BibTex RIS Cite
Year 2020, Volume: 7 Issue: 2, 157 - 162, 26.06.2020
https://doi.org/10.17350/HJSE19030000184

Abstract

References

  • 1. Cantor B, Chang ITH, Knight P, Vincent AJB. Microstructural development in equiatomic multicomponent alloys. Materials Science and Engineering A 375–377 (2004) 213– 218.
  • 2. Yeh JW, Chen YL, Lin SJ, Chen SK. High-Entropy Alloys – A New Era of Exploitation. Materials Science Forum 560 (2007) 1–9.
  • 3. Yeh JW, Chen SK, Lin SJ, Gan JY, Chin TS, Shun TT, Tsau CH, Chang SY. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Advanced Engineering Materials 6 (2004) 299–303.
  • 4. Wu JM, Lin SJ, Yeh JW, Chen SK, Huang YS, Chen HC. Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content. Wear 261 (2006) 513–519.
  • 5. Senkov ON, Miracle DB, Chaput KJ, Couzinie JP. Development and exploration of refractory high-entropy alloys—a review. Journal of Materials Research 33 (2018) 3192-3133.
  • 6. Hu Q, Guo S, Wang J, et al. Parametric Study of Amorphous High-Entropy Alloys formation from two New Perspectives: Atomic Radius Modification and Crystalline Structure of Alloying Elements. Science Reports 7 (2017) 39917.
  • 7. Feng R, Gao MC, Lee C, Mathes M, Zuo T, Chen S, Hawk JA, Zhang Y, Liaw PK. Design of Light-Weight High-Entropy Alloys. Entropy 18 (2016) 333.
  • 8. Lucas MS, Mauger L, Muñoz JA, Xiao Y, Xiao Y, Sheets AO, Semiatin SL, Horwath J, Turgut Z. Magnetic and vibrational properties of high-entropy alloys. Journal of Applied Physics 109 (2011) 07E307.
  • 9. Gali A, George E. P. Tensile properties of high- and mediumentropy alloys. Intermetallics 39 (2013) 74–78.
  • 10. Tsai KY, Tsai MH, Yeh JW. Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Mater. 61 (2013) 4887–4897.
  • 11. Liu WH, Wu Y, He JY, Nieh TG, Lu ZP. Grain growth and the HallPetch relationship in a highentropy FeCrNiCoMn alloy. Scr. Mater. 68 (2013) 526–529.
  • 12. 12. Senkov ON, Woodward CF. Microstructure and properties of a refractory NbCrMo0.5Ta0.5TiZr alloy. Mater. Sci. Eng. A 529 (2011) 311–320.
  • 13. Senkov ON, Wilks GB, Scott JM, Miracle DB. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics 19 (2011) 698–706.
  • 14. Senkov ON, Scott JM, Senkova SV, Miracle DB, Woodward CF. Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy. J. Alloys. Compd. 509 (2011) 6043–6048.
  • 15. Takeuchi A, Amiya K, Wada T, Yubuta K, Zhang W. High-entropy alloys with a hexagonal close-packed structure designed by equiatomic alloy strategy and binary phase diagrams. JOM 66 (2014) 1984–1992.
  • 16. Feuerbacher M, Heidelmann M, Thomas C. Hexagonal highentropy alloys. Mater. Res. Lett. 3 (2015) 1–6.
  • 17. Zhao YJ et al. A hexagonal close-packed highentropy alloy: the effect of entropy. Mater. Des. 96 (2016) 10–15.
  • 18. Yang X, Zhang Y. Prediction of high-entropy stabilized solidsolution in multi-component alloys. Materials Chemistry and Physics 132 (2–3) (2012) 233-238.
  • 19. Guo S, Ng C, Lu J, Liu CT. Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. Journal of Applied Physics 109 (2011) 103505.
  • 20. Singh S, Wanderka N, Murty BS, Glatzel U, Banhart J. Decomposition in multi component AlCoCrCuFeNi high-entropy alloy. Acta Materialia 59 (2011) 182–190.
  • 21. Tsai MH, Yuan H, Cheng G, Xu W, Jian WW, Chuang MH, Juan CC, Yeh AC, Lin SJ, Zhu Y. Significant hardening due to the formation of a sigma phase matrix in a high entropy alloy. Intermetallics 33 (2013) 81–86.
  • 22. Tong CJ, Chen YL, Chen SK, Yeh JW, Shun TT, Tsau CH, Lin SJ, Chang SY. Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metallurgical Materials and Transactions A 36 (2005) 881–893.
  • 23. Tsai MH, Yuan H, Cheng G, Xu W, Tsai KY, Tsai CW, Jian WW, Juan CC, Shen WJ, Chuang MH, Yeh JW, Zhu YT. Morphology, structure and composition of precipitates in Al0.3CoCrCu0.5FeNi high-entropy alloy. Intermetallics 32 (2013) 329–336.
  • 24. Meshkov II, Novoselov EA, Shapeev AV, Yanilkin AV. Sublattice formation in CoCrFeNi high-entropy alloy. Intermetallics 112 (2019) 106542.
  • 25. Wang B, Haiyan H, Naeem M, et al. Deformation of CoCrFeNi high entropy alloy at large strain. Scripta Materialia 115 (2018) 54-57.
  • 26. Guo S, Ng C, Wang Z, Liu CT. Solid solutioning in equiatomic alloys: limit set by topological instability. Journal of Alloys and Compounds 583 (2014) 410-413.
  • 27. Liu WH, Lu ZP, He JY, Luan JH, Wang ZJ, Liu B,Liu Y, Chen MW, Liu CT. Ductile CoCrFeNiMox high entropy alloys strengthened by hard intermetallic phases. Acta Materialia 116 (2016) 332-342.
  • 28. Lu Y. P., Gao X., Jiang L., Chen Z., et al. Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range. Acta Materialia 214 (2017) 143-150.
  • 29. Wang YP, Li BS, Ren MX, Yang C, Fu HZ. Microstructure and compressive properties of AlCrFeCoNi high entropy alloy. Materials Science and Engineering: A 491 (2008) 154-158

