Research Article
BibTex RIS Cite
Year 2024, , 42 - 49, 29.06.2024
https://doi.org/10.16882/hortis.1479089

Abstract

References

  • AOAC (1994). Official Methods of Analysis. Association of Official Analytical Chemists. 1111 North 19th Street, Suite 20, 16th Edi. Arlington, Virginia, USA. 22209.
  • Ashraf, M. Saeed, M., & Qureshi, J. (1994). Tolerance to high temperature in cotton (Gossypium hirsutum L.) at initial growth stages. Environmental and Experimental Botany, 34(3):275-283.
  • Ashraf, C., & Harris, C. (2004). Potential biochemical indicators of salinity tolerance in plants. Plant Scince, 166(1):3-16.
  • Austin, T., Hall, J., Gandar, P., Warrington, I. Fulton, T., & Hallingan, E. (1999). A Compartment model of the effect of early-season temperatures on potential size and growth of ‘delicious’ apple fruit. Annals of Botany, 83:129-143.
  • Chen, H., & Murata, N. (2008). Glycinebetaine: An effective protectant against abiotic stress in plants. Trends in Plant Science, 13: 499-505.
  • Chen, D., Cao, B., Wang, S., Liu, P., Deng, X., Yin, L., & Zhang, S. (2016). Silicon moderated the K deficiency by improving the plant-water status in sorghum. Scientific Reports, 6(1):22882.
  • Desai, P., & Desai, S. (2019). Uv spectroscopic method for determination of vitamin c (ascorbic acid) content in different fruits in South Gujarat Region. International Journal of Environmental Sciences & Natural Resources, 21(2):41-44.‏
  • Epstein, E. (1999). Silicon. Annual Review of Plant Physiology and Plant Molecular Biology. 50: 641-664.
  • Fan, X., & Sokorai, K. (2005). Assessment of radiation sensitivity of fresh-cut vegetables using electrolyte leakage measurement. Postharvest Biology and Technology. 36:191-197.
  • FAO (2020). ‘World Production Data for Peaches and Necatrines’. Food and Agricultural Organization of the United Nations. Available: https://Www.Fao.Org/Faostat/En/#Data/Qcl. Accessed date: 1 February 2024.
  • Farag, K., & Shehata, R. (2023). Effect of proline and fruit bagging on the coloration of aril and peel of “Wonderful” pomegranates. Horticulture International Journal. 7(1):21 - 26.
  • Gomaa, A., Kandil, E., El-Dein, Z., Abou-Donia, E., Ali, M., & Abdelsalam, R. (2021). Increase maize productivity and water use efficiency through application of potassium silicate under water stress. Scientific Reports, 11(1):224.
  • Gomez, A., & Gomez, A. (1984). “Statistical Procedures for Agricultural Research”. John Wiley and Sons, Inc., New York.Pp:680.
  • Kanai, S., Ohkura, K., Adu-Gyamfi, J., Mohapatra, P., Nguyen, N., Saneoka, H., & Fujita, K. (2007). Depression of sink activity precedes the inhibition of biomass production in tomato plants subjected to potassium deficiency stress. Journal of Experimental Botany. 58(11):2917-2928.
  • Kavi Kishor, B., & Sreenivasulu, N. (2014). Is proline accumulation per se correlated with stress tolerance or is proline homeostasis a more critical issue. Plant Cell Environment, 37: 300 - 311.
  • Lees, H., & Francis, J. (1971). 'Quantitive methods for anthocyanins. vi: flavonols and anthocyanins in cranberries. Journal of Food Science, 36: 1056 -1060.
  • Lehmann, S., Funck, D., Szabados, L., & Rentsch, D. (2010). Proline metabolism and transport in plant development. Amino Acids. 39(4): 949 -962.
  • Ma, F. (2004). Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Science and Plant Nutrition, 50(1):11-18.
  • Makela, P., Jokinen, K., Kontturi, M., Peltonen-Sainio, P., Pehu, E., & Somersalo, S. (1998). Foliar application of glycinebetaine -A novel product from sugar beet-as an approach to increase tomato yield. Industrial Crops and Products, 7:139-148.
