Research Article
BibTex RIS Cite

Year 2025, Volume: 42 Issue: 2, 80 - 87, 02.08.2025
https://doi.org/10.16882/hortis.1716339

Abstract

References

  • Aini, N., Yamika, W.S.D., & Ulum, B. (2019). Effect of nutrient concentration, PGPR and AMF on plant growth, yield and nutrient uptake of hydroponic lettuce. International Journal of Agriculture and Biology, 21: 175-183.
  • Baslam, M., Garmendia, I., & Goicoechea, N. (2013). Enhanced accumulation of vitamins, nutraceuticals and minerals in lettuces associated with arbuscular mycorrhizal fungi (AMF): A question of interest for both vegetables and humans. Agriculture, 3(1): 188-209.
  • Bhardwaj, D., Ansari, M.W., Sahoo, R.K., & Tuteja, N. (2014). Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microbial Cell Factories, 13: 66.
  • Barea, J.M., Toro, M., Orozco, M.O., Campos, E., & Azcón, R. (2002). The application of isotopic (32P and 15N) dilution techniques to evaluate the interactive effect of phosphate-solubilizing rhizobacteria, mycorrhizal fungi and Rhizobium to improve the agronomic efficiency of rock phosphate for legume crops. Nutrient Cycling in Agroecosystems, 63(1): 35–42.
  • Basu, A., Prasad, P., Das, S.N., Kalam, S., Sayyed, R.Z., Reddy, M.S., & Enshasy, H.E. (2021). Plant growth promoting rhizobacteria (PGPR) as green bioinoculants: Recent developments, constraints, and prospects. Sustainability, 13: 1140.
  • Baweja, P., Kumar, S., & Kumar, G. (2020). Fertilizers and pesticides: Their impact on soil health and environment. In Soil Health (pp. 265-285). Springer International Publishing.
  • Chatzistathis, T., Zoukidis, K., Vasilikiotis, C., Apostolidis, A., Giannakoula, A.E., Bountla, A., & Chatziathanasiadis, A. (2024). Plant-growth-promoting rhizobacteria and arbuscular mycorrhizal fungi may improve soil fertility and the growth, nutrient uptake, and physiological performance of Batavia lettuce (Lactuca sativa L. var. longifolia) plants. Horticulturae, 10: 449.
  • Cipriano, M.A., Lupatini, M., Santos, L., Silva, M., da Roesch, L.F., Destefano, S., Freitas, S., & Kuramae, E. (2016). Lettuce and rhizosphere microbiome responses to growth promoting Pseudomonas species under field conditions. FEMS Microbiology Ecology, 92: fiw197.
  • Epelde, L., Urra, J., Anza, M., Gamboa, J., & Garbisu, C. (2020). Inoculation of arbuscular mycorrhizal fungi increases lettuce yield without altering natural soil communities. Archives of Agronomy and Soil Science, 68(3): 413-430.
  • Hamid, S., Skinder, B.M., & Mir, M.Y. (2020). Biofertilisers: Sustainable approach for growing population needs. In K.R. Hakeem, G. H. Dar, M. A. Mehmood, & R. A. Bhat (Eds.), Microbiota and Biofertilizers (pp. 123-141). Springer.
  • Hestrin, R., Hammer, E.C., Mueller, C. W., & Lehmann, J. (2019). Synergies between mycorrhizal fungi and soil microbial communities increase plant nitrogen acquisition. Communications Biology, 2(1): 233. Kacar, B., İnal, A. (2008). Plant Analysis. 3rd Edition Nobel. Publishing, Istanbul, Türkiye, pp: 450.
  • Kalamulla, R., & Yapa, N. (2024). Co-inoculation of AMF and other microbial biofertilizers for better nutrient acquisition from the soil system. In M. Parihar, A. Rakshit, A. Adholeya, & Y. Chen (Eds.), Arbuscular Mycorrhizal Fungi in Sustainable Agriculture: Nutrient and Crop Management. Springer.
