Research Article
BibTex RIS Cite
Year 2023, Volume: 10 Issue: 3, 193 - 199, 30.09.2023
https://doi.org/10.17350/HJSE19030000307

Abstract

References

  • 1. Varshney D, Anu, Prakash J, Singh VP, Yadav K, Singh G. Probing the Impact of Bismuth-titanate Based Nanocomposite on the Dielectric and Electro-Optical Features of a Nematic Liquid Crystal Material. Journal of Molecular Liquids. 2022;347:118389.
  • 2. Mani S, Patwardhan S, Hadkar S, Mishra K, Sarawade P. Effect of Polymer Concentration on Optical and Electrical Properties of Liquid Crystals for Photonic Applications. Materials Today: Proceedings. 2022;62:7035-7039.
  • 3. Mishra R, Hazarika J, Hazarika A, Gogoi B, Dubey R, Bhattacharjee D, Singh KN, Alapati PR. Dielectric Properties of a Strongly Polar Nematic Liquid Crystal Compound Doped with Gold Nanoparticles. Liquid Crystals. 2018;45(11):1661-1671.
  • 4. Oh SW, Ji SM, Han CH, Yoon TH. A Cholesteric Liquid Crystal Smart Window with a Low Operating Voltage. Dyes and Pigments. 2022;197:109843.
  • 5. Jinqian L, Zhao Y, Gao H, Wang D, Miao Z, Cao H, Yang Z, He W. Polymer Dispersed Liquid Crystals Doped with CeO2 Nanoparticles for the Smart Window. Liquid Crystals. 2022;49(1):29-38.
  • 6. Li YL, Li NN, Wang D, Chu F, Lee SD, Zheng YW, Wang QH. Tunable Liquid Crystal Grating Based Holographic 3D Display System with Wide Viewing Angle and Large Size. Light: Science & Applications. 2022;11:188.
  • 7. Tan G, Huang Y, Li MC, Lee SL, Wu ST. High Dynamic Range Liquid Crystal Displays with a Mini-LED Backlight. Optics Express. 2018;26(13):16572-16584.
  • 8. Mulder DJ, Schenning APHJ, Bastiaansen CWM. Chiral-Nematic Liquid Crystals as One Dimensional Photonic Materials in Optical Sensors. Journal of Materials Chemistry C. 2014;2:6695-6705.
  • 9. Cachelin P, Green JP, Peijs T, Heeney M, Bastiaansen CWM. Optical Acetone Vapor Sensors Based on Chiral Nematic Liquid Crystals and Reactive Chiral Dopants. Advanced Optical Materials. 2016;4(4):92-596.
  • 10. Pathak G, Hegde G, Prasad V. Investigation of Electro-Optical and Dielectric Properties of Nematic Liquid Crystal Dispersed with Biowaste Based Porous Carbon Nanoparticles: Increased Birefringence for Display Applications. Journal of Molecular Liquids. 2020; 314:113643.
  • 11. Yadav G, Kumar M, Srivastava A, Manohar R. SiO2 Nanoparticles Doped Nematic Liquid Crystal System: An Experimental Investigation on Optical and Dielectric Properties. Chinese Journal of Physics. 2019;57:82-89.
  • 12. Özğan Ş, Eskalen H, Tapkıranlı Y. The Electrical and Optical Behavior of Graphene Oxide Doped Nematic Liquid Crystal. Journal of Materials Science: Materials in Electronics. 2022;33:5720-5729.
  • 13. Yadav G, Agrahari K, Manohar R. Multiwall Carbon Nanotube- Nematic Liquid Crystal Composite System: Preparation and Characterization. Journal of Dispersion Science and Technology. 2021;42(5):707-714.
  • 14. Varshney D, Parveen A, Prakash J. Effect of Cobalt Oxide Nanoparticles on Dielectric Properties of a Nematic Liquid Crystal Material. Journal of Dispersion Science and Technology. 2022;43(1):42-49.
  • 15. Pandey S, Gupta SK, Singh DP, Vimal T, Tripathi PK, Srivastava A, Manohar R. Effects of Polymer Doping on Dielectric and Electro-Optical Parameters of Nematic Liquid Crystal. Polymer Engineering & Science. 2015;55(2):414-420.
  • 16. Kim Y, Jung D, Jeong S, Kim K, Choi W, Seo Y. Optical Properties and Optimized Conditions for Polymer Dispersed Liquid Crystal Containing UV Curable Polymer and Nematic Liquid Crystal. Current Applied Physics. 2015;15(3):292-297.
  • 17. Eskalen H, Özğan Ş, Okumuş M, Kerl S. Thermal and Electro- Optical Properties of Graphene Oxide/Dye-Doped Nematic Liquid Crystal. Brazilian Journal of Physics. 2019;49: 341-347.
  • 18. Ye L, Hou C, Lv C, Zhao C, Yin Z, Cui Y, Lu Y. Tailoring of Random Lasing Characteristics in Dye-Doped Nematic Liquid Crystals. Applied Physics B. 2014;115:303-309.
  • 19. Chemingui M, Singh UB, Yadav N, Dabrowski RS, Dhar R. Effect of Iron Oxide (γ-Fe2O3) Nanoparticles on the Morphological, Electro- Optical and Dielectric Properties of a Nematic Liquid Crystalline Material. Journal of Molecular Liquids. 2020;319:114299.
  • 20. Praseetha KP, Shiju E, Chandrasekharan K, Varghese S. Intense Nonlinear Optical Properties of ZnS Quantum Dot Doped Nematic Liquid Crystal Compounds. Journal of Molecular Liquids. 2021;328:115347.
  • 21. Elkhalgi HHM, Khandka S, Singh UB, Pandey KL, Dabrowski R, Dhar R. Dielectric and Electro-Optical Properties of a Nematic Liquid Crystalline Material with Gold Nanoparticles. Liquid Crystals. 2018;45(12):1795-1801.
  • 22. Christie RM. Handbook of Textile and Industrial Dyeing Principles, Processes and Types of Dyes. Volume 1 in Woodhead Publishing Series in Textiles; 2011. p. 562-587.
