Research Article
BibTex RIS Cite

Effect of Some Colloidal Coating Treatments on the Shelf Life and Quality Characteristics of Strawberry Fruits

Year 2025, Volume: 42 Issue: 2, 64 - 71, 02.08.2025
https://doi.org/10.16882/hortis.1683597

Abstract

Short shelf life after harvest is one of the biggest problems for fresh strawberries. In this study, the effects of next generation edible colloidal coating agents formed from combinations of chitosan, selenium and thyme essential oil obtained by ionic gelation method on the post-harvest quality criteria of strawberries were investigated. The quality parameters (weight loss, decay rate, respiration rate, fruit color, firmness, total soluble solids: TSS, titratable acid: TA, ascorbic acid content, total phenolic content, antioxidant capacity and total anthocyanin content) of fruits of Albion strawberry variety kept at 21°C (room temperature conditions, relative humidity) were measured on days on 0th, 3rd, 5th, 7th and 10th. All coating treatments showed positive effects on quality parameters during shelf life. Edible colloidal coating treatments showed positive effects on the reduction of weight loss, reduction of decay, respiration rate, color values, fruit firmness, titratable acid content, ascorbic acid content, total phenolic content, total anthocyanin content and total antioxidant capacity values during shelf life compared to the control group. Among all the treatments, the most effective treatments in preserving quality properties were Chitosan + Selenium and Chitosan + Selenium + Thyme essential oil treatments. The research of results will provide information on the development of edible colloidal coating materials in related future studies planned on similar topics.