  • Kim, M.J., Moon, Y., Tou, J.C., Mou, B., & Waterland, N.L. (2016). Nutritional value, bioactive compounds and health benefits of lettuce (Lactuca sativa L.). Journal of Food Composition and Analysis, 49: 19-34.
  • Kohler, J., Knapp, B.A., Waldhuber, S., Caravaca, F., Roldán, A., & Insam, H. (2010). Effects of elevated CO2, water stress, and inoculation with Glomus intraradices or Pseudomonas mendocina on lettuce dry matter and rhizosphere microbial and functional diversity under growth chamber conditions. Journal of Soils and Sediments, 10: 1585-1597.
  • Kröber, M., Wibberg, D., Grosch, R., Eikmeyer, F., Verwaaijen, B., Chowdhury, P.S., Hartmann, A., Pühler, A., & Schlüter, A. (2014). Effect of the strain Bacillus amyloliquefaciens FZB42 on the microbial community in the rhizosphere of lettuce under field conditions analyzed by whole metagenome sequencing. Frontiers in Microbiology, 5: 252.
  • Lee, M.R., Tu, C., Chen, X., & Hu, S.J. (2014). Arbuscular mycorrhizal fungi enhance P uptake and alter plant morphology in the invasive plant Microstegium vimineum. Biological Invasions, 16: 1083-1093.
  • Liu, J., Roland Leatherwood, W., & Mattson, N.S. (2012). Irrigation method and fertilizer concentration differentially alter growth of vegetable transplants. HortTechnology, 22: 56-63.
  • Majewska, M.L., Rola, K., & Zubek, S. (2017). The growth and phosphorus acquisition of invasive plants Rudbeckia laciniata and Solidago gigantea are enhanced by arbuscular mycorrhizal fungi. Mycorrhiza, 27: 83-94.
  • McLaughlin, D., & Kinzelbach, W. (2015). Food security and sustainable resource management. Water Resources Research, 51: 4966-4985.
  • Meteoroloji Genel Müdürlüğü. (2024). İl ve ilçe bazında iklim verileri: Antalya/Serik. https://www.mgm.gov.tr/veridegerlendirme/il-ve-ilceler-istatistik.aspx?m=ANTALYA (Accessed: May 23, 2025).
  • Molaei, P., Barzegar, T., & Fazli, M. (2024). Nutrient content amelioration in red lettuce growing in nutrient deficient soils via arbuscular mycorrhizal fungi. Plant and Soil, 508: 483-497.
  • Nguyen, T.D., Cavagnaro, T.R., & Watts-Williams, S.J. (2019). The effects of soil phosphorus and zinc availability on plant responses to mycorrhizal fungi: A physiological and molecular assessment. Scientific Reports, 9(1): 14880.
  • Oktaviani, P., & Patiung, M. (2024). Exploring the potential of soil microbes as biofertilizer agents to enhance soil fertility and crop productivity. Agriculture Power Journal, 1(1): 1-11.
  • Pagliarini, E., Gaggia, F., Quartieri, M., Toselli, M., & Di Gioia, D. (2023). Yield and nutraceutical value of lettuce and basil improved by a microbial inoculum in greenhouse experiments. Plants, 12(8): 1700.
  • RStudio Team (2020). RStudio: Integrated Development for R. RStudio, PBC, Boston, MA URL.
  • Pylak, M., Oszust, K., & Frac, M. (2019). Review report on the role of bioproducts, biopreparations, biostimulants and microbial inoculants in organic production of fruit. Reviews in Environmental Science and Bio/Technology, 18(3): 597-616.
  • Sánchez, B., García, A., Romero, A., & Bonilla, R. (2014). Efecto de rizobacterias promotoras de crecimiento vegetal solubilizadoras de fosfato en Lactuca sativa cultivar White Boston. Revista Colombiana de Biotecnología, 16(2): 122-128.