  • 23. Pathak G, Agrahari K, Yadav G, Srivastava A, Strzezysz O, Manohar R. Tuning of Birefringence, Response Time, and Dielectric Anisotropy by the Dispersion of Fluorescent Dye into the Nematic Liquid Crystal. Applied Physics A. 2018;124:463.
  • 24. Liu S, Wu H, Zhang X, Hu W. Research Progress of Rubrene as an Excellent Multifunctional Organic Semiconductor. Frontiers of Physics. 2021;16(1):13304.
  • 25. Al-Muntaser AA, Alamri HR, Sharma K, Eltahir S, Makhlouf MM. Role of Rubrene Additive for Reinforcing the Structural, Optical, and Dispersion Properties of Polyvinyl Alcohol Films Towards Optoelectronic Applications. Optical Materials. 2022;128:112465.
  • 26. Selvaraj P, Li P-Y, Antony M, Wang Y-W, Chou P-W, Chen Z-H, Hsu C-J, Huang C-Y. Rubbing-Free Liquid Crystal Electro-Optic Device Based on Organic Single-Crystal Rubrene. Optics Express. 2022;30(6):9521-9533.
  • 27. Ma H, Liu N, Huang J-D. A DFT Study on the Electronic Structures and Conducting Properties of Rubrene and Its Derivatives in Organic Field-Effect Transistors. Scientific Reports. 2017;7:331.
  • 28. Podzorov V, Menard E, Rogers JA, Gershenson ME. Hall Effect in the Accumulation Layers on the Surface of Organic Semiconductors. Physical Review Letters. 2005;95(22): 226601.
  • 29. Kim K, Kim MK, Kang HS, Cho MY, Joo J, Kim JH, Kim KH, Hong CS, Choi DH. New Growth Method of Rubrene Single Crystal for Organic Field-Effect Transistor. Synthetic Metals. 2007;157(10- 12):481-484.
  • 30. Wang X, Wang R, Zhou D, Yu J. Study of Organic Light-Emitting Diodes with Exciplex and Non-Exciplex Forming Interfaces Consisting of an Ultrathin Rubrene Layer. Synthetic Metals. 2016;214:50-55.
  • 31. Pelicano CM, Yanagi H. Effect of Rubrene:P3HT Bilayer on Photovoltaic Performance of Perovskite Solar Cells with Electrodeposited ZnO Nanorods. Journal of Energy Chemistry. 2018;27(2):455-462.
  • 32. Huang J, Yu J, Wang W, Jiang Y. Organic Solar Cells with a Multicharge Separation Structure Consisting of a Thin Rubrene Fluorescent Dye for Open Circuit Voltage Enhancement. Applied Physics Letters. 2011;98:023301.
  • 33. Nasri R, Missaoui T, Hbibi A, Soltani T. Enhanced Dielectric Properties of Nematic Liquid Crystal Doped with Ferroelectric Nanoparticles. Liquid Crystals. 2021;48(10):1429-1437.
  • 34. Jain AK, Deshmukh RR. Effects of Dye Doping on Electro-Optical, Thermo-Electro-Optical and Dielectric Properties of Polymer Dispersed Liquid Crystal Films. Journal of Physics and Chemistry of Solids. 2022;160:110363.
  • 35. Tüzün Özmen Ö, Goksen K, Demir A, Durmus M, Köysal O. Investigation of Photoinduced Change of Dielectric and Electrical Properties of Indium (III) Phthalocyanine and Fullerene Doped Nematic Liquid Crystal. Synthetic Metals. 2012;162(24):2188-2192.
  • 36. Pathak G, Agrahari K, Roy A, Srivastava A, Strzezysz O, Garbat K, Manohar R. Dispersion of Fluorescent Dye in the Nematic Liquid Crystal: Enhanced Photoluminescence and High Birefringence. Opto-Electronics Review. 2018;26:317-324.
  • 37. Mishra S, Sontakke AM, Gupta RK, Kumar S, Manjuladevi V. Dielectric Spectroscopy Studies of Silver Nanorod Doped Nematic Liquid Crystal. Materials Today: Proceedings. 2022;50:2587-2591.
  • 38. Manohar R, Pandey KK, Srivastava AK, Misra AK, Yadav SP. Sign Inversion of Dielectric Anisotropy in Nematic Liquid Crystal by Dye Doping. Journal of Physics and Chemistry of Solids. 2010;71:1311-1315.
  • 39. Pandey KK, Bawaria AK, Priyadarshi P. Effect of Nano Particles on the Dielectric Anisotropy of Liquid Crystal. Journal of Scientific Research and Advances. 2015;2(3):103-107.
  • 40. Deshmukh RR, Jain AK. The Complete Morphological, Electro- Optical and Dielectric Study of Dichroic Dye-Doped Polymer- Dispersed Liquid Crystal. Liquid Crystals. 2014; 41(7):960-975.
  • 41. Deshmukh RR, Jain AK. Effect of Anti-Parallel and Twisted Alignment Techniques on Various Properties of Polymer Stabilised Liquid Crystal (PSLC) Films. Liquid Crystals. 2016;43(4):436-447.
  • 42. Salah MB, Nasri R, Alharbi AN, Althagafi TM, Soltani T. Thermotropic Liquid Crystal Doped with Ferroelectric Nanoparticles: Electrical Behavior and Ion Trapping Phenomenon. Journal of Molecular Liquids. 2022;357:119142.
  • 43. Jayoti D, Khushboo, Malik P, Singh A. Effect of Polymer Concentration on Morphology, Dielectric and Optical Properties in a Polymer-Dispersed Ferroelectric Liquid Crystal. Liquid Crystals. 2016;43(5):623-631.
  • 44. Vimal T, Agrahari K, Sonker RK, Manohar R. Investigation of Thermodynamical, Dielectric and Electro-Optical Parameters of Nematic Liquid Crystal Doped with Polyaniline and Silver Nanoparticles. Journal of Molecular Liquids. 2019;290:111241.

