Research Article
BibTex RIS Cite

Year 2025, Volume: 42 Issue: 2, 51 - 56, 02.08.2025
https://doi.org/10.16882/hortis.1663801

Abstract

References

  • Adıgüzel, P., Nyirahabimana, F., Shimira, F., Solmaz, İ., & Taşkın, H. (2023). Applied biotechnological approaches for reducing yield gap in melon grown under saline and drought stresses: an overview. Journal of Soil Science and Plant Nutrition, 23(1):139-151.
  • Akhoundnejad, Y., & Dasgan, H.Y. (2020). Photosynthesis, transpiration, stomatal conductance of some melon (Cucumis melo L.) genotypes under different drought stress. Fresenius Environmental Bulletin, 29(12):10974-10979.
  • Anonymous, 2024. https://biruni.tuik.gov.tr/medas/?kn =92&locale=tr. Data accessed: December 24, 2024.
  • Ansari, W.A., Atri, N., Singh, B., Kumar, P., & Pandey, S. (2018). Morpho-physiological and biochemical responses of muskmelon genotypes to different degree of water deficit. Photosynthetica, 56(4):1019-1030.
  • Ansari, W.A., Atri, N., Ahmad, J., Qureshi, M.I., Singh, B., Kumar, R., Rai, V., & Pandey, S. (2019). Drought mediated physiological and molecular changes in muskmelon (Cucumis melo L.). PloS One, 14(9):e0222647.
  • Astaraki, H., Ramshini, H., Lotfi, M., & Izadi Darbandi, A. (2022). Yield stability of melon genotypes under drought stress conditions. International Journal of Horticultural Science and Technology, 9(2):185-199.
  • Bagheri, S., Hassandokht, M.R., Mirsoleimani, A., & Mousavi, A. (2019). Effect of palm leaf biochar on melon plants (Cucumis melo L.) under drought stress conditions. Advances in Horticultural Science, 33(4):593-604.
  • Bajji, M., Kinet, J.M., & Lutts, S. (2002). The use of the electrolyte leakage method for assessing cell membrane stability as a water stress tolerance test in durum wheat. Plant Growth Regulation, 36:61-70.
  • Garty, J., Weissman, L., Tamir, O., Beer, S., Cohen, Y., Karnieli, A., & Orlovsky, L. (2000). Comparison of five physiological parameters to assess the vitality of the lichen Ramalina lacera exposed to air pollution. Physiologia Plantarum, 109(4):410-418.
  • Jothimani, K., & Arulbalachandran, D. (2020). Physiological and biochemical studies of black gram (Vigna mungo (L.) Hepper) under polyethylene glycol induced drought stress. Biocatalysis and Agricultural Biotechnology, 29:101777.
  • Karimi, S., & Zare, N. (2023). Silicon pretreatment at the transplanting stage, a tool to improve the drought tolerance and subsequent growth of melons in the field. Silicon, 15(11):4921-4929.
  • Kavas, M., Baloğlu, M.C., Akca, O., Köse, F.S., & Gökçay, D. (2013). Effect of drought stress on oxidative damage and antioxidant enzyme activity in melon seedlings. Turkish Journal of Biology, 37(4):491-498.
  • Kaya, C., Ak, B., & Higgs, D. (2003). Response of salt-stressed strawberry plants to supplementary calcium nitrate and/or potassium nitrate. Journal of Plant Nutrition, 26: 543-560.
  • Kaya, G. (2024). Combined effects of drought and low temperature on germination and seedling growth of melon cultivars. Black Sea Journal of Agriculture, 7(2):139-143.
  • Kirnak, H., & Dogan, E. (2009). Effect of seasonal water stress imposed on drip irrigated second crop watermelon grown in semi-arid climatic conditions. Irrigation Science, 27:155-164.
  • Michel, B.E., & Kaufmann, M.R. (1973). The osmotic potential of polyethylene glycol 6000. Plant Physiology, 51:914–916.
  • Rehman, A., Weng, J., Li, P., Yu, J., Rahman, S.U., Khalid, M., Shah, I.H., Gulzar, S. Chang, L., & Niu, Q. (2023). Differential response of two contrasting melon (Cucumis melo L.) genotypes to drought stress. Journal of Plant Biology, 66(6):519-534.
  • Rehman, A., Khalid, M., Weng, J., Li, P., Rahman, S.U., Shah, I.H., Gulzar, S., Tu, S., Ningxiao, F., Niu, Q., & Chang, L. (2024). Exploring drought tolerance in melon germplasm through physiochemical and photosynthetic traits. Plant Growth Regulation, 102(3):603-618.
  • Seleiman, M.F., Al-Suhaibani, N., Ali, N., Akmal, M., Alotaibi, M., Refay, Y., Dindaroglu, T., Abdul-Wajid, H.H., & Battaglia, M. L. (2021). Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants, 10(2):259.
  • Seymen, M., Burak, T.Ö., Yavuz, D., Kıymacı, G., Türkmen, Ö., Kurtar, E.S., Yavuz, N., & Kal, Ü. (2024). Water stress during seedling growth: examining physiological, biochemical and agronomic dynamics in Cucumis melo. Pakistan Journal of Agricultural Sciences, 61(1):73-83.
  • Vural, H., Eşiyok, D., & Duman, İ. (2000). Kavun. In: Kültür Sebzeleri (Sebze Yetiştirme). Ege Üniversitesi Basım evi, İzmir, Türkiye, pp: 364-377 (in Turkish).
  • Wang, X., Sun, H., Lian, X., Feng, J., Zhao, J., Wang, Y., & Liu, Y. (2024). Physiological and biochemical characteristics of cucumber seedlings under different levels of drought stress (PEG 6000 concentrations). Horticultural Science, 51(3):202-211.
  • Yang, X., Lu, M., Wang, Y., Wang, Y., Liu, Z., & Chen, S. (2021). Response mechanism of plants to drought stress. Horticulturae, 7(3):50.