  • Santoyo, G., Gamalero, E., & Glick, B.R. (2021). Mycorrhizal-bacterial amelioration of plant abiotic and biotic stress. Frontiers in Sustainable Food Systems, 5: 672881.
  • Saxena, J., Chandra, S., & Nain, L. (2013). Synergistic effect of phosphate solubilizing rhizobacteria and arbuscular mycorrhiza on growth and yield of wheat plants. Journal of Soil Science and Plant Nutrition, 13(2): 511-525.
  • Scuderi, D., Giuffrida, F., Cassaniti, C., Caturano, E., & Leonardi, C. (2011). Contribution of beneficial rhizosphere micro-organisms to growth and nitrogen uptake of lettuce plants under field conditions. Journal of Food, Agriculture & Environment, 9: 689-692.
  • Stoll, A., Olalde, V., & Bravo, J. (2018). Efecto de bacterias promotoras del crecimiento vegetal andinas sobre el crecimiento de plántulas de lechuga bajo condiciones industriales. Biotecnología y Sustentabilidad, 1(1): 36-40.
  • Tejera, B., Heydrich, M., & Rojas, M. (2013). Aislamiento de Bacillus solubilizadores de fosfatos asociados al cultivo del arroz. Agronomía Mesoamericana, 24(2): 357-364.
  • Trinh, C.S., Lee, H., Lee, W.J., Lee, S.J., Chung, N., Han, J., Kim, J., Hong, S.W., & Lee, H. (2018). Evaluation of the plant growth-promoting activity of Pseudomonas nitroreducens in Arabidopsis thaliana and Lactuca sativa. Plant Cell Reports, 37: 873-885.
  • TÜİK. (2023). Bitkisel üretim istatistikleri veri tabanı. http://www.tuik.gov.tr. Date accessed: February 16, 2025.
  • Vetrano, F., Miceli, C., Angileri, V., Frangipane, B., Moncada, A., & Miceli, A. (2020). Effect of bacterial inoculum and fertigation management on nursery and field production of lettuce plants. Agronomy, 10: 1477.
  • Wang, X., & Xing, Y. (2016). Effects of irrigation and nitrogen fertilizer input levels on soil NO3-N content and vertical distribution in greenhouse tomato (Lycopersicum esculentum Mill.). Scientifica, 2016: 5710915.
  • White, P.J., & Brown, P.H. (2010). Plant nutrition for sustainable development and global health. Annals of Botany, 105(7): 1073-1080.
  • Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. Springer
  • Wickham, H., François, R., Henry, L., & Müller, K. (2023). dplyr: A grammar of data manipulation (R package version 1.1.3). https://CRAN.R-project.org/package=dplyr.
  • Widada, J., Damarjaya, D.I., & Kabirun, S. (2007). The interactive effects of arbuscular mycorrhizal fungi and rhizobacteria on the growth and nutrients uptake of sorghum in acid soil. In E. Velázquez & C. Rodríguez-Barrueco (Eds.), First International Meeting on Microbial Phosphate Solubilization (pp. 173-177). Springer.
  • Xu, Y., Yan, Y., Zhou, T., Lu, Y., Yang, X., Tang, K., & Liu, F. (2024). Synergy between arbuscular mycorrhizal fungi and rhizosphere bacterial communities increases the utilization of insoluble phosphorus and potassium in the soil by maize. Journal of Agricultural and Food Chemistry, 72(42): 23631-23642.
  • Zhao, C., Hu, C., Huang, W., Sun, X., Tan, Q., & Di, H. (2010). Lysimeter study of nitrate leaching and optimum nitrogen application rates for intensively irrigated vegetable production systems in Central China. Journal of Soils and Sediments, 10: 9-17.