References

  • Aider, M. (2010). Chitosan application for active bio-based films production and potential in the food industry. LWT-Food Science and Technology, 43(6): 837-842.
  • Aloui, H., Khwaldia, K., Licciardello, F., Mazzaglia, A., Muratore, G., Hamdi, M., & Restuccia, C. (2014). Efficacy of the combined application of chitosan and Locust Bean Gum with different citrus essential oils to control postharvest spoilage caused by Aspergillus flavus in dates. International Journal of Food Microbiology, 170: 21-28.
  • Amal, S.A., El-Mogy, M.M., Aboul-Anean, H.E., & Alsanius, B.W. (2010). Improving strawberry fruit storability by edible coating as a carrier of thymol or calcium chloride. Journal of Horticultural Science & Ornamental Plants, 2(3): 88-97.
  • Arabpoor, B., Yousefi, S., Weisany, W., & Ghasemlou, M. (2021). Multifunctional coating composed of Eryngium campestre L. essential oil encapsulated in nano-chitosan to prolong the shelf-life of fresh cherry fruits. Food Hydrocolloids, 111: 106394.
  • Barikloo, H., & Ahmadi, E. (2018). Shelf life extension of strawberry by temperatures conditioning, chitosan coating, modified atmosphere, and clay and silica nanocomposite packaging. Scientia Horticulturae, 240: 496-508.
  • Bourtoom, T. (2008). Edible films and coatings: characteristics and properties. International Food Research Journal, 15(3): 237-248.
  • Brand-Williams, W., Cuvelier, M. E., & Berset, C. L. W. T. (1995). Use of a free radical method to evaluate antioxidant activity. LWT, 28(1): 25-30.
  • Butler, B.L., Vergano, P.J., Testin, R.F., Bunn, J.M., & Wiles, J.L. (1996). Mechanical and barrier properties of edible chitosan films as affected by composition and storage. Journal of Food Science, 61(5): 953-956.
  • Candir, E., Ozdemir, A.E., & Aksoy, M.C. (2018). Effects of chitosan coating and modified atmosphere packaging on postharvest quality and bioactive compounds of pomegranate fruit cv. ‘Hicaznar’. Scientia Horticulturae, 235: 235-243.
  • Cid-López, M.L., Soriano-Melgar, L.D.A.A., García-González, A., Cortéz-Mazatán, G., Mendoza-Mendoza, E., Rivera-Cabrera, F., & Peralta-Rodríguez, R.D. (2021). The benefits of adding calcium oxide nanoparticles to biocompatible polymeric coatings during cucumber fruits postharvest storage. Scientia Horticulturae, 287: 110285.
  • Çınar, S., & Sabır, F.K. (2021). Effect of postharvest chitosan and Aloe vera applications on the quality of sweet cherry during cold storage. Alatarım, 20(2): 114-122 (in Turkish).
  • Dorazilova, J., Muchova, J., Smerkova, K., Divis, P., Kopel, P., Kociova, S., Vesely, R., Pavlinakova, V., Adam, V., Vojtova, L. (2020). Synergistic effect of chitosan and selenium nanoparticles on biodegradation and antibacterial properties of collagenous scaffolds designed for infected burn wounds. Nanomaterials, 10: 1971.
  • Emamifar, A., & Mohammadizadeh, M. (2015). Preparation and application of LDPE/ZnO nanocomposites for extending shelf life of fresh strawberries. Food Technology and Biotechnology, 53(4): 488-495. Fernandez-Leon, M.F., Fernandez-Leon, A. M., Lozano, M., Ayuso, M.C., Colelli, G., & González-Gómez, D. (2013). Retention of quality and functional values of broccoli ‘Parthenon’stored in modified atmosphere packaging. Food Control, 31(2): 302-313.
  • Feyzioglu, G.C., & Tornuk, F. (2016). Development of chitosan nanoparticles loaded with summer savory essential oil for antimicrobial and antioxidant delivery applications. LWT, 70: 104-110.
  • Frias, J.M., & Oliveira, J.C. (2001). Kinetic models of ascorbic acid thermal degradation during hot air drying of maltodextrin solutions. Journal of Food Engineering, 47(4): 255-262.
  • García-Alonso, M., Rimbach, G., Rivas-Gonzalo, J.C., & de Pascual-Teresa, S. (2004). Antioxidant and cellular activities of anthocyanins and their corresponding vitisins a studies in platelets, monocytes, and human endothelial cells. Journal of Agricultural and Food Chemistry, 52(11): 3378-3384.
  • Gol, N.B., Patel, P.R., & Rao, T.R. (2013). Improvement of quality and shelf-life of strawberries with edible coatings enriched with chitosan. Postharvest Biology and Technology, 85: 185-195.
  • Ilk, S., Sağlam, N., Özgen, M., & Korkusuz, F. (2017). Chitosan nanoparticles enhances the anti-quorum sensing activity of kaempferol. International Journal of Biological Macromolecules, 94: 653-662.