Changes in Morpho-Physiological Characteristics of Melon (Cucumis melo L.) Seedlings under Different Levels of Drought Stress

Year 2025, Volume: 42 Issue: 2, 51 - 56, 02.08.2025
https://doi.org/10.16882/hortis.1663801

Abstract

Drought stress is one of the most common abiotic stresses that negatively affects crop production. The purpose of this study was to determine the morpho-physiological characteristics of melon plants in response to increasing levels of drought stress induced by different polyethylene glycol (PEG-6000, molecular weight 6000) concentrations. Melon cultivar ‘Kırkağaç 589’ seedlings with a 2 true-leaf stage were grown in a growth medium containing peat: perlite: vermiculite (6:1:1, by volume) mixed with 5%, 10%, 15%, and 20% PEG-6000. Thirty days after drought treatment, plant height, stem diameter, fresh and dry weight, dry matter, leaf area, leaf temperature, chlorophyll content (SPAD), relative water content, turgor loss, and electrolyte leakage were measured. The findings indicated that as the severity of the drought increased, there was a notable decline in plant height, fresh weight, dry weight, and relative water content. In contrast, drought stress led to increased dry matter, leaf temperature, chlorophyll content, electrolyte leakage, and turgor loss. The plant height and fresh weight were particularly susceptible to drought stress, with significant inhibition observed even at a concentration of 5% PEG. Compared to the control, the relative water content decreased from 81.3% to 69.0%, while electrolyte leakage increased from 20.9% to 27.2%. It was concluded that electrolyte leakage serves as an indicator of drought stress and that the drought severity of 10% PEG should be regarded as the critical level for melon plants at the seedling growth stage.

