Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2022, , 76 - 83, 31.08.2022
https://doi.org/10.30704/http-www-jivs-net.1120974

Öz

Kaynakça

  • Ali, B. H., Blunden, G., Tanira, M. O., & Nemmar, A. (2008). Some phytochemical, pharmacological and toxicological properties of ginger (Zingiber officinale Roscoe): A review of recent research. Food and Chemical Toxicology, 46, 409-420.
  • Baliga, M. S., Haniadka, R., Pereira, M. M., D’Souza, J. J., Pallaty, P. L., Bhat, H. P., & Popuri, S. (2011). Update on the chemopreventive effects of ginger and its phytochemicals. Critical Reviews in Food Science and Nutrition, 51, 499-523.
  • Bhandari, U., Kanojia, R., & Pillai, K. K. (2005). Effect of ethanolic extract of Zingiber officinale on dyslipidaemia in diabetic rats. Journal of Ethnopharmacology 97, 227–230.
  • Clarke, B. (2008). Normal bone anatomy and physiology. Clinical Journal of the American Society of Nephrology, 3, 131–139.
  • Currey, J. D. (1984). Effects of differences in mineralization on the mechanical properties of bone. Philosophical Transactions of the Royal Society B, 304, 509–518.
  • Currey, J. D. (2003). Role of collagen and other organics in the mechanical properties of bone. Osteoporosis International, 14, 29–37.
  • Danwilai, K., Konmun, J., Sripanidkulchai, B. O., & Subongkot, S. (2017). Antioxidant activity of ginger extract as a daily supplement in cancer patients receiving adjuvant chemotherapy: A pilot study. Cancer Management and Research, 9, 11–18.
  • Das, S., & Crockett, J. C. (2013). Osteoporosis - a current view of pharmacological prevention and treatment. Drug Design, Development and Therapy, 7, 435–448.
  • El-Mottaleb, N. A. A. B. D., El-Aziz, E. A. A. B. D., & Mostafa, D. G. (2016). Effect of ginger on bone of streptozotocin induced diabetic rats. The Medical Journal of Cairo University, 84, 395–403.
  • Follak, N., Klöting, I., & Merk, H. (2005). Influence of diabetic metabolic state on fracture healing in spontaneously diabetic rats. Diabetes/Metabolism Research and Review, 21, 288–296.
  • Funk, J. R., Hale, J. E., Carmines, D., Gooch, H. L., & Hurwitz, S. R. (2000). Biomechanical evaluation of early fracture healing in normal and diabetic rats. Journal of Orthopaedic Research, 18, 126–132.
  • Gandhi, A., Dumas, C., O’Connor, J. P., Parsons, J. R., & Lin, S. S. (2006). The effects of local platelet rich plasma delivery on diabetic fracture healing. Bone, 38, 540–546.
  • Gong, Z., & Muzumdar, R. H. (2012). Pancreatic function, type 2 diabetes, and metabolism in aging. International Journal of Endocrinology, 2012, 320482.
  • Hamed, E., Lee, Y., & Jasiuk, I. (2010). Multiscale modeling of elastic properties of cortical bone. Acta Mechanica, 213, 131–154.
  • Hidaka, S., Okamoto, Y., Yamada, Y., Kon, Y., & Kimura, T. (1999). A Japanese herbal medicine, Chujo-to, has a beneficial effect on osteoporosis in rats. Phytotherapy Research, 13, 14–19.
  • Huang, H. C., Chiu, S. H., & Chang, T. M. (2011). Inhibitory effect of [6]-gingerol on melanogenesis in b16f10 melanoma cells and a possible mechanism of action. Bioscience, Biotechnology, and Biochemistry, 75, 1067–1072.
  • Hwang, Y. H., Kim, T., Kim, R., & Ha, H. (2018). The natural product 6-gingerol inhibits inflammation-associated osteoclast differentiation via reduction of prostaglandin E2 levels. International Journal of Molecular Sciences, 19, 2068.
  • Jast, J. A. (2011). Investigation of ultrastructural and mechanical properties of rat corticol bone using micro-CT, three-point bending testing, and the reference point indentation technique. Thesis of degree of Master of Science. Graduate College of the University of Illinois, Urbana, Illinois.
  • Janghorbani, M., Feskanich, D., Willett, W. C., & Hu, F. (2006). Prospective study of diabetes and risk of hip fracture: The nurses’ health study. Diabetes Care, 29, 1573–1578.
  • Jiao, H., Xiao, E., & Graves, D. T. (2015). Diabetes and its effect on bone and fracture healing. Current Osteoporosis Reports, 13, 327–335.
  • Jones, W. P., Chin, Y-W., & Kinghorn, A. D. (2006). The role of pharmacognosy in modern medicine and pharmacy. Current Drug Targets, 7, 247–264.
  • Karsenty, G., & Wagner, E. F. (2002). Reaching a genetic and molecular understanding of skeletal development. Developmental Cell, 2, 389–406.
  • Katayama, Y., Akatsu, T., Yamamoto, M., Kugai, N., & Nagata, N. (1996). Role of nonenzymatic glycosylation of type I collagen in diabetic osteopenia. Journal of Bone and Mineral Research, 11, 931–937.
  • Khan, K., Singh, A., Mittal, M., Sharan, K., Singh, N., Preety, D., Sanyal, S., Maurya, R., & Chattopadhyay, N. (2012). [6]-Gingerol induces bone loss in ovary intact adult mice and augments osteoclast function via the transient receptor potential vanilloid 1 channel. Molecular Nutrition & Food Research, 56,1860–1873.
  • Kikuzaki, H., & Nakatani, N. (1993). Antioxidant Effects of Ginger Constituents, Journal of Food Science, 58, 1407-1410.
  • Koehn, F. E., & Carter, G. T. (2005). The evolving role of natural products in drug discovery. Nature Reviews Drug Discovery, 4, 206–220.