  • Iderawumi, A.M., & Yusuff, M.A. (2021). Effects of nanoparticles on improvement in quality and shelf life of fruits and vegetables. Journal of Plant Biology and Crop Research, 4(2): 1042.
  • Jafarzadeh, S., Alias, A.K., Ariffin, F., & Mahmud, S. (2018). Physico-mechanical and microstructural properties of semolina flour films as influenced by different sorbitol/glycerol concentrations. International Journal of Food Properties, 21(1): 983-995.
  • Jafarzadeh, S., Nafchi, A.M., Salehabadi, A., Oladzad-Abbasabadi, N., & Jafari, S.M. (2021). Application of bio-nanocomposite films and edible coatings for extending the shelf life of fresh fruits and vegetables. Advances in Colloid and Interface Science, 291: 102405.
  • Jeevahan, J., & Chandrasekaran, M. (2019). Nanoedible films for food packaging: a review. Journal of Materials Science, 54(19): 12290-12318. John, A., Cresnar, K. P., Bikiaris, D. N., & Zemljic, L. F. (2023). Colloidal solutions as advanced coatings for active packaging development: focus on PLA systems. Polymers, 15(2), 273.
  • Keawchaoon, L., & Yoksan, R. (2011). Preparation, characterization and in vitro release study of carvacrol-loaded chitosan nanoparticles. Colloids and Surfaces B: Biointerfaces, 84(1): 163-171.
  • Kong, M., Chen, X.G., Xing, K., & Park, H.J. (2010). Antimicrobial properties of chitosan and mode of action: a state of the art review. International Journal of Food Microbiology, 144(1): 51-63.
  • Kontogeorgis, G.M., & Kiil, S. (2016). Introduction to applied colloid and surface chemistry. John Wiley & Sons.
  • Li, S., Jiang, S., Jia, W., Guo, T., Wang, F., Li, J., & Yao, Z. (2024). Natural antimicrobials from plants: recent advances and future prospects. Food Chemistry, 432: 137231.
  • Mareedu, T., Poiba, V., & Vangalapati, M. (2021). Green synthesis of iron nanoparticles by green tea and black tea leaves extract. Materials Today: Proceedings, 42: 1498-1501.
  • McGuire, R.G. (1992). Reporting of objective color measurements. HortScience, 27(12): 1254-1255.
  • Mith, H., Dure, R., Delcenserie, V., Zhiri, A., Daube, G., & Clinquart, A. (2014). Antimicrobial activities of commercial essential oils and their components against food‐borne pathogens and food spoilage bacteria. Food Science & Nutrition, 2(4): 403-416.
  • Moreno, J., & Peinado, R. (2012). Chapter 18-The Colloidal State. Enological Chemistry; Academic Press: San Diego, CA, USA, 303-321.
  • Moustafa, H., Youssef, A.M., Darwish, N.A., & Abou-Kandil, A.I. (2019). Eco-friendly polymer composites for green packaging: Future vision and challenges. Composites Part B: Engineering, 172: 16-25.
  • Mullen, W., McGinn, J., Lean, M.E., MacLean, M.R., Gardner, P., Duthie, G.G., Yokota, T., & Crozier, A. (2002). Ellagitannins, flavonoids, and other phenolics in red raspberries and their contribution to antioxidant capacity and vasorelaxation properties. Journal of Agricultural and Food Chemistry, 50(18): 5191-5196.
  • Nguyen, V.T., Nguyen, D.H., & Nguyen, H.V. (2020). Combination effects of calcium chloride and nano-chitosan on the postharvest quality of strawberry (Fragaria x ananassa Duch.). Postharvest Biology and Technology, 162: 111103.
  • No, H.K., Meyers, S.P., Prinyawiwatkul, W., & Xu, Z. (2007). Applications of chitosan for improvement of quality and shelf life offoods: A Review. Journal of Food Science, 72: 87-100
  • Nunes, M.C.N., Brecht, J.K., Morais, A.M.M.B., & Sargent, S.A. (1998). Controlling temperature and water loss to maintain ascorbic acid levels in strawberries during postharvest handling. Journal of Food Science, 63(6): 1033-1036.
  • Özdemir, E.A., & Dündar, Ö. (2006). The effects of fungicide and hot water treatments on the internal quality parameters of Valencia oranges. Asian Journal of Plant Sciences, 5(1): 142-146.
  • Öztürk, B. (2020). Effects of modified atmosphere packaging and aloe vera treatments on quality traits of cherry laurel fruit (Prunus laurocerasus L.) during shelf life. International Journal of Agriculture and Wildlife Science, 6(3): 399-406 (in Turkish).
  • Palomo-Siguero, M., & Madrid, Y. (2017). Exploring the behavior and metabolic transformations of SeNPs in exposed lactic acid bacteria. Effect of nanoparticles coating agent. International Journal of Molecular Sciences, 18(8): 1712.