References

  • Adıgüzel, P., Nyirahabimana, F., Shimira, F., Solmaz, İ., & Taşkın, H. (2023). Applied biotechnological approaches for reducing yield gap in melon grown under saline and drought stresses: an overview. Journal of Soil Science and Plant Nutrition, 23(1):139-151.
  • Akhoundnejad, Y., & Dasgan, H.Y. (2020). Photosynthesis, transpiration, stomatal conductance of some melon (Cucumis melo L.) genotypes under different drought stress. Fresenius Environmental Bulletin, 29(12):10974-10979.
  • Anonymous, 2024. https://biruni.tuik.gov.tr/medas/?kn =92&locale=tr. Data accessed: December 24, 2024.
  • Ansari, W.A., Atri, N., Singh, B., Kumar, P., & Pandey, S. (2018). Morpho-physiological and biochemical responses of muskmelon genotypes to different degree of water deficit. Photosynthetica, 56(4):1019-1030.
  • Ansari, W.A., Atri, N., Ahmad, J., Qureshi, M.I., Singh, B., Kumar, R., Rai, V., & Pandey, S. (2019). Drought mediated physiological and molecular changes in muskmelon (Cucumis melo L.). PloS One, 14(9):e0222647.
  • Astaraki, H., Ramshini, H., Lotfi, M., & Izadi Darbandi, A. (2022). Yield stability of melon genotypes under drought stress conditions. International Journal of Horticultural Science and Technology, 9(2):185-199.
  • Bagheri, S., Hassandokht, M.R., Mirsoleimani, A., & Mousavi, A. (2019). Effect of palm leaf biochar on melon plants (Cucumis melo L.) under drought stress conditions. Advances in Horticultural Science, 33(4):593-604.
  • Bajji, M., Kinet, J.M., & Lutts, S. (2002). The use of the electrolyte leakage method for assessing cell membrane stability as a water stress tolerance test in durum wheat. Plant Growth Regulation, 36:61-70.
  • Garty, J., Weissman, L., Tamir, O., Beer, S., Cohen, Y., Karnieli, A., & Orlovsky, L. (2000). Comparison of five physiological parameters to assess the vitality of the lichen Ramalina lacera exposed to air pollution. Physiologia Plantarum, 109(4):410-418.
  • Jothimani, K., & Arulbalachandran, D. (2020). Physiological and biochemical studies of black gram (Vigna mungo (L.) Hepper) under polyethylene glycol induced drought stress. Biocatalysis and Agricultural Biotechnology, 29:101777.
  • Karimi, S., & Zare, N. (2023). Silicon pretreatment at the transplanting stage, a tool to improve the drought tolerance and subsequent growth of melons in the field. Silicon, 15(11):4921-4929.
  • Kavas, M., Baloğlu, M.C., Akca, O., Köse, F.S., & Gökçay, D. (2013). Effect of drought stress on oxidative damage and antioxidant enzyme activity in melon seedlings. Turkish Journal of Biology, 37(4):491-498.
  • Kaya, C., Ak, B., & Higgs, D. (2003). Response of salt-stressed strawberry plants to supplementary calcium nitrate and/or potassium nitrate. Journal of Plant Nutrition, 26: 543-560.
  • Kaya, G. (2024). Combined effects of drought and low temperature on germination and seedling growth of melon cultivars. Black Sea Journal of Agriculture, 7(2):139-143.
  • Kirnak, H., & Dogan, E. (2009). Effect of seasonal water stress imposed on drip irrigated second crop watermelon grown in semi-arid climatic conditions. Irrigation Science, 27:155-164.
  • Michel, B.E., & Kaufmann, M.R. (1973). The osmotic potential of polyethylene glycol 6000. Plant Physiology, 51:914–916.
  • Rehman, A., Weng, J., Li, P., Yu, J., Rahman, S.U., Khalid, M., Shah, I.H., Gulzar, S. Chang, L., & Niu, Q. (2023). Differential response of two contrasting melon (Cucumis melo L.) genotypes to drought stress. Journal of Plant Biology, 66(6):519-534.
  • Rehman, A., Khalid, M., Weng, J., Li, P., Rahman, S.U., Shah, I.H., Gulzar, S., Tu, S., Ningxiao, F., Niu, Q., & Chang, L. (2024). Exploring drought tolerance in melon germplasm through physiochemical and photosynthetic traits. Plant Growth Regulation, 102(3):603-618.
  • Seleiman, M.F., Al-Suhaibani, N., Ali, N., Akmal, M., Alotaibi, M., Refay, Y., Dindaroglu, T., Abdul-Wajid, H.H., & Battaglia, M. L. (2021). Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants, 10(2):259.
  • Seymen, M., Burak, T.Ö., Yavuz, D., Kıymacı, G., Türkmen, Ö., Kurtar, E.S., Yavuz, N., & Kal, Ü. (2024). Water stress during seedling growth: examining physiological, biochemical and agronomic dynamics in Cucumis melo. Pakistan Journal of Agricultural Sciences, 61(1):73-83.
  • Vural, H., Eşiyok, D., & Duman, İ. (2000). Kavun. In: Kültür Sebzeleri (Sebze Yetiştirme). Ege Üniversitesi Basım evi, İzmir, Türkiye, pp: 364-377 (in Turkish).
  • Wang, X., Sun, H., Lian, X., Feng, J., Zhao, J., Wang, Y., & Liu, Y. (2024). Physiological and biochemical characteristics of cucumber seedlings under different levels of drought stress (PEG 6000 concentrations). Horticultural Science, 51(3):202-211.
  • Yang, X., Lu, M., Wang, Y., Wang, Y., Liu, Z., & Chen, S. (2021). Response mechanism of plants to drought stress. Horticulturae, 7(3):50.
There are 23 citations in total.

