). Canad. J. Earth Sci. 37, (2000) 1411–24.
  • 23. Rızaoğlu, T., Parlak, O., Höck, V., İşler, F. Nature and significance of Late Cretaceous ophiolitic rocks and its relation to the Baskil granitoid in Elazığ region, SE Turkey. In Tectonic Development of the Eastern Mediterranean, Robertson, A.H.F., Mountrakis, D.(eds). Geological Society, London, Special Publication, 260: (2006) 327–350.
  • 24. Parlak O., Rizaoğlu T., Bağci U., Karaoğlan F. and Höck V. Tectonic significance of the geochemistry and petrology of ophiolites in southeast Anatolia, Turkey. Tectonophysics 473, (2009) 173–187.
  • 25. Nurlu N. Geochemistry and Tectonic Signifiance of the Tectonomagmatic Units in the Helete (Kahramanmaraş) Region. PhD Thesis, Çukurova University Intitute of Natural and Applied Sciences, (2016) 1–281. (in Turkish with English abstract).
  • 26. Nurlu N., Parlak O., Robertson A.H.F. and Quadt A. Implications of Late Cretaceous U–Pb zircon ages of granitic intrusions cutting ophiolitic and volcanogenic rocks for the assembly of the Tauride allochton in SE Anatolia (Helete area, Kahramanmaraş Region, SE Turkey). Int. J. Earth Sci. 105, (2016) 283–314.
  • 27. Robertson A.H.F. Overview of the genesis and emplacement of Mesozoic ophiolites in the eastern Mediterranean Tethyan region. Lithos 65, (2002) 1–67.
  • 28. MTA (General Directorate of Mineral Research and Exploration). 1:500.000 scaled 513 Geological Maps of Turkey (Adana map section), Ankara-Turkey. (2002) (in Turkish with 514 English abstract) http://www.mta.gov.tr/eng/maps/geological–500000 .
  • 29. Rızaoğlu, T. Petrography and Geochemistry of the Tectonomagmatic Units Cropping Out Between Baskil and Sivrice (Elaziğ), PhD Thesis, Çukurova University Intitute of Natural and Applied Sciences,(2006) 1–259. (in Turkish with English abstract).
  • 30. Donovan J.J., Snyder D.A and Rivers M.L. An Improved Interference Correction for Trace Element Analysis. Microbeam Analysis 2, (1993) 23–28.
  • 31. Armstrong J.T. Quantitative analysis of silicates and oxide minerals: Comparison of Monte-Carlo, ZAF and Phi-Rho-Z procedures. In: Newbury D.E. (Ed.): Microbeam Analysis. San Francisco Press,(1988) 239–246.
  • 32. Leterrier, J., Maury, R., Thono, P., Girard, D., and Marchal, M. Clinopyroxene composition as a method of identification of the magmatic affinities of paleovolcanic series: Earth and Planetary Science Letters, v. 59, p. (1982) 139–154.
  • 33. Leake B.E., Woolley A.R., Arps C.E.S., Birch W.D., Gilbert M.C., Grice J.D., Hawthorne F.C., Kato A., Kisch H.J., Krivovichev V.G., Linthout K., Laird J., Mandarino J.A., Maresch W.V., Nickel E.H., Rock N.M.S., Schumacher J.C., Smith D.C., Stephenson N.C.N., Ungaretti L., Whittaker E.J.W. and Youzhi G., Nomenclature of amphiboles; Report of the Subcomm. on Amphiboles Intern. Miner. Ass., Commiss. New Minerals and Mineral Names. Am. Mineral., 82: (1997) 1019-1037.
  • 34. Best M. G. Igneous and metamorphic petrology. Freeman, San Francisco, USA, (1982) 1–458.
  • 35. Brown E.H. The crossite content of ca-amphibole as a guide to pressure of metamorphism. J. Petrol. 18, (1977) 53–72. https://doi. org/10.1093/petrology/18.1.53
  • 36. Fleet, M.E., Barnett, R.L. Partitioning in calciferous amphiboles from the Frood Mine, Sudbury, Ontario. Can. Mineral. 16, (1978) 527–532.
  • 37. Yildirim, M. and Yilmaz, Y. Güneydogu Anadolu orojenik kuşağının ekaylı zonu. Bulletin of Turkish Association of Petroleum Geologists, 3, (1991) 57–73. (in Turkish with English abstract).
  • 38. Robertson, A. H. F., Ustaömer, T., Parlak, O., Ünlügenç, U. C., Tasli, K. and İnan, N. The Berit transect of the Tauride thrust belt, S. Turkey: Late Cretaceous–Early Cenozoic accretionary/ collisional processes related to closure of the Southern Neotethys. Journal of Asian Earth Sciences. (2006)
  • 39. Turan, M., Ve Bingöl, A. F. Kovancılar-Baskil (Elazığ) Arası Bölgenin Tektono-stratigrafik Özellikleri. Ahmet Acar Jeoloji Sempozyumu, Bildiriler, Çukurova Üniversitesi, Adana, (1991) 213–227. (in Turkish with English abstract).
  • 40. Nisbet, E., and Pearce, J. Clinopyroxene composition in mafic lavas from different tectonic settings: Contributions to Mineralogy and Petrology, v. 63, p. (1977) 149–160.
  • 41. Beccaluva, L., Macciotta, G., Piccardo, G.B., and Zeda, O. Clinopyroxene composition of ophiolite basalts as petrogenic indicator: Chemical Geology, v. 77, p. (1989) 165–182
  • 42. Locock A.J. 2014: An Excel spreadsheet to classify chemical analyses of amphiboles following the IMA 2012 recommendations. Comput. Geosci. 62, 1–11.
  • 43. Johnson M.C. and Rutherford M.J. Experimental calibration of the aluminum in hornblende geobarometer with application to long valley caldera (California) Volcanic Rocks. Geology 17, (1989) 837–841.
  • 44. Holland T. and Blundy J. Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contrib. Miner. Petrol. 116, (1994) 433–447.
  • 45. Anderson J.L., Barth A.P., Wooden J.L. and Mazdab F. Thermometers and thermobarometers in granitic systems. Rev. Mineral. Geochem. 69, 1, (2008) 121–142.
  • 46. Ludwig K.R. User’s Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel. Special Publication/Berkeley Geochronology Center (2003) 74.
  • 47. Nurlu N. U–Pb zircon geochronology and geochemistry of the metamorphic sole rocks of the Meydan mélange, South-East Turkey: Implications for ophiolite emplacement and protolith. Geologica Carpathica, 71, 2, (2020) 183–205.
  • 48. Akıncı A. C., Robertson A. H. F., Ünlügenç U. C. Late Cretaceous–Cenozoic subduction–collision history of the Southern Neotethys: new evidence from the Çağlayancerit area, SE Turkey. International Journal of Earth Sciences 105, (2016) 315-337
There are 48 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Nusret Nurlu This is me 0000-0002-3293-150X

Publication Date December 31, 2020
Submission Date June 5, 2020
Published in Issue Year 2020

Cite

Vancouver Nurlu N. Mineral Chemistry–thermobarometry and Petrography of Metamorphic Sole Rocks of Kömürhan Ophiolite (SE Turkey): Constraints to Evolution and Emplacement. Hittite J Sci Eng. 2020;7(4):287-96.

Hittite Journal of Science and Engineering is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY NC).