Synergistic Effects of Biofertilizers and Chemical Fertilizers on Yield and Nutritional Quality of Greenhouse-Grown Lettuce

Year 2025, Volume: 42 Issue: 2, 80 - 87, 02.08.2025
https://doi.org/10.16882/hortis.1716339

Abstract

This study investigates the impact of biofertilizers, chemical fertilizers, and their combined application on lettuce yield and nutrition. A randomized block design experiment was conducted in a greenhouse, comparing control, chemical fertilizer (CF), Bio Veria (BF1), Bacillus Mix (BF2), CF+BF1, and CF+BF2 treatments. Results showed that combined applications of CF+BF1 and CF+BF2 significantly increased lettuce fresh weight by 56% and 61%, respectively, and dry weight by 80% and 112% compared to the control. The CF+BF2 treatment achieved the highest yield at 34.6 t ha-1, a 61% improvement over the control and a 28% increase compared to CF alone. Furthermore, the mixture treatments demonstrated the highest nitrogen (N), phosphorus (P), and calcium (Ca) contents in lettuce leaves. Specifically, CF+BF2 had the highest N content, a 29% improvement over the control and a 20% increase over CF. The CF+BF1 treatment resulted in a 54% improvement in P content over the control and a 21% increase over CF. The CF+BF2 treatment also produced a 54% improvement in Ca content over the control and a 25% increase over CF. The integrated application of biofertilizers and chemical fertilizers significantly improved lettuce yield and nutritional content, highlighting the potential of biofertilizers containing multi-species in optimizing lettuce production.

