BibTex RIS Cite
Year 2019, Volume: 6 Issue: 3, 223 - 228, 30.09.2019
https://doi.org/10.17350/HJSE19030000151

Abstract

References

  • Gutsche CD. Calixarenes Revisited, The Royal Society of Chemistry, Cambridge, UK, 1998.
  • Furer VL, Potapova LI, Vatsouro IM, Kovalev VV, Shokova EA, Kovalenko VI. Investigation of the conformation and hydrogen bonds in adamantylthiacalix[4]arene by IR spectroscopy and DFT. Journal of Molecular Structure 1171 (2018) 207-213.
  • Şener İ, Şener N, Erişkin S. Synthesis and absorption spectra of some novel hetaryltetrakisazocalix[4]arene derivatives. Dyes and Pigments 96(1) (2013) 256-263
  • Galindo-Murillo R, Olmedo-Romero A, Cruz-Flores E, Petrar PM, Kunsagi-Mate S, Barroso-Flores J. Calix[n]arene-based drug carriers: A DFT study of their electronic interactions with a chemotherapeutic agent used against leukemia. Computational and Theoretical Chemistry 1035 (2014) 84-91.
  • Shamova LI, Shamov GA, Antipin IS, Konovalov AI. Modeling K + and Ag + Complexation by Thiacalix[4]arene Amides Using DFT: The Role of Intramolecular Hydrogen Bonding. The Journal of Physical Chemistry A 113 (19) (2009) 5691-5699.
  • Bifulco G, Gomez-Paloma L, Riccio R, Gaeta C, Troisi F, Neri P. Quantum Mechanical Calculations of Conformationally Relevant H and 13 C NMR Chemical Shifts of Calixarene Systems. Organic Letters 7(26) (2005) 5757-5760.
  • Guzzo RN, Rezende MJC, Kartnaller V, Carneiro JW de M, Stoyanov SR, Costa da LM. Experimental and DFT evaluation of the 1H and 13C NMR chemical shifts for calix[4]arenes. Journal of Molecular Structure 1157 (2018) 97-105.
  • Kostyukevych KV, Khristosenko RV, Pavluchenko AS, Vakhula AA, Kazantseva ZI, Koshets IA, Shirshov YM. A nanostructural model of ethanol adsorption in thin calixarene films. Sensors and Actuators B: Chemical 223 (2016) 470-480.
  • Özkınalı S, Kocaokutgen H. Synthesis, spectral characterisation and thermal behaviours of some new p-tert-butylcalix[4]arene and calix[4]arene-esters containing acryloyl groups. Journal of Molecular Structure 1031 (2013)70-78.
  • Özkinali S, Uçar I, Kocaokutgen H, Bulut A. 25,27-Bis(acryloyloxy)- ,28-dihydroxycalix[4]arene toluene hemisolvate. Acta Crystallographica Section E Structure Reports Online 63(8) (2007) o3378-o3378.
  • Roy D, Todd K, John M. GaussView, Version 5, Semichem Inc., Shawnee Mission, KS, 2009.
  • Walters P, Stahl M. Babel, Version 1.1, Department of Chemistry, University of Arizona, Tucson, AZ 85721.
  • Glendening ED, Reed AE, Carpenter JE, Weinhold F. NBO Version 1, TCI, University of Wisconsin, Madison, 1998.
  • Özkınalı S, Karayel A. Synthesis, characterization, conformational equilibrium and intramolecular hydrogen bond analysis of Novel Azocalix[4]arenes including acryloyl moiety using DFT studies. Journal of Molecular Structure 1176 (2019) 303-313.
  • Chawla HM, Singh SP, Sahu SN, Upreti S. Shaping the cavity of calixarene architecture for molecular recognition: synthesis and conformational properties of new azocalix[4]arenes. Tetrahedron (33) (2006) 7854-7865.

Computational Insight into Conformational Rearrangement and Intramolecular-H Bond Analysis of Some Calix[4]Arenes Including Acryloyl Moiety

Year 2019, Volume: 6 Issue: 3, 223 - 228, 30.09.2019
https://doi.org/10.17350/HJSE19030000151