The Role of Rubrene Concentration on Dielectric Parameters of Nematic Liquid Crystal

Year 2023, Volume: 10 Issue: 3, 193 - 199, 30.09.2023
https://doi.org/10.17350/HJSE19030000307

Abstract

In this study, the dielectric parameters of E7 coded nematic liquid crystal (NLC) composites containing the different amounts of rubrene fluorescent dye were investigated. E7, E7+0.5 wt.% Rubrene, and E7+1.0 wt.% Rubrene samples were prepared. Frequency dependent dielectric constants (ɛ′ and ɛ′′), dielectric anisotropy (Δε′), and ac conductivity (σac) graphs of rubrene doped E7 NLC composites were obtained by dielectric spectroscopy method and compared with pure E7 NLC. By using these graphs, relaxation frequency (fR), relaxation time (τR), dielectric strength (δɛ′), and crossover frequency (fc) parameters of the E7 NLC and its rubrene doped composites were determined. An increase in fR from 3.045 MHz to 3.697 MHz for 0 V and from 627 kHz to 686 kHz for 40 V was observed with increasing rubrene concentration. On the other hand, a decrease in τR from 0.052 μs to 0.043 μs for 0 V and from 0.254 μs to 0.232 μs for 40 V was seen with increasing rubrene concentration. Furthermore, an increase in fc from 1.145 MHz to 1.298 MHz was obtained with increasing rubrene concentration. The results show that the dielectric parameters change with the concentration of rubrene and it is thought that this study will provide a basis for investigating the dielectric properties of rubrene doped NLC composites. Moreover, it is concluded that the produced composites are a suitable base material for electro-optical device applications such as smart displays, photonics and electrical circuit elements.