  • Mazumadar, C., & Majumder, K. (2003). Methods on Physico-Chemical Analysis of Fruits. Daya Publishing House, Delhi, India.
  • Onayemi, O., Neto, C., & Heuvel, V. (2006). The effect of partial defoliation on vine carbohydrate concentration and flavonoid production in cranberries. Hort Science, 41(3):607-611.
  • Parrotta, L., Aloisi, I., Faleri, C., Romi, M., Del Duca, S., & Cai, G. (2020). Chronic heat stress affects the photosynthetic apparatus of solanum lycopersicum l. cv micro-tom. Plant Physiology and Biochemistry, 154:463-475.
  • Prasad, V., Pisipati, S., Mutava, R., & Tuinstra, M. (2008). Sensitivity of sorghum to high temperature stress during reproductive development. Crop Science, 48(5):1911-1917.
  • Ranganna, S. (1995). Handbook of Analysis and Quality Control for Fruit and Vegetable Products, Pp 977–9. Tata Mcgraw-Hill Publishing Company Limited.
  • Romero-Aranda, R., Jurado, O., & Cuartero, J. (2006). Silicon alleviates the deleterious salt effect on tomato plant growth by improving plant water status. Journal of Plant Physiology. 163:847-855.
  • Sakamoto, A., & Murata, N. (2002). The role of glycine betaine in the protection of plants from stress: clues from transgenic plants. Plant Cell Environment, 25:163-171.
  • Sikhandakasmita, P., Kataoka, I., Mochioka, R., & Beppu, K. (2021a). Chilling and heating accumulations impact bud burst and flowering of ‘Ku-Pp2’ peach tree. Acta Horticulturae, 1312:211-218.
  • Sikhandakasmita, P., Kataoka, I., Ogata, T., Mochioka, R., & Beppu, K. (2021b). Effect of growth temperature levels on photo‐ synthetic ability and fruit quality of ‘Ku-Pp2’, a new Lowchill Peach cultivar. Advances in Horticultural Science, 35:233-241.
  • Southwick, S., Weis, K., & Yeager, J. (1996). Bloom thinning "loadel" cling peach with a surfactant. The American Society for Horticultural Science, 121(2):334-338.
  • Sorwong, A., & Sakhonwasee, S. (2015). Foliar application of glycine betaine mitigates the effect of heat stress in three marigolds (Tagetes erecta) cultivars. The Horticulture Journal, 84(2):161-171.
  • Storey, R., Ahmad, N., & Wyn Jones, R.G. (1977). Taxonomic and ecological aspects of the distribution of glycinebetaine and related compounds in plants. Oecologia, 27:319–332.
  • Sugiura, T., Ogawa, H., Fukuda, N., & Moriguchi, T. (2013). Change in the taste and textural attributes of apples in response to climate change. Scientific Reports, 3:2418.
  • Takabe, T., Rai, V., & Hibino, T. (2006). Metabolic Engineering of Glycinebetaine. In: Rai, A.K., Takabe, T. (Eds) Abiotic Stress Tolerance in Plants. Springer, Dordrecht.
  • Tan, L., Yang, J., Liu, T., Zhang, B., & Huang, W. (2020). Responses of photosystem i compared with photosystem ii to combination of heat stress and fluctuating light in tobacco leaves. Plant Science, 292:110371.
  • Tarnizi, H., & Marziah, M. (1995). The influence of low temperature treatment on growth and proline accumulation in polyembryogenic cultures of oil palm (Elaeis guineensis J Acq.). Elaeis, 7(2):107-117.
  • Wang, Q., & Cui, W. (1996). Variation in free proline content of cucumber (Cucumis sativus L.) seedlings under low temperature stress. Cucurbit Genetics Cooperative, 19:25-26.
  • Wang, M., Chen, J., Xu, Y., Zhang, J., & Chen, H. (2020). A Framework to quantify the uncertainty contribution of gums over multiple sources in hydrological impacts of climate change. Earth's Future, 8:E2020ef001602. Yang, X., Wen, X., Gong, H., Lu, Q., Yang, Z., Tang, Y., Liang, Z., & Lu, C. (2007). Genetic engineering of the biosynthesis of glycinebetaine enhances thermotolerance of photosystem ii in tobacco plants. Planta, 225:719-733.