  • Lynchi, M. E., Main, R. P., Xu, Q., Walsh, D. J., Schaffleri M. B., Wright, T. M., & van der Meulen, M. C. H. (2010). Cancellous bone adaptation to tibial compression is not sex dependent in growing mice. Journal of Applied Physiology, 109, 685–691.
  • Mahluji, S., Attari, V. E., Mobasseri, M., Payahoo, L., Ostradrahimi, A., & Golzari, S. E. J. (2013). Effects of ginger (Zingiber officinale) on plasma glucose level, HbA1c and insulin sensitivity in type 2 diabetic patients. International Journal of Food Sciences and Nutrition, 64, 682–686.
  • Main, R. P., & Biewener, A. A. (2004). Ontogenetic patterns of limb loading, in vivo bone strains and growth in the goat radius. Journal of Experimental Biology, 207, 2577–2588.
  • Main, R. P., Lynch, M. E., & van der Meulen, M. C. H. (2010). In vivo tibial stiffness is maintained by whole bone morphology and cross-sectional geometry in growing female mice. Journal of Biomechanics, 43, 2689–2694.
  • Marx, W., Ried, K., McCarthy, A. L., Vitetta, L., Sali, A., McKavanagh, D., & Isenring, L. (2017). Ginger-mechanism of action in chemotherapy-induced nausea and vomiting: A review. Critical Reviews in Food Science and Nutrition, 57, 141–146.
  • Mashadi, N. S., Ghiasvand, R., Askari, G., Hariri, M., Darvashi, L., & Mofid, M. R. (2013). Anti-oxidative and anti-inflammatory effects of ginger in health and physical activity: review of current evidence. International Journal of Preventive Medicine, 4, 36–42.
  • McCabe, L. R. (2007). Understanding the pathology and mechanisms of type I diabetic bone loss. Journal of Cellular Biochemistry, 102, 1343–1357.
  • Moseley, K. F. (2012). Type 2 diabetes and bone fractures Kendall. Current Opinion in Endocrinology, Diabetes and Obesity, 19, 128–135.
  • Newman, D. J., & Cragg, G. M. (2016). Natural products as sources of new drugs from 1981 to 2014. Journal of Natural Products, 79, 629–661.
  • Nyman, J. S., Even, J. L., Jo, C. H., Herbert, E. G., Murry, M. R., Cockrell, G. E., Wahl, E. C., Bunn, R. C., Lumpkin, C. K., Fowkles, J. L., & Thrailkill, K. M. (2011). Increasing duration of type 1 diabetes perturbs the strength-structure relationship and increases brittleness of bone. Bone, 48, 733–740.
  • Rogers, M. J., Crockett, J. C., Coxon, F. P., & Mönkkönen, J. (2011). Biochemical and molecular mechanisms of action of bisphosphonates. Bone, 49, 34–41.
  • Semwal, R. B., Semwal, D. K., Combrinck, S., & Viljoen, A. M. (2015). Gingerols and shogaols: Important nutraceutical principles from ginger. Phytochemistry, 117, 554–568.
  • Shanbhogue, V. V., Hansen, S., Frost, M., Brixen, K., & Hermann, A. P. (2017). Bone disease in diabetes: another manifestation of microvascular disease? Lancet Diabetes Endocrinology, 5, 827–838.
  • Shanmugam, K. R., Mallikarjuna, K., Kesireddy, N., & Reddy, K. S. (2011). Neuroprotective effect of ginger on anti-oxidant enzymes in streptozotocin-induced diabetic rats. Food and Chemical Toxicology, 49, 893–897.
  • Shukla, Y., & Singh, M. (2007). Cancer preventive properties of ginger: A brief review. Food and Chemical Toxicology, 45, 683–690.
  • Sun, G., Vasdev, S., Martin, G. R., Gadag, V., Zhang, H. (2005). Altered calcium homeostasis is correlated with abnormalities of fasting serum glucose, insulin resistance, and beta-cell function in the Newfoundland population. Diabetes 2005, 54, 3336–3339.
  • Thomas, D. M., Hards, D. K., Rogers, S. D., Ng, K. W., & Best, J. D. (1996). Insulin Receptor Expression in Bone. Journal of Bone and Mineral Research, 11, 1312–1320.
  • Thomson, M., Al-Amin, Z. M., Al-Qattan, K. K., Shaban, L. H., & Ali, M. (2007). Anti-diabetic and hypolipidaemic properties of garlic (Allium sativum) in streptozotocin-induced diabetic rats. International Journal of Diabetes and Metabolism, 15, 3.
  • Thrailkill, K. M., Lumpkin, C. K., Bunn, R. C., Kemp, S. F., & Fowlkes, J. L. (2005). Is insulin an anabolic agent in bone? Dissecting the diabetic bone for clues. American Journal of Physiology-Endocrinology and Metabolism, 289, 735–745.
  • Tufekci, K., Kayacan, R., & Kurbanoglu, C. (2014). Effects of gamma radiation sterilization and strain rate on compressive behavior of equine cortical bone. Journal of the Mechanical Behavior of Biomedical Materials, 34, 231–242.
  • Van Haaren, E. H., van der Zwaard, B. C., van der Veen, A. J., Heyligers, I. C., Wuisman, P. I. J. M., & Smit, T. H. (2008). Effect of long-term preservation on the mechanical properties of cortical bone in goats. Acta Orthopaedica, 79, 708–716.
  • William, B. J., Simonet, S. W., & Lacey, D. L. (2003). Osteoclast differentiation and activation. Nature, 423, 337–342.
  • Xiao, L., Wang, X. M., Yang, T., Xiong, Y., Zhang, Z. G., Ding, J., Xu, C., & Xiong, C. Y. (2015). Changes of serum osteocalcin, calcium, and potassium in a rat model of type 2 diabetes. Cell Biochemistry and Biophysics, 71, 437–440.
  • Yan, W., & Li, X. (2013). Impact of diabetes and its treatments on skeletal diseases. Frontiers in Medicine, 7, 81–90.
  • Zammel, N., Amri, N., Chaabane, R., Rebai, T., & Badraoui, R. (2018). Proficiencies of Zingiber officinale against spine curve and vertebral damage induced by corticosteroid therapy associated with gonadal hormone deficiency in a rat model of osteoporosis. Biomedicine & Pharmacotherapy, 103, 1429–1435.