References

  • 1. Varshney D, Anu, Prakash J, Singh VP, Yadav K, Singh G. Probing the Impact of Bismuth-titanate Based Nanocomposite on the Dielectric and Electro-Optical Features of a Nematic Liquid Crystal Material. Journal of Molecular Liquids. 2022;347:118389.
  • 2. Mani S, Patwardhan S, Hadkar S, Mishra K, Sarawade P. Effect of Polymer Concentration on Optical and Electrical Properties of Liquid Crystals for Photonic Applications. Materials Today: Proceedings. 2022;62:7035-7039.
  • 3. Mishra R, Hazarika J, Hazarika A, Gogoi B, Dubey R, Bhattacharjee D, Singh KN, Alapati PR. Dielectric Properties of a Strongly Polar Nematic Liquid Crystal Compound Doped with Gold Nanoparticles. Liquid Crystals. 2018;45(11):1661-1671.
  • 4. Oh SW, Ji SM, Han CH, Yoon TH. A Cholesteric Liquid Crystal Smart Window with a Low Operating Voltage. Dyes and Pigments. 2022;197:109843.
  • 5. Jinqian L, Zhao Y, Gao H, Wang D, Miao Z, Cao H, Yang Z, He W. Polymer Dispersed Liquid Crystals Doped with CeO2 Nanoparticles for the Smart Window. Liquid Crystals. 2022;49(1):29-38.
  • 6. Li YL, Li NN, Wang D, Chu F, Lee SD, Zheng YW, Wang QH. Tunable Liquid Crystal Grating Based Holographic 3D Display System with Wide Viewing Angle and Large Size. Light: Science & Applications. 2022;11:188.
  • 7. Tan G, Huang Y, Li MC, Lee SL, Wu ST. High Dynamic Range Liquid Crystal Displays with a Mini-LED Backlight. Optics Express. 2018;26(13):16572-16584.
  • 8. Mulder DJ, Schenning APHJ, Bastiaansen CWM. Chiral-Nematic Liquid Crystals as One Dimensional Photonic Materials in Optical Sensors. Journal of Materials Chemistry C. 2014;2:6695-6705.
  • 9. Cachelin P, Green JP, Peijs T, Heeney M, Bastiaansen CWM. Optical Acetone Vapor Sensors Based on Chiral Nematic Liquid Crystals and Reactive Chiral Dopants. Advanced Optical Materials. 2016;4(4):92-596.
  • 10. Pathak G, Hegde G, Prasad V. Investigation of Electro-Optical and Dielectric Properties of Nematic Liquid Crystal Dispersed with Biowaste Based Porous Carbon Nanoparticles: Increased Birefringence for Display Applications. Journal of Molecular Liquids. 2020; 314:113643.
  • 11. Yadav G, Kumar M, Srivastava A, Manohar R. SiO2 Nanoparticles Doped Nematic Liquid Crystal System: An Experimental Investigation on Optical and Dielectric Properties. Chinese Journal of Physics. 2019;57:82-89.
  • 12. Özğan Ş, Eskalen H, Tapkıranlı Y. The Electrical and Optical Behavior of Graphene Oxide Doped Nematic Liquid Crystal. Journal of Materials Science: Materials in Electronics. 2022;33:5720-5729.
  • 13. Yadav G, Agrahari K, Manohar R. Multiwall Carbon Nanotube- Nematic Liquid Crystal Composite System: Preparation and Characterization. Journal of Dispersion Science and Technology. 2021;42(5):707-714.
  • 14. Varshney D, Parveen A, Prakash J. Effect of Cobalt Oxide Nanoparticles on Dielectric Properties of a Nematic Liquid Crystal Material. Journal of Dispersion Science and Technology. 2022;43(1):42-49.
  • 15. Pandey S, Gupta SK, Singh DP, Vimal T, Tripathi PK, Srivastava A, Manohar R. Effects of Polymer Doping on Dielectric and Electro-Optical Parameters of Nematic Liquid Crystal. Polymer Engineering & Science. 2015;55(2):414-420.