References

  • Aini, N., Yamika, W.S.D., & Ulum, B. (2019). Effect of nutrient concentration, PGPR and AMF on plant growth, yield and nutrient uptake of hydroponic lettuce. International Journal of Agriculture and Biology, 21: 175-183.
  • Baslam, M., Garmendia, I., & Goicoechea, N. (2013). Enhanced accumulation of vitamins, nutraceuticals and minerals in lettuces associated with arbuscular mycorrhizal fungi (AMF): A question of interest for both vegetables and humans. Agriculture, 3(1): 188-209.
  • Bhardwaj, D., Ansari, M.W., Sahoo, R.K., & Tuteja, N. (2014). Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microbial Cell Factories, 13: 66.
  • Barea, J.M., Toro, M., Orozco, M.O., Campos, E., & Azcón, R. (2002). The application of isotopic (32P and 15N) dilution techniques to evaluate the interactive effect of phosphate-solubilizing rhizobacteria, mycorrhizal fungi and Rhizobium to improve the agronomic efficiency of rock phosphate for legume crops. Nutrient Cycling in Agroecosystems, 63(1): 35–42.
  • Basu, A., Prasad, P., Das, S.N., Kalam, S., Sayyed, R.Z., Reddy, M.S., & Enshasy, H.E. (2021). Plant growth promoting rhizobacteria (PGPR) as green bioinoculants: Recent developments, constraints, and prospects. Sustainability, 13: 1140.
  • Baweja, P., Kumar, S., & Kumar, G. (2020). Fertilizers and pesticides: Their impact on soil health and environment. In Soil Health (pp. 265-285). Springer International Publishing.
  • Chatzistathis, T., Zoukidis, K., Vasilikiotis, C., Apostolidis, A., Giannakoula, A.E., Bountla, A., & Chatziathanasiadis, A. (2024). Plant-growth-promoting rhizobacteria and arbuscular mycorrhizal fungi may improve soil fertility and the growth, nutrient uptake, and physiological performance of Batavia lettuce (Lactuca sativa L. var. longifolia) plants. Horticulturae, 10: 449.
  • Cipriano, M.A., Lupatini, M., Santos, L., Silva, M., da Roesch, L.F., Destefano, S., Freitas, S., & Kuramae, E. (2016). Lettuce and rhizosphere microbiome responses to growth promoting Pseudomonas species under field conditions. FEMS Microbiology Ecology, 92: fiw197.
  • Epelde, L., Urra, J., Anza, M., Gamboa, J., & Garbisu, C. (2020). Inoculation of arbuscular mycorrhizal fungi increases lettuce yield without altering natural soil communities. Archives of Agronomy and Soil Science, 68(3): 413-430.
  • Hamid, S., Skinder, B.M., & Mir, M.Y. (2020). Biofertilisers: Sustainable approach for growing population needs. In K.R. Hakeem, G. H. Dar, M. A. Mehmood, & R. A. Bhat (Eds.), Microbiota and Biofertilizers (pp. 123-141). Springer.
  • Hestrin, R., Hammer, E.C., Mueller, C. W., & Lehmann, J. (2019). Synergies between mycorrhizal fungi and soil microbial communities increase plant nitrogen acquisition. Communications Biology, 2(1): 233. Kacar, B., İnal, A. (2008). Plant Analysis. 3rd Edition Nobel. Publishing, Istanbul, Türkiye, pp: 450.
  • Kalamulla, R., & Yapa, N. (2024). Co-inoculation of AMF and other microbial biofertilizers for better nutrient acquisition from the soil system. In M. Parihar, A. Rakshit, A. Adholeya, & Y. Chen (Eds.), Arbuscular Mycorrhizal Fungi in Sustainable Agriculture: Nutrient and Crop Management. Springer.
  • Kim, M.J., Moon, Y., Tou, J.C., Mou, B., & Waterland, N.L. (2016). Nutritional value, bioactive compounds and health benefits of lettuce (Lactuca sativa L.). Journal of Food Composition and Analysis, 49: 19-34.
  • Kohler, J., Knapp, B.A., Waldhuber, S., Caravaca, F., Roldán, A., & Insam, H. (2010). Effects of elevated CO2, water stress, and inoculation with Glomus intraradices or Pseudomonas mendocina on lettuce dry matter and rhizosphere microbial and functional diversity under growth chamber conditions. Journal of Soils and Sediments, 10: 1585-1597.
  • Kröber, M., Wibberg, D., Grosch, R., Eikmeyer, F., Verwaaijen, B., Chowdhury, P.S., Hartmann, A., Pühler, A., & Schlüter, A. (2014). Effect of the strain Bacillus amyloliquefaciens FZB42 on the microbial community in the rhizosphere of lettuce under field conditions analyzed by whole metagenome sequencing. Frontiers in Microbiology, 5: 252.
  • Lee, M.R., Tu, C., Chen, X., & Hu, S.J. (2014). Arbuscular mycorrhizal fungi enhance P uptake and alter plant morphology in the invasive plant Microstegium vimineum. Biological Invasions, 16: 1083-1093.
  • Liu, J., Roland Leatherwood, W., & Mattson, N.S. (2012). Irrigation method and fertilizer concentration differentially alter growth of vegetable transplants. HortTechnology, 22: 56-63.
  • Majewska, M.L., Rola, K., & Zubek, S. (2017). The growth and phosphorus acquisition of invasive plants Rudbeckia laciniata and Solidago gigantea are enhanced by arbuscular mycorrhizal fungi. Mycorrhiza, 27: 83-94.
  • McLaughlin, D., & Kinzelbach, W. (2015). Food security and sustainable resource management. Water Resources Research, 51: 4966-4985.