A Preventive herb against bone loss in diabetic rats: Zingiber officinale

Yıl 2022, , 76 - 83, 31.08.2022
https://doi.org/10.30704/http-www-jivs-net.1120974

Öz

The study aims to determine and compare bone mechanical and material properties in experimentally diabetic rats treated with ginger extract. Forty female, healthy Wistar albino rats were used in the study. Rats were divided into five groups; Control (C), Sham (S), Ginger (G), Diabetic (D), and Diabetic rats treated with Ginger (DG). Diabetes mellitus was induced by a single intraperitoneal injection of 50 mg/kg streptozotocin. Ginger-treated rats received 200 mg/kg ginger extract by oral gavage in a 30-day-trial. At the end of the study, tibiae were harvested and subjected to a three-point bending test. Plasma samples were also analyzed for calcium and phosphorus concentrations. It was observed that the bending strength significantly decreased in the groups Ginger (234.78 ± 16.79; P = 0.019) and the Diabetic (223.90 ± 29.90; P = 0.028) compared to group Control (275.75 ± 33.47). In addition, the bending strength of the diabetic rats treated with ginger (DG group; 251.92 ± 15.90) was also significantly higher than the rats in the Ginger and Diabetic groups (P = 0.032 and P = 0.037, respectively). Although the plasma calcium concentrations showed no differences among any of the groups, the plasma phosphorus levels decreased significantly in group Diabetic (3.47 ± 0.28; P = 0.05) compared to Control (5.11 ± 0.21). However, there was a significant increase in plasma phosphorus in group DG (4.32 ± 0.12; P = 0.05) compared to Diabetic. In conclusion, ginger extract treatment of diabetic rats improves bone material properties. The adverse effects of diabetes on the mechanical properties of the bone were prevented by using ginger extract in diabetic rats.