  • 16. Kim Y, Jung D, Jeong S, Kim K, Choi W, Seo Y. Optical Properties and Optimized Conditions for Polymer Dispersed Liquid Crystal Containing UV Curable Polymer and Nematic Liquid Crystal. Current Applied Physics. 2015;15(3):292-297.
  • 17. Eskalen H, Özğan Ş, Okumuş M, Kerl S. Thermal and Electro- Optical Properties of Graphene Oxide/Dye-Doped Nematic Liquid Crystal. Brazilian Journal of Physics. 2019;49: 341-347.
  • 18. Ye L, Hou C, Lv C, Zhao C, Yin Z, Cui Y, Lu Y. Tailoring of Random Lasing Characteristics in Dye-Doped Nematic Liquid Crystals. Applied Physics B. 2014;115:303-309.
  • 19. Chemingui M, Singh UB, Yadav N, Dabrowski RS, Dhar R. Effect of Iron Oxide (γ-Fe2O3) Nanoparticles on the Morphological, Electro- Optical and Dielectric Properties of a Nematic Liquid Crystalline Material. Journal of Molecular Liquids. 2020;319:114299.
  • 20. Praseetha KP, Shiju E, Chandrasekharan K, Varghese S. Intense Nonlinear Optical Properties of ZnS Quantum Dot Doped Nematic Liquid Crystal Compounds. Journal of Molecular Liquids. 2021;328:115347.
  • 21. Elkhalgi HHM, Khandka S, Singh UB, Pandey KL, Dabrowski R, Dhar R. Dielectric and Electro-Optical Properties of a Nematic Liquid Crystalline Material with Gold Nanoparticles. Liquid Crystals. 2018;45(12):1795-1801.
  • 22. Christie RM. Handbook of Textile and Industrial Dyeing Principles, Processes and Types of Dyes. Volume 1 in Woodhead Publishing Series in Textiles; 2011. p. 562-587.
  • 23. Pathak G, Agrahari K, Yadav G, Srivastava A, Strzezysz O, Manohar R. Tuning of Birefringence, Response Time, and Dielectric Anisotropy by the Dispersion of Fluorescent Dye into the Nematic Liquid Crystal. Applied Physics A. 2018;124:463.
  • 24. Liu S, Wu H, Zhang X, Hu W. Research Progress of Rubrene as an Excellent Multifunctional Organic Semiconductor. Frontiers of Physics. 2021;16(1):13304.
  • 25. Al-Muntaser AA, Alamri HR, Sharma K, Eltahir S, Makhlouf MM. Role of Rubrene Additive for Reinforcing the Structural, Optical, and Dispersion Properties of Polyvinyl Alcohol Films Towards Optoelectronic Applications. Optical Materials. 2022;128:112465.
  • 26. Selvaraj P, Li P-Y, Antony M, Wang Y-W, Chou P-W, Chen Z-H, Hsu C-J, Huang C-Y. Rubbing-Free Liquid Crystal Electro-Optic Device Based on Organic Single-Crystal Rubrene. Optics Express. 2022;30(6):9521-9533.
  • 27. Ma H, Liu N, Huang J-D. A DFT Study on the Electronic Structures and Conducting Properties of Rubrene and Its Derivatives in Organic Field-Effect Transistors. Scientific Reports. 2017;7:331.
  • 28. Podzorov V, Menard E, Rogers JA, Gershenson ME. Hall Effect in the Accumulation Layers on the Surface of Organic Semiconductors. Physical Review Letters. 2005;95(22): 226601.
  • 29. Kim K, Kim MK, Kang HS, Cho MY, Joo J, Kim JH, Kim KH, Hong CS, Choi DH. New Growth Method of Rubrene Single Crystal for Organic Field-Effect Transistor. Synthetic Metals. 2007;157(10- 12):481-484.
  • 30. Wang X, Wang R, Zhou D, Yu J. Study of Organic Light-Emitting Diodes with Exciplex and Non-Exciplex Forming Interfaces Consisting of an Ultrathin Rubrene Layer. Synthetic Metals. 2016;214:50-55.
  • 31. Pelicano CM, Yanagi H. Effect of Rubrene:P3HT Bilayer on Photovoltaic Performance of Perovskite Solar Cells with Electrodeposited ZnO Nanorods. Journal of Energy Chemistry. 2018;27(2):455-462.