Effect of Potassium Silicate, Glycine Betaine and Proline on Fruit Quality of Peaches in Newly Reclaimed Land Exposed to Heat Stress

Year 2024, , 42 - 49, 29.06.2024
https://doi.org/10.16882/hortis.1479089

Abstract

The current study was performed on a 6-year-old "Florida" peach cultivar (Prunus persica) during 2022 and 2023 respectively. Twenty-four peach trees uniformly were selected and sprayed two times at the beginning of pit starts hardening and at the end of phase two of fruit growth with the following treatments: the control, glycine betaine at 400 mg l-1, potassium silicate at 200 mg l-1, potassium silicate at 400 mg l-1, potassium silicate at 200 mg l-1 + glycine betaine at 400 mg l-1, potassium silicate at 400 mg l-1 + glycine betaine at 400 mg l-1, proline at 400 mg l-1 and potassium silicate at 200 mg l-1 + proline at 400 mg l-1. The results indicated that both treatments of potassium silicate at 200 mg l-1 + proline at 400 mg l-1 and potassium silicate at 400 mg l-1 + glycine betaine at 400 mg l-1 resulted in a significant increase in concentrations of anthocyanin and total carotenoid contents in the skin. Moreover, total soluble solid, vitamin C and total soluble solid / acidity were shown with high concentrations as compared with the control. Overall, the use of potassium silicate at 200 mg l-1 + proline at 400 mg l-1 or potassium silicate at 400 mg l-1 + glycine betaine at 400 mg l-1 two times is recommended.