Kaynakça

  • Ali, B. H., Blunden, G., Tanira, M. O., & Nemmar, A. (2008). Some phytochemical, pharmacological and toxicological properties of ginger (Zingiber officinale Roscoe): A review of recent research. Food and Chemical Toxicology, 46, 409-420.
  • Baliga, M. S., Haniadka, R., Pereira, M. M., D’Souza, J. J., Pallaty, P. L., Bhat, H. P., & Popuri, S. (2011). Update on the chemopreventive effects of ginger and its phytochemicals. Critical Reviews in Food Science and Nutrition, 51, 499-523.
  • Bhandari, U., Kanojia, R., & Pillai, K. K. (2005). Effect of ethanolic extract of Zingiber officinale on dyslipidaemia in diabetic rats. Journal of Ethnopharmacology 97, 227–230.
  • Clarke, B. (2008). Normal bone anatomy and physiology. Clinical Journal of the American Society of Nephrology, 3, 131–139.
  • Currey, J. D. (1984). Effects of differences in mineralization on the mechanical properties of bone. Philosophical Transactions of the Royal Society B, 304, 509–518.
  • Currey, J. D. (2003). Role of collagen and other organics in the mechanical properties of bone. Osteoporosis International, 14, 29–37.
  • Danwilai, K., Konmun, J., Sripanidkulchai, B. O., & Subongkot, S. (2017). Antioxidant activity of ginger extract as a daily supplement in cancer patients receiving adjuvant chemotherapy: A pilot study. Cancer Management and Research, 9, 11–18.
  • Das, S., & Crockett, J. C. (2013). Osteoporosis - a current view of pharmacological prevention and treatment. Drug Design, Development and Therapy, 7, 435–448.
  • El-Mottaleb, N. A. A. B. D., El-Aziz, E. A. A. B. D., & Mostafa, D. G. (2016). Effect of ginger on bone of streptozotocin induced diabetic rats. The Medical Journal of Cairo University, 84, 395–403.
  • Follak, N., Klöting, I., & Merk, H. (2005). Influence of diabetic metabolic state on fracture healing in spontaneously diabetic rats. Diabetes/Metabolism Research and Review, 21, 288–296.
  • Funk, J. R., Hale, J. E., Carmines, D., Gooch, H. L., & Hurwitz, S. R. (2000). Biomechanical evaluation of early fracture healing in normal and diabetic rats. Journal of Orthopaedic Research, 18, 126–132.
  • Gandhi, A., Dumas, C., O’Connor, J. P., Parsons, J. R., & Lin, S. S. (2006). The effects of local platelet rich plasma delivery on diabetic fracture healing. Bone, 38, 540–546.
  • Gong, Z., & Muzumdar, R. H. (2012). Pancreatic function, type 2 diabetes, and metabolism in aging. International Journal of Endocrinology, 2012, 320482.
  • Hamed, E., Lee, Y., & Jasiuk, I. (2010). Multiscale modeling of elastic properties of cortical bone. Acta Mechanica, 213, 131–154.
  • Hidaka, S., Okamoto, Y., Yamada, Y., Kon, Y., & Kimura, T. (1999). A Japanese herbal medicine, Chujo-to, has a beneficial effect on osteoporosis in rats. Phytotherapy Research, 13, 14–19.
  • Huang, H. C., Chiu, S. H., & Chang, T. M. (2011). Inhibitory effect of [6]-gingerol on melanogenesis in b16f10 melanoma cells and a possible mechanism of action. Bioscience, Biotechnology, and Biochemistry, 75, 1067–1072.
  • Hwang, Y. H., Kim, T., Kim, R., & Ha, H. (2018). The natural product 6-gingerol inhibits inflammation-associated osteoclast differentiation via reduction of prostaglandin E2 levels. International Journal of Molecular Sciences, 19, 2068.
  • Jast, J. A. (2011). Investigation of ultrastructural and mechanical properties of rat corticol bone using micro-CT, three-point bending testing, and the reference point indentation technique. Thesis of degree of Master of Science. Graduate College of the University of Illinois, Urbana, Illinois.