  • Meteoroloji Genel Müdürlüğü. (2024). İl ve ilçe bazında iklim verileri: Antalya/Serik. https://www.mgm.gov.tr/veridegerlendirme/il-ve-ilceler-istatistik.aspx?m=ANTALYA (Accessed: May 23, 2025).
  • Molaei, P., Barzegar, T., & Fazli, M. (2024). Nutrient content amelioration in red lettuce growing in nutrient deficient soils via arbuscular mycorrhizal fungi. Plant and Soil, 508: 483-497.
  • Nguyen, T.D., Cavagnaro, T.R., & Watts-Williams, S.J. (2019). The effects of soil phosphorus and zinc availability on plant responses to mycorrhizal fungi: A physiological and molecular assessment. Scientific Reports, 9(1): 14880.
  • Oktaviani, P., & Patiung, M. (2024). Exploring the potential of soil microbes as biofertilizer agents to enhance soil fertility and crop productivity. Agriculture Power Journal, 1(1): 1-11.
  • Pagliarini, E., Gaggia, F., Quartieri, M., Toselli, M., & Di Gioia, D. (2023). Yield and nutraceutical value of lettuce and basil improved by a microbial inoculum in greenhouse experiments. Plants, 12(8): 1700.
  • RStudio Team (2020). RStudio: Integrated Development for R. RStudio, PBC, Boston, MA URL.
  • Pylak, M., Oszust, K., & Frac, M. (2019). Review report on the role of bioproducts, biopreparations, biostimulants and microbial inoculants in organic production of fruit. Reviews in Environmental Science and Bio/Technology, 18(3): 597-616.
  • Sánchez, B., García, A., Romero, A., & Bonilla, R. (2014). Efecto de rizobacterias promotoras de crecimiento vegetal solubilizadoras de fosfato en Lactuca sativa cultivar White Boston. Revista Colombiana de Biotecnología, 16(2): 122-128.
  • Santoyo, G., Gamalero, E., & Glick, B.R. (2021). Mycorrhizal-bacterial amelioration of plant abiotic and biotic stress. Frontiers in Sustainable Food Systems, 5: 672881.
  • Saxena, J., Chandra, S., & Nain, L. (2013). Synergistic effect of phosphate solubilizing rhizobacteria and arbuscular mycorrhiza on growth and yield of wheat plants. Journal of Soil Science and Plant Nutrition, 13(2): 511-525.
  • Scuderi, D., Giuffrida, F., Cassaniti, C., Caturano, E., & Leonardi, C. (2011). Contribution of beneficial rhizosphere micro-organisms to growth and nitrogen uptake of lettuce plants under field conditions. Journal of Food, Agriculture & Environment, 9: 689-692.
  • Stoll, A., Olalde, V., & Bravo, J. (2018). Efecto de bacterias promotoras del crecimiento vegetal andinas sobre el crecimiento de plántulas de lechuga bajo condiciones industriales. Biotecnología y Sustentabilidad, 1(1): 36-40.
  • Tejera, B., Heydrich, M., & Rojas, M. (2013). Aislamiento de Bacillus solubilizadores de fosfatos asociados al cultivo del arroz. Agronomía Mesoamericana, 24(2): 357-364.
  • Trinh, C.S., Lee, H., Lee, W.J., Lee, S.J., Chung, N., Han, J., Kim, J., Hong, S.W., & Lee, H. (2018). Evaluation of the plant growth-promoting activity of Pseudomonas nitroreducens in Arabidopsis thaliana and Lactuca sativa. Plant Cell Reports, 37: 873-885.
  • TÜİK. (2023). Bitkisel üretim istatistikleri veri tabanı. http://www.tuik.gov.tr. Date accessed: February 16, 2025.
  • Vetrano, F., Miceli, C., Angileri, V., Frangipane, B., Moncada, A., & Miceli, A. (2020). Effect of bacterial inoculum and fertigation management on nursery and field production of lettuce plants. Agronomy, 10: 1477.
  • Wang, X., & Xing, Y. (2016). Effects of irrigation and nitrogen fertilizer input levels on soil NO3-N content and vertical distribution in greenhouse tomato (Lycopersicum esculentum Mill.). Scientifica, 2016: 5710915.
  • White, P.J., & Brown, P.H. (2010). Plant nutrition for sustainable development and global health. Annals of Botany, 105(7): 1073-1080.
  • Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. Springer
  • Wickham, H., François, R., Henry, L., & Müller, K. (2023). dplyr: A grammar of data manipulation (R package version 1.1.3). https://CRAN.R-project.org/package=dplyr.
  • Widada, J., Damarjaya, D.I., & Kabirun, S. (2007). The interactive effects of arbuscular mycorrhizal fungi and rhizobacteria on the growth and nutrients uptake of sorghum in acid soil. In E. Velázquez & C. Rodríguez-Barrueco (Eds.), First International Meeting on Microbial Phosphate Solubilization (pp. 173-177). Springer.
  • Xu, Y., Yan, Y., Zhou, T., Lu, Y., Yang, X., Tang, K., & Liu, F. (2024). Synergy between arbuscular mycorrhizal fungi and rhizosphere bacterial communities increases the utilization of insoluble phosphorus and potassium in the soil by maize. Journal of Agricultural and Food Chemistry, 72(42): 23631-23642.
  • Zhao, C., Hu, C., Huang, W., Sun, X., Tan, Q., & Di, H. (2010). Lysimeter study of nitrate leaching and optimum nitrogen application rates for intensively irrigated vegetable production systems in Central China. Journal of Soils and Sediments, 10: 9-17.
There are 42 citations in total.