  • 32. Huang J, Yu J, Wang W, Jiang Y. Organic Solar Cells with a Multicharge Separation Structure Consisting of a Thin Rubrene Fluorescent Dye for Open Circuit Voltage Enhancement. Applied Physics Letters. 2011;98:023301.
  • 33. Nasri R, Missaoui T, Hbibi A, Soltani T. Enhanced Dielectric Properties of Nematic Liquid Crystal Doped with Ferroelectric Nanoparticles. Liquid Crystals. 2021;48(10):1429-1437.
  • 34. Jain AK, Deshmukh RR. Effects of Dye Doping on Electro-Optical, Thermo-Electro-Optical and Dielectric Properties of Polymer Dispersed Liquid Crystal Films. Journal of Physics and Chemistry of Solids. 2022;160:110363.
  • 35. Tüzün Özmen Ö, Goksen K, Demir A, Durmus M, Köysal O. Investigation of Photoinduced Change of Dielectric and Electrical Properties of Indium (III) Phthalocyanine and Fullerene Doped Nematic Liquid Crystal. Synthetic Metals. 2012;162(24):2188-2192.
  • 36. Pathak G, Agrahari K, Roy A, Srivastava A, Strzezysz O, Garbat K, Manohar R. Dispersion of Fluorescent Dye in the Nematic Liquid Crystal: Enhanced Photoluminescence and High Birefringence. Opto-Electronics Review. 2018;26:317-324.
  • 37. Mishra S, Sontakke AM, Gupta RK, Kumar S, Manjuladevi V. Dielectric Spectroscopy Studies of Silver Nanorod Doped Nematic Liquid Crystal. Materials Today: Proceedings. 2022;50:2587-2591.
  • 38. Manohar R, Pandey KK, Srivastava AK, Misra AK, Yadav SP. Sign Inversion of Dielectric Anisotropy in Nematic Liquid Crystal by Dye Doping. Journal of Physics and Chemistry of Solids. 2010;71:1311-1315.
  • 39. Pandey KK, Bawaria AK, Priyadarshi P. Effect of Nano Particles on the Dielectric Anisotropy of Liquid Crystal. Journal of Scientific Research and Advances. 2015;2(3):103-107.
  • 40. Deshmukh RR, Jain AK. The Complete Morphological, Electro- Optical and Dielectric Study of Dichroic Dye-Doped Polymer- Dispersed Liquid Crystal. Liquid Crystals. 2014; 41(7):960-975.
  • 41. Deshmukh RR, Jain AK. Effect of Anti-Parallel and Twisted Alignment Techniques on Various Properties of Polymer Stabilised Liquid Crystal (PSLC) Films. Liquid Crystals. 2016;43(4):436-447.
  • 42. Salah MB, Nasri R, Alharbi AN, Althagafi TM, Soltani T. Thermotropic Liquid Crystal Doped with Ferroelectric Nanoparticles: Electrical Behavior and Ion Trapping Phenomenon. Journal of Molecular Liquids. 2022;357:119142.
  • 43. Jayoti D, Khushboo, Malik P, Singh A. Effect of Polymer Concentration on Morphology, Dielectric and Optical Properties in a Polymer-Dispersed Ferroelectric Liquid Crystal. Liquid Crystals. 2016;43(5):623-631.
  • 44. Vimal T, Agrahari K, Sonker RK, Manohar R. Investigation of Thermodynamical, Dielectric and Electro-Optical Parameters of Nematic Liquid Crystal Doped with Polyaniline and Silver Nanoparticles. Journal of Molecular Liquids. 2019;290:111241.
There are 44 citations in total.

Details

Primary Language English
Subjects Chemical Engineering (Other)
Journal Section Research Articles
Authors

Gülsüm Kocakülah 0000-0001-5423-6957

Publication Date September 30, 2023
Submission Date December 29, 2022
Published in Issue Year 2023 Volume: 10 Issue: 3

Cite

Vancouver Kocakülah G. The Role of Rubrene Concentration on Dielectric Parameters of Nematic Liquid Crystal. Hittite J Sci Eng. 2023;10(3):193-9.

Hittite Journal of Science and Engineering is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY NC).