  • Perdones, A., Escriche, I., Chiralt, A., & Vargas, M. (2016). Effect of chitosan–lemon essential oil coatings on volatile profile of strawberries during storage. Food Chemistry, 197: 979-986.
  • Pham, T.T., Nguyen, L.L.P., Dam, M.S., & Baranyai, L. (2023). Application of edible coating in extension of fruit shelf life. AgriEngineering, 5(1): 520-536.
  • Rivera-Pastrana, D. M., Béjar, A.A.G., Martínez-Tellez, M.A., Rivera-Domínguez, M., & Gonzalez-Aguilar, G. A. (2007). Efectos bioquímicos postcosecha de la irradiación UV-C en frutas y hortalizas. Revista Fitotecnia Mexicana, 30(4): 361-372.
  • Rojas-Graü, M.A., Avena-Bustillos, R.J., Olsen, C., Friedman, M., Henika, P.R., Pan, Z., & McHugh, T.H. (2007). Effects of plant essential oils and oil compounds on mechanical, barrier and antimicrobial properties of alginate–apple puree edible films. Journal of food Engineering, 81(3): 634-641.
  • Roman, M., Jitaru, P., & Barbante, C. (2014). Selenium biochemistry and its role for human health. Metallomics, 6(1): 25-54.
  • Sangsuwan, J., Pongsapakworawat, T., Bangmo, P., & Sutthasupa, S. (2016). Effect of chitosan beads incorporated with lavender or red thyme essential oils in inhibiting Botrytis cinerea and their application in strawberry packaging system. LWT, 74: 14-20.
  • Singleton, V.L., & Rossi, J.A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American journal of Enology and Viticulture, 16(3): 144-158.
  • Skalickova, S., Milosavljevic, V., Cihalova, K., Horky, P., Richtera, L., & Adam, V. (2017). Selenium nanoparticles as a nutritional supplement. Nutrition, 33: 83-90.
  • Sogvar, O.B., Saba, M.K., Emamifar, A., & Hallaj, R. (2016). Influence of nano-ZnO on microbial growth, bioactive content and postharvest quality of strawberries during storage. Innovative Food Science & Emerging Technologies, 35: 168-176.
  • Song, H., Yuan, W., Jin, P., Wang, W., Wang, X., Yang, L., & Zhang, Y. (2016). Effects of chitosan/nano-silica on postharvest quality and antioxidant capacity of loquat fruit during cold storage. Postharvest Biology and Technology, 119: 41-48.
  • Şen, K., & Güner, K.G. (2023). Applying of nanotechnology to edible films. Journal of Engineering Sciences and Design, 11(1): 411-425.
  • Valero, D., Diaz-Mula, H.M., Zapata, P.J., Castillo, S., Guillen, F., Martinez-Romero, D., & Serrano, M. (2011). Postharvest treatments with salicylic acid, acetylsalicylic acid or oxalic acid delayed ripening and enhanced bioactive compounds and antioxidant capacity in sweet cherry. Journal of Agricultural and Food Chemistry, 59(10): 5483-5489. Valizadeh, M., Behnamian, M., Dezhsetan, S., & Karimirad, R. (2021). Controlled release of turmeric oil from chitosan nanoparticles extends shelf life of Agaricus bisporus and preserves its postharvest quality. Food Bioscience, 44: 101401.
  • Vargas, M., Albors, A., Chiralt, A., & González-Martínez, C. (2006). Quality of cold-stored strawberries as affected by chitosan–oleic acid edible coatings. Postharvest Biology and Technology, 41(2): 164-171.
  • Velickova, E., Winkelhausen, E., Kuzmanova, S., Alves, V.D., & Moldão-Martins, M. (2013). Impact of chitosan-beeswax edible coatings on the quality of fresh strawberries (Fragaria ananassa cv. Camarosa) under commercial storage conditions. LWT-Food Science and Technology, 52(2): 80-92.
  • Vera, P., Canellas, E., & Nerín, C. (2018). New antioxidant multilayer packaging with nanoselenium to enhance the shelf-life of market food products. Nanomaterials, 8(10): 837.
  • Wang, W., Yu, Z., Alsammarraie, F.K., Kong, F., Lin, M., & Mustapha, A. (2020). Properties and antimicrobial activity of polyvinyl alcohol-modified bacterial nanocellulose packaging films incorporated with silver nanoparticles. Food Hydrocolloids, 100: 105411.
  • Xing, Y., Yang, H., Guo, X., Bi, X., Liu, X., Xu, Q., Wang, Q., Li, X., Shui, Y., Chen, C., & Zheng, Y.I. (2020). Effect of chitosan/Nano-TiO2 composite coatings on the postharvest quality and physicochemical characteristics of mango fruits. Scientia Horticulturae, 263: 109135.
  • Yang, J.W., & Kim, H.I. (2023). An overview of recent advances in greenhouse strawberry cultivation using deep learning techniques: A review for strawberry practitioners. Agronomy, 14(1): 34.
  • Zhang, H., Li, R., & Liu, W. (2011). Effects of chitin and its derivative chitosan on postharvest decay of fruits: A review. International Journal of Molecular Sciences, 12(2): 917-934.