Abstract

T he conformational analyses of Calix[4]arenes reveals four different stable structures conformations ; Cone, Partial Cone, 1,2-Alternate and 1,3-Alternate after employing a density functional theory DFT computational analysis. Intramolecular Hydrogen Bonds IHBs existing Calixarene core cause Cone conformation, supporting to be the best stable state in 1, 2 and 3 compounds. In addition, one needs Natural Bond Orbital NBO analyses of current compounds in order to understand nature of these IHBs. Specifically, it has been shown using NBO that the LP *→σ interactions for O˙˙˙O¯H IHBs and the delocalization LP → π* for O¯C=O are the major contributions to energy stabilization. Of all conformers of compound 4, Partial Cone has the lowest energy, which can be attributed to devoid of intramolecular hydrogen bond due to the absence of free phenolic groups

References

  • Gutsche CD. Calixarenes Revisited, The Royal Society of Chemistry, Cambridge, UK, 1998.
  • Furer VL, Potapova LI, Vatsouro IM, Kovalev VV, Shokova EA, Kovalenko VI. Investigation of the conformation and hydrogen bonds in adamantylthiacalix[4]arene by IR spectroscopy and DFT. Journal of Molecular Structure 1171 (2018) 207-213.
  • Şener İ, Şener N, Erişkin S. Synthesis and absorption spectra of some novel hetaryltetrakisazocalix[4]arene derivatives. Dyes and Pigments 96(1) (2013) 256-263
  • Galindo-Murillo R, Olmedo-Romero A, Cruz-Flores E, Petrar PM, Kunsagi-Mate S, Barroso-Flores J. Calix[n]arene-based drug carriers: A DFT study of their electronic interactions with a chemotherapeutic agent used against leukemia. Computational and Theoretical Chemistry 1035 (2014) 84-91.
  • Shamova LI, Shamov GA, Antipin IS, Konovalov AI. Modeling K + and Ag + Complexation by Thiacalix[4]arene Amides Using DFT: The Role of Intramolecular Hydrogen Bonding. The Journal of Physical Chemistry A 113 (19) (2009) 5691-5699.
  • Bifulco G, Gomez-Paloma L, Riccio R, Gaeta C, Troisi F, Neri P. Quantum Mechanical Calculations of Conformationally Relevant H and 13 C NMR Chemical Shifts of Calixarene Systems. Organic Letters 7(26) (2005) 5757-5760.
  • Guzzo RN, Rezende MJC, Kartnaller V, Carneiro JW de M, Stoyanov SR, Costa da LM. Experimental and DFT evaluation of the 1H and 13C NMR chemical shifts for calix[4]arenes. Journal of Molecular Structure 1157 (2018) 97-105.
  • Kostyukevych KV, Khristosenko RV, Pavluchenko AS, Vakhula AA, Kazantseva ZI, Koshets IA, Shirshov YM. A nanostructural model of ethanol adsorption in thin calixarene films. Sensors and Actuators B: Chemical 223 (2016) 470-480.
  • Özkınalı S, Kocaokutgen H. Synthesis, spectral characterisation and thermal behaviours of some new p-tert-butylcalix[4]arene and calix[4]arene-esters containing acryloyl groups. Journal of Molecular Structure 1031 (2013)70-78.
  • Özkinali S, Uçar I, Kocaokutgen H, Bulut A. 25,27-Bis(acryloyloxy)- ,28-dihydroxycalix[4]arene toluene hemisolvate. Acta Crystallographica Section E Structure Reports Online 63(8) (2007) o3378-o3378.
  • Roy D, Todd K, John M. GaussView, Version 5, Semichem Inc., Shawnee Mission, KS, 2009.
  • Walters P, Stahl M. Babel, Version 1.1, Department of Chemistry, University of Arizona, Tucson, AZ 85721.
  • Glendening ED, Reed AE, Carpenter JE, Weinhold F. NBO Version 1, TCI, University of Wisconsin, Madison, 1998.
  • Özkınalı S, Karayel A. Synthesis, characterization, conformational equilibrium and intramolecular hydrogen bond analysis of Novel Azocalix[4]arenes including acryloyl moiety using DFT studies. Journal of Molecular Structure 1176 (2019) 303-313.
  • Chawla HM, Singh SP, Sahu SN, Upreti S. Shaping the cavity of calixarene architecture for molecular recognition: synthesis and conformational properties of new azocalix[4]arenes. Tetrahedron (33) (2006) 7854-7865.
There are 15 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Arzu Karayel This is me

Publication Date September 30, 2019
Published in Issue Year 2019 Volume: 6 Issue: 3

Cite

Vancouver Karayel A. Computational Insight into Conformational Rearrangement and Intramolecular-H Bond Analysis of Some Calix[4]Arenes Including Acryloyl Moiety. Hittite J Sci Eng. 2019;6(3):223-8.

Hittite Journal of Science and Engineering is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY NC).