Details

Primary Language English
Subjects Vegetable Growing and Treatment
Journal Section Araştırma Makalesi
Authors

Gökhan Uçar 0000-0002-1046-2714

Murat Şimşek This is me 0000-0003-1336-309X

Volkan Topçu This is me 0000-0002-6445-0970

Filiz Öktüren Asri 0000-0003-2712-3759

Memiş Ensar Ertürk This is me 0000-0001-6216-7904

İbrahim Çelik This is me 0000-0001-7000-5884

Publication Date August 2, 2025
Submission Date March 18, 2025
Acceptance Date June 9, 2025
Published in Issue Year 2025 Volume: 42 Issue: 2

Cite

APA Uçar, G., Şimşek, M., Topçu, V., … Öktüren Asri, F. (2025). Synergistic Effects of Biofertilizers and Chemical Fertilizers on Yield and Nutritional Quality of Greenhouse-Grown Lettuce. Horticultural Studies, 42(2), 80-87. https://doi.org/10.16882/hortis.1716339
AMA Uçar G, Şimşek M, Topçu V, Öktüren Asri F, Ertürk ME, Çelik İ. Synergistic Effects of Biofertilizers and Chemical Fertilizers on Yield and Nutritional Quality of Greenhouse-Grown Lettuce. HortiS. August 2025;42(2):80-87. doi:10.16882/hortis.1716339
Chicago Uçar, Gökhan, Murat Şimşek, Volkan Topçu, Filiz Öktüren Asri, Memiş Ensar Ertürk, and İbrahim Çelik. “Synergistic Effects of Biofertilizers and Chemical Fertilizers on Yield and Nutritional Quality of Greenhouse-Grown Lettuce”. Horticultural Studies 42, no. 2 (August 2025): 80-87. https://doi.org/10.16882/hortis.1716339.
EndNote Uçar G, Şimşek M, Topçu V, Öktüren Asri F, Ertürk ME, Çelik İ (August 1, 2025) Synergistic Effects of Biofertilizers and Chemical Fertilizers on Yield and Nutritional Quality of Greenhouse-Grown Lettuce. Horticultural Studies 42 2 80–87.
IEEE G. Uçar, M. Şimşek, V. Topçu, F. Öktüren Asri, M. E. Ertürk, and İ. Çelik, “Synergistic Effects of Biofertilizers and Chemical Fertilizers on Yield and Nutritional Quality of Greenhouse-Grown Lettuce”, HortiS, vol. 42, no. 2, pp. 80–87, 2025, doi: 10.16882/hortis.1716339.
ISNAD Uçar, Gökhan et al. “Synergistic Effects of Biofertilizers and Chemical Fertilizers on Yield and Nutritional Quality of Greenhouse-Grown Lettuce”. Horticultural Studies 42/2 (August2025), 80-87. https://doi.org/10.16882/hortis.1716339.
JAMA Uçar G, Şimşek M, Topçu V, Öktüren Asri F, Ertürk ME, Çelik İ. Synergistic Effects of Biofertilizers and Chemical Fertilizers on Yield and Nutritional Quality of Greenhouse-Grown Lettuce. HortiS. 2025;42:80–87.
MLA Uçar, Gökhan et al. “Synergistic Effects of Biofertilizers and Chemical Fertilizers on Yield and Nutritional Quality of Greenhouse-Grown Lettuce”. Horticultural Studies, vol. 42, no. 2, 2025, pp. 80-87, doi:10.16882/hortis.1716339.
Vancouver Uçar G, Şimşek M, Topçu V, Öktüren Asri F, Ertürk ME, Çelik İ. Synergistic Effects of Biofertilizers and Chemical Fertilizers on Yield and Nutritional Quality of Greenhouse-Grown Lettuce. HortiS. 2025;42(2):80-7.