Year 2025, Volume: 42 Issue: 2, 64 - 71, 02.08.2025
https://doi.org/10.16882/hortis.1683597

Abstract

References

  • Aider, M. (2010). Chitosan application for active bio-based films production and potential in the food industry. LWT-Food Science and Technology, 43(6): 837-842.
  • Aloui, H., Khwaldia, K., Licciardello, F., Mazzaglia, A., Muratore, G., Hamdi, M., & Restuccia, C. (2014). Efficacy of the combined application of chitosan and Locust Bean Gum with different citrus essential oils to control postharvest spoilage caused by Aspergillus flavus in dates. International Journal of Food Microbiology, 170: 21-28.
  • Amal, S.A., El-Mogy, M.M., Aboul-Anean, H.E., & Alsanius, B.W. (2010). Improving strawberry fruit storability by edible coating as a carrier of thymol or calcium chloride. Journal of Horticultural Science & Ornamental Plants, 2(3): 88-97.
  • Arabpoor, B., Yousefi, S., Weisany, W., & Ghasemlou, M. (2021). Multifunctional coating composed of Eryngium campestre L. essential oil encapsulated in nano-chitosan to prolong the shelf-life of fresh cherry fruits. Food Hydrocolloids, 111: 106394.
  • Barikloo, H., & Ahmadi, E. (2018). Shelf life extension of strawberry by temperatures conditioning, chitosan coating, modified atmosphere, and clay and silica nanocomposite packaging. Scientia Horticulturae, 240: 496-508.
  • Bourtoom, T. (2008). Edible films and coatings: characteristics and properties. International Food Research Journal, 15(3): 237-248.
  • Brand-Williams, W., Cuvelier, M. E., & Berset, C. L. W. T. (1995). Use of a free radical method to evaluate antioxidant activity. LWT, 28(1): 25-30.
  • Butler, B.L., Vergano, P.J., Testin, R.F., Bunn, J.M., & Wiles, J.L. (1996). Mechanical and barrier properties of edible chitosan films as affected by composition and storage. Journal of Food Science, 61(5): 953-956.
  • Candir, E., Ozdemir, A.E., & Aksoy, M.C. (2018). Effects of chitosan coating and modified atmosphere packaging on postharvest quality and bioactive compounds of pomegranate fruit cv. ‘Hicaznar’. Scientia Horticulturae, 235: 235-243.
  • Cid-López, M.L., Soriano-Melgar, L.D.A.A., García-González, A., Cortéz-Mazatán, G., Mendoza-Mendoza, E., Rivera-Cabrera, F., & Peralta-Rodríguez, R.D. (2021). The benefits of adding calcium oxide nanoparticles to biocompatible polymeric coatings during cucumber fruits postharvest storage. Scientia Horticulturae, 287: 110285.
  • Çınar, S., & Sabır, F.K. (2021). Effect of postharvest chitosan and Aloe vera applications on the quality of sweet cherry during cold storage. Alatarım, 20(2): 114-122 (in Turkish).
  • Dorazilova, J., Muchova, J., Smerkova, K., Divis, P., Kopel, P., Kociova, S., Vesely, R., Pavlinakova, V., Adam, V., Vojtova, L. (2020). Synergistic effect of chitosan and selenium nanoparticles on biodegradation and antibacterial properties of collagenous scaffolds designed for infected burn wounds. Nanomaterials, 10: 1971.
  • Emamifar, A., & Mohammadizadeh, M. (2015). Preparation and application of LDPE/ZnO nanocomposites for extending shelf life of fresh strawberries. Food Technology and Biotechnology, 53(4): 488-495. Fernandez-Leon, M.F., Fernandez-Leon, A. M., Lozano, M., Ayuso, M.C., Colelli, G., & González-Gómez, D. (2013). Retention of quality and functional values of broccoli ‘Parthenon’stored in modified atmosphere packaging. Food Control, 31(2): 302-313.
  • Feyzioglu, G.C., & Tornuk, F. (2016). Development of chitosan nanoparticles loaded with summer savory essential oil for antimicrobial and antioxidant delivery applications. LWT, 70: 104-110.
  • Frias, J.M., & Oliveira, J.C. (2001). Kinetic models of ascorbic acid thermal degradation during hot air drying of maltodextrin solutions. Journal of Food Engineering, 47(4): 255-262.
  • García-Alonso, M., Rimbach, G., Rivas-Gonzalo, J.C., & de Pascual-Teresa, S. (2004). Antioxidant and cellular activities of anthocyanins and their corresponding vitisins a studies in platelets, monocytes, and human endothelial cells. Journal of Agricultural and Food Chemistry, 52(11): 3378-3384.
  • Gol, N.B., Patel, P.R., & Rao, T.R. (2013). Improvement of quality and shelf-life of strawberries with edible coatings enriched with chitosan. Postharvest Biology and Technology, 85: 185-195.
  • Ilk, S., Sağlam, N., Özgen, M., & Korkusuz, F. (2017). Chitosan nanoparticles enhances the anti-quorum sensing activity of kaempferol. International Journal of Biological Macromolecules, 94: 653-662.