References

  • AOAC (1994). Official Methods of Analysis. Association of Official Analytical Chemists. 1111 North 19th Street, Suite 20, 16th Edi. Arlington, Virginia, USA. 22209.
  • Ashraf, M. Saeed, M., & Qureshi, J. (1994). Tolerance to high temperature in cotton (Gossypium hirsutum L.) at initial growth stages. Environmental and Experimental Botany, 34(3):275-283.
  • Ashraf, C., & Harris, C. (2004). Potential biochemical indicators of salinity tolerance in plants. Plant Scince, 166(1):3-16.
  • Austin, T., Hall, J., Gandar, P., Warrington, I. Fulton, T., & Hallingan, E. (1999). A Compartment model of the effect of early-season temperatures on potential size and growth of ‘delicious’ apple fruit. Annals of Botany, 83:129-143.
  • Chen, H., & Murata, N. (2008). Glycinebetaine: An effective protectant against abiotic stress in plants. Trends in Plant Science, 13: 499-505.
  • Chen, D., Cao, B., Wang, S., Liu, P., Deng, X., Yin, L., & Zhang, S. (2016). Silicon moderated the K deficiency by improving the plant-water status in sorghum. Scientific Reports, 6(1):22882.
  • Desai, P., & Desai, S. (2019). Uv spectroscopic method for determination of vitamin c (ascorbic acid) content in different fruits in South Gujarat Region. International Journal of Environmental Sciences & Natural Resources, 21(2):41-44.‏
  • Epstein, E. (1999). Silicon. Annual Review of Plant Physiology and Plant Molecular Biology. 50: 641-664.
  • Fan, X., & Sokorai, K. (2005). Assessment of radiation sensitivity of fresh-cut vegetables using electrolyte leakage measurement. Postharvest Biology and Technology. 36:191-197.
  • FAO (2020). ‘World Production Data for Peaches and Necatrines’. Food and Agricultural Organization of the United Nations. Available: https://Www.Fao.Org/Faostat/En/#Data/Qcl. Accessed date: 1 February 2024.
  • Farag, K., & Shehata, R. (2023). Effect of proline and fruit bagging on the coloration of aril and peel of “Wonderful” pomegranates. Horticulture International Journal. 7(1):21 - 26.
  • Gomaa, A., Kandil, E., El-Dein, Z., Abou-Donia, E., Ali, M., & Abdelsalam, R. (2021). Increase maize productivity and water use efficiency through application of potassium silicate under water stress. Scientific Reports, 11(1):224.
  • Gomez, A., & Gomez, A. (1984). “Statistical Procedures for Agricultural Research”. John Wiley and Sons, Inc., New York.Pp:680.
  • Kanai, S., Ohkura, K., Adu-Gyamfi, J., Mohapatra, P., Nguyen, N., Saneoka, H., & Fujita, K. (2007). Depression of sink activity precedes the inhibition of biomass production in tomato plants subjected to potassium deficiency stress. Journal of Experimental Botany. 58(11):2917-2928.
  • Kavi Kishor, B., & Sreenivasulu, N. (2014). Is proline accumulation per se correlated with stress tolerance or is proline homeostasis a more critical issue. Plant Cell Environment, 37: 300 - 311.
  • Lees, H., & Francis, J. (1971). 'Quantitive methods for anthocyanins. vi: flavonols and anthocyanins in cranberries. Journal of Food Science, 36: 1056 -1060.
  • Lehmann, S., Funck, D., Szabados, L., & Rentsch, D. (2010). Proline metabolism and transport in plant development. Amino Acids. 39(4): 949 -962.
  • Ma, F. (2004). Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Science and Plant Nutrition, 50(1):11-18.
  • Makela, P., Jokinen, K., Kontturi, M., Peltonen-Sainio, P., Pehu, E., & Somersalo, S. (1998). Foliar application of glycinebetaine -A novel product from sugar beet-as an approach to increase tomato yield. Industrial Crops and Products, 7:139-148.
  • Mazumadar, C., & Majumder, K. (2003). Methods on Physico-Chemical Analysis of Fruits. Daya Publishing House, Delhi, India.
  • Onayemi, O., Neto, C., & Heuvel, V. (2006). The effect of partial defoliation on vine carbohydrate concentration and flavonoid production in cranberries. Hort Science, 41(3):607-611.
  • Parrotta, L., Aloisi, I., Faleri, C., Romi, M., Del Duca, S., & Cai, G. (2020). Chronic heat stress affects the photosynthetic apparatus of solanum lycopersicum l. cv micro-tom. Plant Physiology and Biochemistry, 154:463-475.
  • Prasad, V., Pisipati, S., Mutava, R., & Tuinstra, M. (2008). Sensitivity of sorghum to high temperature stress during reproductive development. Crop Science, 48(5):1911-1917.
  • Ranganna, S. (1995). Handbook of Analysis and Quality Control for Fruit and Vegetable Products, Pp 977–9. Tata Mcgraw-Hill Publishing Company Limited.
  • Romero-Aranda, R., Jurado, O., & Cuartero, J. (2006). Silicon alleviates the deleterious salt effect on tomato plant growth by improving plant water status. Journal of Plant Physiology. 163:847-855.
  • Sakamoto, A., & Murata, N. (2002). The role of glycine betaine in the protection of plants from stress: clues from transgenic plants. Plant Cell Environment, 25:163-171.
  • Sikhandakasmita, P., Kataoka, I., Mochioka, R., & Beppu, K. (2021a). Chilling and heating accumulations impact bud burst and flowering of ‘Ku-Pp2’ peach tree. Acta Horticulturae, 1312:211-218.
  • Sikhandakasmita, P., Kataoka, I., Ogata, T., Mochioka, R., & Beppu, K. (2021b). Effect of growth temperature levels on photo‐ synthetic ability and fruit quality of ‘Ku-Pp2’, a new Lowchill Peach cultivar. Advances in Horticultural Science, 35:233-241.
  • Southwick, S., Weis, K., & Yeager, J. (1996). Bloom thinning "loadel" cling peach with a surfactant. The American Society for Horticultural Science, 121(2):334-338.
  • Sorwong, A., & Sakhonwasee, S. (2015). Foliar application of glycine betaine mitigates the effect of heat stress in three marigolds (Tagetes erecta) cultivars. The Horticulture Journal, 84(2):161-171.
  • Storey, R., Ahmad, N., & Wyn Jones, R.G. (1977). Taxonomic and ecological aspects of the distribution of glycinebetaine and related compounds in plants. Oecologia, 27:319–332.
  • Sugiura, T., Ogawa, H., Fukuda, N., & Moriguchi, T. (2013). Change in the taste and textural attributes of apples in response to climate change. Scientific Reports, 3:2418.
  • Takabe, T., Rai, V., & Hibino, T. (2006). Metabolic Engineering of Glycinebetaine. In: Rai, A.K., Takabe, T. (Eds) Abiotic Stress Tolerance in Plants. Springer, Dordrecht.
  • Tan, L., Yang, J., Liu, T., Zhang, B., & Huang, W. (2020). Responses of photosystem i compared with photosystem ii to combination of heat stress and fluctuating light in tobacco leaves. Plant Science, 292:110371.
  • Tarnizi, H., & Marziah, M. (1995). The influence of low temperature treatment on growth and proline accumulation in polyembryogenic cultures of oil palm (Elaeis guineensis J Acq.). Elaeis, 7(2):107-117.
  • Wang, Q., & Cui, W. (1996). Variation in free proline content of cucumber (Cucumis sativus L.) seedlings under low temperature stress. Cucurbit Genetics Cooperative, 19:25-26.
  • Wang, M., Chen, J., Xu, Y., Zhang, J., & Chen, H. (2020). A Framework to quantify the uncertainty contribution of gums over multiple sources in hydrological impacts of climate change. Earth's Future, 8:E2020ef001602. Yang, X., Wen, X., Gong, H., Lu, Q., Yang, Z., Tang, Y., Liang, Z., & Lu, C. (2007). Genetic engineering of the biosynthesis of glycinebetaine enhances thermotolerance of photosystem ii in tobacco plants. Planta, 225:719-733.
There are 37 citations in total.