Microstructure and Mechanical Properties of CoCrFeNi Ti-Al High Entropy Alloys

Year 2020, Volume: 7 Issue: 2, 157 - 162, 26.06.2020
https://doi.org/10.17350/HJSE19030000184

Abstract

The structure and mechanical properties of CoCrFeNi and CoCrFeNiTi0.5Al0.5 in molar ratio high entropy alloys were investigated using X-ray diffraction XRD , optical microscope OM , scanning electron microscope SEM , hardness and compression tests. With the addition of Ti and Al, the crystal structure of CoCrFeNi changed from FCC to a mixture of FCC and double BCC structures. The lattice parameter of FCC increases upon addition of Al and Ti. The microstructure analysis shows the morphological transition of dendrites from non-equiaxed to equiaxed during the suction casting of CoCrFeNiTi0.5Al0.5 alloy. The Vickers microhardness testing of CoCr-FeNi alloy reveals significant increase in hardness with the addition of Al and Ti. The hardness values are improved in as-suction cast CoCrFeNi and CoCrFeNiTi0.5Al 0.5 alloys compared to their ascast alloys due to strengthening. The CoCrFeNiTi0.5Al0.5 alloy yields at 1997 MPa and fails at 2344 MPa. The fracture mechanism of CoCrFeNiTi0.5Al 0.5 alloy reveals a cleavage mode.