  • Iderawumi, A.M., & Yusuff, M.A. (2021). Effects of nanoparticles on improvement in quality and shelf life of fruits and vegetables. Journal of Plant Biology and Crop Research, 4(2): 1042.
  • Jafarzadeh, S., Alias, A.K., Ariffin, F., & Mahmud, S. (2018). Physico-mechanical and microstructural properties of semolina flour films as influenced by different sorbitol/glycerol concentrations. International Journal of Food Properties, 21(1): 983-995.
  • Jafarzadeh, S., Nafchi, A.M., Salehabadi, A., Oladzad-Abbasabadi, N., & Jafari, S.M. (2021). Application of bio-nanocomposite films and edible coatings for extending the shelf life of fresh fruits and vegetables. Advances in Colloid and Interface Science, 291: 102405.
  • Jeevahan, J., & Chandrasekaran, M. (2019). Nanoedible films for food packaging: a review. Journal of Materials Science, 54(19): 12290-12318. John, A., Cresnar, K. P., Bikiaris, D. N., & Zemljic, L. F. (2023). Colloidal solutions as advanced coatings for active packaging development: focus on PLA systems. Polymers, 15(2), 273.
  • Keawchaoon, L., & Yoksan, R. (2011). Preparation, characterization and in vitro release study of carvacrol-loaded chitosan nanoparticles. Colloids and Surfaces B: Biointerfaces, 84(1): 163-171.
  • Kong, M., Chen, X.G., Xing, K., & Park, H.J. (2010). Antimicrobial properties of chitosan and mode of action: a state of the art review. International Journal of Food Microbiology, 144(1): 51-63.
  • Kontogeorgis, G.M., & Kiil, S. (2016). Introduction to applied colloid and surface chemistry. John Wiley & Sons.
  • Li, S., Jiang, S., Jia, W., Guo, T., Wang, F., Li, J., & Yao, Z. (2024). Natural antimicrobials from plants: recent advances and future prospects. Food Chemistry, 432: 137231.
  • Mareedu, T., Poiba, V., & Vangalapati, M. (2021). Green synthesis of iron nanoparticles by green tea and black tea leaves extract. Materials Today: Proceedings, 42: 1498-1501.
  • McGuire, R.G. (1992). Reporting of objective color measurements. HortScience, 27(12): 1254-1255.
  • Mith, H., Dure, R., Delcenserie, V., Zhiri, A., Daube, G., & Clinquart, A. (2014). Antimicrobial activities of commercial essential oils and their components against food‐borne pathogens and food spoilage bacteria. Food Science & Nutrition, 2(4): 403-416.
  • Moreno, J., & Peinado, R. (2012). Chapter 18-The Colloidal State. Enological Chemistry; Academic Press: San Diego, CA, USA, 303-321.
  • Moustafa, H., Youssef, A.M., Darwish, N.A., & Abou-Kandil, A.I. (2019). Eco-friendly polymer composites for green packaging: Future vision and challenges. Composites Part B: Engineering, 172: 16-25.
  • Mullen, W., McGinn, J., Lean, M.E., MacLean, M.R., Gardner, P., Duthie, G.G., Yokota, T., & Crozier, A. (2002). Ellagitannins, flavonoids, and other phenolics in red raspberries and their contribution to antioxidant capacity and vasorelaxation properties. Journal of Agricultural and Food Chemistry, 50(18): 5191-5196.
  • Nguyen, V.T., Nguyen, D.H., & Nguyen, H.V. (2020). Combination effects of calcium chloride and nano-chitosan on the postharvest quality of strawberry (Fragaria x ananassa Duch.). Postharvest Biology and Technology, 162: 111103.
  • No, H.K., Meyers, S.P., Prinyawiwatkul, W., & Xu, Z. (2007). Applications of chitosan for improvement of quality and shelf life offoods: A Review. Journal of Food Science, 72: 87-100
  • Nunes, M.C.N., Brecht, J.K., Morais, A.M.M.B., & Sargent, S.A. (1998). Controlling temperature and water loss to maintain ascorbic acid levels in strawberries during postharvest handling. Journal of Food Science, 63(6): 1033-1036.
  • Özdemir, E.A., & Dündar, Ö. (2006). The effects of fungicide and hot water treatments on the internal quality parameters of Valencia oranges. Asian Journal of Plant Sciences, 5(1): 142-146.
  • Öztürk, B. (2020). Effects of modified atmosphere packaging and aloe vera treatments on quality traits of cherry laurel fruit (Prunus laurocerasus L.) during shelf life. International Journal of Agriculture and Wildlife Science, 6(3): 399-406 (in Turkish).
  • Palomo-Siguero, M., & Madrid, Y. (2017). Exploring the behavior and metabolic transformations of SeNPs in exposed lactic acid bacteria. Effect of nanoparticles coating agent. International Journal of Molecular Sciences, 18(8): 1712.