Details

Primary Language English
Subjects Horticultural Production (Other)
Journal Section Research Article
Authors

Gamze Kaya 0000-0002-9815-2672

Submission Date November 28, 2024
Acceptance Date March 23, 2025
Early Pub Date April 17, 2025
Publication Date August 2, 2025
Published in Issue Year 2025 Volume: 42 Issue: 2

Cite

APA Kaya, G. (2025). Changes in Morpho-Physiological Characteristics of Melon (Cucumis melo L.) Seedlings under Different Levels of Drought Stress. Horticultural Studies, 42(2), 51-56. https://doi.org/10.16882/hortis.1663801
AMA Kaya G. Changes in Morpho-Physiological Characteristics of Melon (Cucumis melo L.) Seedlings under Different Levels of Drought Stress. HortiS. August 2025;42(2):51-56. doi:10.16882/hortis.1663801
Chicago Kaya, Gamze. “Changes in Morpho-Physiological Characteristics of Melon (Cucumis Melo L.) Seedlings under Different Levels of Drought Stress”. Horticultural Studies 42, no. 2 (August 2025): 51-56. https://doi.org/10.16882/hortis.1663801.
EndNote Kaya G (August 1, 2025) Changes in Morpho-Physiological Characteristics of Melon (Cucumis melo L.) Seedlings under Different Levels of Drought Stress. Horticultural Studies 42 2 51–56.
IEEE G. Kaya, “Changes in Morpho-Physiological Characteristics of Melon (Cucumis melo L.) Seedlings under Different Levels of Drought Stress”, HortiS, vol. 42, no. 2, pp. 51–56, 2025, doi: 10.16882/hortis.1663801.
ISNAD Kaya, Gamze. “Changes in Morpho-Physiological Characteristics of Melon (Cucumis Melo L.) Seedlings under Different Levels of Drought Stress”. Horticultural Studies 42/2 (August2025), 51-56. https://doi.org/10.16882/hortis.1663801.
JAMA Kaya G. Changes in Morpho-Physiological Characteristics of Melon (Cucumis melo L.) Seedlings under Different Levels of Drought Stress. HortiS. 2025;42:51–56.
MLA Kaya, Gamze. “Changes in Morpho-Physiological Characteristics of Melon (Cucumis Melo L.) Seedlings under Different Levels of Drought Stress”. Horticultural Studies, vol. 42, no. 2, 2025, pp. 51-56, doi:10.16882/hortis.1663801.
Vancouver Kaya G. Changes in Morpho-Physiological Characteristics of Melon (Cucumis melo L.) Seedlings under Different Levels of Drought Stress. HortiS. 2025;42(2):51-6.