References

  • 1. Cantor B, Chang ITH, Knight P, Vincent AJB. Microstructural development in equiatomic multicomponent alloys. Materials Science and Engineering A 375–377 (2004) 213– 218.
  • 2. Yeh JW, Chen YL, Lin SJ, Chen SK. High-Entropy Alloys – A New Era of Exploitation. Materials Science Forum 560 (2007) 1–9.
  • 3. Yeh JW, Chen SK, Lin SJ, Gan JY, Chin TS, Shun TT, Tsau CH, Chang SY. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Advanced Engineering Materials 6 (2004) 299–303.
  • 4. Wu JM, Lin SJ, Yeh JW, Chen SK, Huang YS, Chen HC. Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content. Wear 261 (2006) 513–519.
  • 5. Senkov ON, Miracle DB, Chaput KJ, Couzinie JP. Development and exploration of refractory high-entropy alloys—a review. Journal of Materials Research 33 (2018) 3192-3133.
  • 6. Hu Q, Guo S, Wang J, et al. Parametric Study of Amorphous High-Entropy Alloys formation from two New Perspectives: Atomic Radius Modification and Crystalline Structure of Alloying Elements. Science Reports 7 (2017) 39917.
  • 7. Feng R, Gao MC, Lee C, Mathes M, Zuo T, Chen S, Hawk JA, Zhang Y, Liaw PK. Design of Light-Weight High-Entropy Alloys. Entropy 18 (2016) 333.
  • 8. Lucas MS, Mauger L, Muñoz JA, Xiao Y, Xiao Y, Sheets AO, Semiatin SL, Horwath J, Turgut Z. Magnetic and vibrational properties of high-entropy alloys. Journal of Applied Physics 109 (2011) 07E307.
  • 9. Gali A, George E. P. Tensile properties of high- and mediumentropy alloys. Intermetallics 39 (2013) 74–78.
  • 10. Tsai KY, Tsai MH, Yeh JW. Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Mater. 61 (2013) 4887–4897.
  • 11. Liu WH, Wu Y, He JY, Nieh TG, Lu ZP. Grain growth and the HallPetch relationship in a highentropy FeCrNiCoMn alloy. Scr. Mater. 68 (2013) 526–529.
  • 12. 12. Senkov ON, Woodward CF. Microstructure and properties of a refractory NbCrMo0.5Ta0.5TiZr alloy. Mater. Sci. Eng. A 529 (2011) 311–320.
  • 13. Senkov ON, Wilks GB, Scott JM, Miracle DB. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics 19 (2011) 698–706.
  • 14. Senkov ON, Scott JM, Senkova SV, Miracle DB, Woodward CF. Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy. J. Alloys. Compd. 509 (2011) 6043–6048.
  • 15. Takeuchi A, Amiya K, Wada T, Yubuta K, Zhang W. High-entropy alloys with a hexagonal close-packed structure designed by equiatomic alloy strategy and binary phase diagrams. JOM 66 (2014) 1984–1992.
  • 16. Feuerbacher M, Heidelmann M, Thomas C. Hexagonal highentropy alloys. Mater. Res. Lett. 3 (2015) 1–6.
  • 17. Zhao YJ et al. A hexagonal close-packed highentropy alloy: the effect of entropy. Mater. Des. 96 (2016) 10–15.
  • 18. Yang X, Zhang Y. Prediction of high-entropy stabilized solidsolution in multi-component alloys. Materials Chemistry and Physics 132 (2–3) (2012) 233-238.
  • 19. Guo S, Ng C, Lu J, Liu CT. Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. Journal of Applied Physics 109 (2011) 103505.
  • 20. Singh S, Wanderka N, Murty BS, Glatzel U, Banhart J. Decomposition in multi component AlCoCrCuFeNi high-entropy alloy. Acta Materialia 59 (2011) 182–190.
  • 21. Tsai MH, Yuan H, Cheng G, Xu W, Jian WW, Chuang MH, Juan CC, Yeh AC, Lin SJ, Zhu Y. Significant hardening due to the formation of a sigma phase matrix in a high entropy alloy. Intermetallics 33 (2013) 81–86.
  • 22. Tong CJ, Chen YL, Chen SK, Yeh JW, Shun TT, Tsau CH, Lin SJ, Chang SY. Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metallurgical Materials and Transactions A 36 (2005) 881–893.
  • 23. Tsai MH, Yuan H, Cheng G, Xu W, Tsai KY, Tsai CW, Jian WW, Juan CC, Shen WJ, Chuang MH, Yeh JW, Zhu YT. Morphology, structure and composition of precipitates in Al0.3CoCrCu0.5FeNi high-entropy alloy. Intermetallics 32 (2013) 329–336.
  • 24. Meshkov II, Novoselov EA, Shapeev AV, Yanilkin AV. Sublattice formation in CoCrFeNi high-entropy alloy. Intermetallics 112 (2019) 106542.
  • 25. Wang B, Haiyan H, Naeem M, et al. Deformation of CoCrFeNi high entropy alloy at large strain. Scripta Materialia 115 (2018) 54-57.
  • 26. Guo S, Ng C, Wang Z, Liu CT. Solid solutioning in equiatomic alloys: limit set by topological instability. Journal of Alloys and Compounds 583 (2014) 410-413.
  • 27. Liu WH, Lu ZP, He JY, Luan JH, Wang ZJ, Liu B,Liu Y, Chen MW, Liu CT. Ductile CoCrFeNiMox high entropy alloys strengthened by hard intermetallic phases. Acta Materialia 116 (2016) 332-342.
  • 28. Lu Y. P., Gao X., Jiang L., Chen Z., et al. Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range. Acta Materialia 214 (2017) 143-150.
  • 29. Wang YP, Li BS, Ren MX, Yang C, Fu HZ. Microstructure and compressive properties of AlCrFeCoNi high entropy alloy. Materials Science and Engineering: A 491 (2008) 154-158
There are 29 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Ilkay Kalay This is me

Publication Date June 26, 2020
Published in Issue Year 2020 Volume: 7 Issue: 2

Cite

Vancouver Kalay I. Microstructure and Mechanical Properties of CoCrFeNi Ti-Al High Entropy Alloys. Hittite J Sci Eng. 2020;7(2):157-62.

Hittite Journal of Science and Engineering is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY NC).