  • Perdones, A., Escriche, I., Chiralt, A., & Vargas, M. (2016). Effect of chitosan–lemon essential oil coatings on volatile profile of strawberries during storage. Food Chemistry, 197: 979-986.
  • Pham, T.T., Nguyen, L.L.P., Dam, M.S., & Baranyai, L. (2023). Application of edible coating in extension of fruit shelf life. AgriEngineering, 5(1): 520-536.
  • Rivera-Pastrana, D. M., Béjar, A.A.G., Martínez-Tellez, M.A., Rivera-Domínguez, M., & Gonzalez-Aguilar, G. A. (2007). Efectos bioquímicos postcosecha de la irradiación UV-C en frutas y hortalizas. Revista Fitotecnia Mexicana, 30(4): 361-372.
  • Rojas-Graü, M.A., Avena-Bustillos, R.J., Olsen, C., Friedman, M., Henika, P.R., Pan, Z., & McHugh, T.H. (2007). Effects of plant essential oils and oil compounds on mechanical, barrier and antimicrobial properties of alginate–apple puree edible films. Journal of food Engineering, 81(3): 634-641.
  • Roman, M., Jitaru, P., & Barbante, C. (2014). Selenium biochemistry and its role for human health. Metallomics, 6(1): 25-54.
  • Sangsuwan, J., Pongsapakworawat, T., Bangmo, P., & Sutthasupa, S. (2016). Effect of chitosan beads incorporated with lavender or red thyme essential oils in inhibiting Botrytis cinerea and their application in strawberry packaging system. LWT, 74: 14-20.
  • Singleton, V.L., & Rossi, J.A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American journal of Enology and Viticulture, 16(3): 144-158.
  • Skalickova, S., Milosavljevic, V., Cihalova, K., Horky, P., Richtera, L., & Adam, V. (2017). Selenium nanoparticles as a nutritional supplement. Nutrition, 33: 83-90.
  • Sogvar, O.B., Saba, M.K., Emamifar, A., & Hallaj, R. (2016). Influence of nano-ZnO on microbial growth, bioactive content and postharvest quality of strawberries during storage. Innovative Food Science & Emerging Technologies, 35: 168-176.
  • Song, H., Yuan, W., Jin, P., Wang, W., Wang, X., Yang, L., & Zhang, Y. (2016). Effects of chitosan/nano-silica on postharvest quality and antioxidant capacity of loquat fruit during cold storage. Postharvest Biology and Technology, 119: 41-48.
  • Şen, K., & Güner, K.G. (2023). Applying of nanotechnology to edible films. Journal of Engineering Sciences and Design, 11(1): 411-425.
  • Valero, D., Diaz-Mula, H.M., Zapata, P.J., Castillo, S., Guillen, F., Martinez-Romero, D., & Serrano, M. (2011). Postharvest treatments with salicylic acid, acetylsalicylic acid or oxalic acid delayed ripening and enhanced bioactive compounds and antioxidant capacity in sweet cherry. Journal of Agricultural and Food Chemistry, 59(10): 5483-5489. Valizadeh, M., Behnamian, M., Dezhsetan, S., & Karimirad, R. (2021). Controlled release of turmeric oil from chitosan nanoparticles extends shelf life of Agaricus bisporus and preserves its postharvest quality. Food Bioscience, 44: 101401.
  • Vargas, M., Albors, A., Chiralt, A., & González-Martínez, C. (2006). Quality of cold-stored strawberries as affected by chitosan–oleic acid edible coatings. Postharvest Biology and Technology, 41(2): 164-171.
  • Velickova, E., Winkelhausen, E., Kuzmanova, S., Alves, V.D., & Moldão-Martins, M. (2013). Impact of chitosan-beeswax edible coatings on the quality of fresh strawberries (Fragaria ananassa cv. Camarosa) under commercial storage conditions. LWT-Food Science and Technology, 52(2): 80-92.
  • Vera, P., Canellas, E., & Nerín, C. (2018). New antioxidant multilayer packaging with nanoselenium to enhance the shelf-life of market food products. Nanomaterials, 8(10): 837.
  • Wang, W., Yu, Z., Alsammarraie, F.K., Kong, F., Lin, M., & Mustapha, A. (2020). Properties and antimicrobial activity of polyvinyl alcohol-modified bacterial nanocellulose packaging films incorporated with silver nanoparticles. Food Hydrocolloids, 100: 105411.
  • Xing, Y., Yang, H., Guo, X., Bi, X., Liu, X., Xu, Q., Wang, Q., Li, X., Shui, Y., Chen, C., & Zheng, Y.I. (2020). Effect of chitosan/Nano-TiO2 composite coatings on the postharvest quality and physicochemical characteristics of mango fruits. Scientia Horticulturae, 263: 109135.
  • Yang, J.W., & Kim, H.I. (2023). An overview of recent advances in greenhouse strawberry cultivation using deep learning techniques: A review for strawberry practitioners. Agronomy, 14(1): 34.
  • Zhang, H., Li, R., & Liu, W. (2011). Effects of chitin and its derivative chitosan on postharvest decay of fruits: A review. International Journal of Molecular Sciences, 12(2): 917-934.
There are 57 citations in total.