Details

Primary Language English
Subjects Agricultural Engineering (Other)
Journal Section Araştırma Makalesi
Authors

Raed Shehata 0000-0002-7086-3982

Karim M. Farag This is me 0009-0006-4812-8961

Early Pub Date May 12, 2024
Publication Date June 29, 2024
Submission Date February 14, 2024
Acceptance Date April 25, 2024
Published in Issue Year 2024

Cite

APA Shehata, R., & Farag, K. M. (2024). Effect of Potassium Silicate, Glycine Betaine and Proline on Fruit Quality of Peaches in Newly Reclaimed Land Exposed to Heat Stress. Horticultural Studies, 41(2), 42-49. https://doi.org/10.16882/hortis.1479089
AMA Shehata R, Farag KM. Effect of Potassium Silicate, Glycine Betaine and Proline on Fruit Quality of Peaches in Newly Reclaimed Land Exposed to Heat Stress. HortiS. June 2024;41(2):42-49. doi:10.16882/hortis.1479089
Chicago Shehata, Raed, and Karim M. Farag. “Effect of Potassium Silicate, Glycine Betaine and Proline on Fruit Quality of Peaches in Newly Reclaimed Land Exposed to Heat Stress”. Horticultural Studies 41, no. 2 (June 2024): 42-49. https://doi.org/10.16882/hortis.1479089.
EndNote Shehata R, Farag KM (June 1, 2024) Effect of Potassium Silicate, Glycine Betaine and Proline on Fruit Quality of Peaches in Newly Reclaimed Land Exposed to Heat Stress. Horticultural Studies 41 2 42–49.
IEEE R. Shehata and K. M. Farag, “Effect of Potassium Silicate, Glycine Betaine and Proline on Fruit Quality of Peaches in Newly Reclaimed Land Exposed to Heat Stress”, HortiS, vol. 41, no. 2, pp. 42–49, 2024, doi: 10.16882/hortis.1479089.
ISNAD Shehata, Raed - Farag, Karim M. “Effect of Potassium Silicate, Glycine Betaine and Proline on Fruit Quality of Peaches in Newly Reclaimed Land Exposed to Heat Stress”. Horticultural Studies 41/2 (June 2024), 42-49. https://doi.org/10.16882/hortis.1479089.
JAMA Shehata R, Farag KM. Effect of Potassium Silicate, Glycine Betaine and Proline on Fruit Quality of Peaches in Newly Reclaimed Land Exposed to Heat Stress. HortiS. 2024;41:42–49.
MLA Shehata, Raed and Karim M. Farag. “Effect of Potassium Silicate, Glycine Betaine and Proline on Fruit Quality of Peaches in Newly Reclaimed Land Exposed to Heat Stress”. Horticultural Studies, vol. 41, no. 2, 2024, pp. 42-49, doi:10.16882/hortis.1479089.
Vancouver Shehata R, Farag KM. Effect of Potassium Silicate, Glycine Betaine and Proline on Fruit Quality of Peaches in Newly Reclaimed Land Exposed to Heat Stress. HortiS. 2024;41(2):42-9.