Details

Primary Language English
Subjects Horticultural Production (Other)
Journal Section Araştırma Makalesi
Authors

Ercan Yıldız 0000-0003-1445-2385

Ahmet Sümbül 0000-0001-9510-0992

Early Pub Date May 4, 2025
Publication Date August 2, 2025
Submission Date October 17, 2024
Acceptance Date April 25, 2025
Published in Issue Year 2025 Volume: 42 Issue: 2

Cite

APA Yıldız, E., & Sümbül, A. (2025). Effect of Some Colloidal Coating Treatments on the Shelf Life and Quality Characteristics of Strawberry Fruits. Horticultural Studies, 42(2), 64-71. https://doi.org/10.16882/hortis.1683597
AMA Yıldız E, Sümbül A. Effect of Some Colloidal Coating Treatments on the Shelf Life and Quality Characteristics of Strawberry Fruits. HortiS. August 2025;42(2):64-71. doi:10.16882/hortis.1683597
Chicago Yıldız, Ercan, and Ahmet Sümbül. “Effect of Some Colloidal Coating Treatments on the Shelf Life and Quality Characteristics of Strawberry Fruits”. Horticultural Studies 42, no. 2 (August 2025): 64-71. https://doi.org/10.16882/hortis.1683597.
EndNote Yıldız E, Sümbül A (August 1, 2025) Effect of Some Colloidal Coating Treatments on the Shelf Life and Quality Characteristics of Strawberry Fruits. Horticultural Studies 42 2 64–71.
IEEE E. Yıldız and A. Sümbül, “Effect of Some Colloidal Coating Treatments on the Shelf Life and Quality Characteristics of Strawberry Fruits”, HortiS, vol. 42, no. 2, pp. 64–71, 2025, doi: 10.16882/hortis.1683597.
ISNAD Yıldız, Ercan - Sümbül, Ahmet. “Effect of Some Colloidal Coating Treatments on the Shelf Life and Quality Characteristics of Strawberry Fruits”. Horticultural Studies 42/2 (August2025), 64-71. https://doi.org/10.16882/hortis.1683597.
JAMA Yıldız E, Sümbül A. Effect of Some Colloidal Coating Treatments on the Shelf Life and Quality Characteristics of Strawberry Fruits. HortiS. 2025;42:64–71.
MLA Yıldız, Ercan and Ahmet Sümbül. “Effect of Some Colloidal Coating Treatments on the Shelf Life and Quality Characteristics of Strawberry Fruits”. Horticultural Studies, vol. 42, no. 2, 2025, pp. 64-71, doi:10.16882/hortis.1683597.
Vancouver Yıldız E, Sümbül A. Effect of Some Colloidal Coating Treatments on the Shelf Life and Quality Characteristics of Strawberry Fruits. HortiS. 2025;42(2):64-71.