  • Janghorbani, M., Feskanich, D., Willett, W. C., & Hu, F. (2006). Prospective study of diabetes and risk of hip fracture: The nurses’ health study. Diabetes Care, 29, 1573–1578.
  • Jiao, H., Xiao, E., & Graves, D. T. (2015). Diabetes and its effect on bone and fracture healing. Current Osteoporosis Reports, 13, 327–335.
  • Jones, W. P., Chin, Y-W., & Kinghorn, A. D. (2006). The role of pharmacognosy in modern medicine and pharmacy. Current Drug Targets, 7, 247–264.
  • Karsenty, G., & Wagner, E. F. (2002). Reaching a genetic and molecular understanding of skeletal development. Developmental Cell, 2, 389–406.
  • Katayama, Y., Akatsu, T., Yamamoto, M., Kugai, N., & Nagata, N. (1996). Role of nonenzymatic glycosylation of type I collagen in diabetic osteopenia. Journal of Bone and Mineral Research, 11, 931–937.
  • Khan, K., Singh, A., Mittal, M., Sharan, K., Singh, N., Preety, D., Sanyal, S., Maurya, R., & Chattopadhyay, N. (2012). [6]-Gingerol induces bone loss in ovary intact adult mice and augments osteoclast function via the transient receptor potential vanilloid 1 channel. Molecular Nutrition & Food Research, 56,1860–1873.
  • Kikuzaki, H., & Nakatani, N. (1993). Antioxidant Effects of Ginger Constituents, Journal of Food Science, 58, 1407-1410.
  • Koehn, F. E., & Carter, G. T. (2005). The evolving role of natural products in drug discovery. Nature Reviews Drug Discovery, 4, 206–220.
  • Lynchi, M. E., Main, R. P., Xu, Q., Walsh, D. J., Schaffleri M. B., Wright, T. M., & van der Meulen, M. C. H. (2010). Cancellous bone adaptation to tibial compression is not sex dependent in growing mice. Journal of Applied Physiology, 109, 685–691.
  • Mahluji, S., Attari, V. E., Mobasseri, M., Payahoo, L., Ostradrahimi, A., & Golzari, S. E. J. (2013). Effects of ginger (Zingiber officinale) on plasma glucose level, HbA1c and insulin sensitivity in type 2 diabetic patients. International Journal of Food Sciences and Nutrition, 64, 682–686.
  • Main, R. P., & Biewener, A. A. (2004). Ontogenetic patterns of limb loading, in vivo bone strains and growth in the goat radius. Journal of Experimental Biology, 207, 2577–2588.
  • Main, R. P., Lynch, M. E., & van der Meulen, M. C. H. (2010). In vivo tibial stiffness is maintained by whole bone morphology and cross-sectional geometry in growing female mice. Journal of Biomechanics, 43, 2689–2694.
  • Marx, W., Ried, K., McCarthy, A. L., Vitetta, L., Sali, A., McKavanagh, D., & Isenring, L. (2017). Ginger-mechanism of action in chemotherapy-induced nausea and vomiting: A review. Critical Reviews in Food Science and Nutrition, 57, 141–146.
  • Mashadi, N. S., Ghiasvand, R., Askari, G., Hariri, M., Darvashi, L., & Mofid, M. R. (2013). Anti-oxidative and anti-inflammatory effects of ginger in health and physical activity: review of current evidence. International Journal of Preventive Medicine, 4, 36–42.
  • McCabe, L. R. (2007). Understanding the pathology and mechanisms of type I diabetic bone loss. Journal of Cellular Biochemistry, 102, 1343–1357.
  • Moseley, K. F. (2012). Type 2 diabetes and bone fractures Kendall. Current Opinion in Endocrinology, Diabetes and Obesity, 19, 128–135.
  • Newman, D. J., & Cragg, G. M. (2016). Natural products as sources of new drugs from 1981 to 2014. Journal of Natural Products, 79, 629–661.
  • Nyman, J. S., Even, J. L., Jo, C. H., Herbert, E. G., Murry, M. R., Cockrell, G. E., Wahl, E. C., Bunn, R. C., Lumpkin, C. K., Fowkles, J. L., & Thrailkill, K. M. (2011). Increasing duration of type 1 diabetes perturbs the strength-structure relationship and increases brittleness of bone. Bone, 48, 733–740.
  • Rogers, M. J., Crockett, J. C., Coxon, F. P., & Mönkkönen, J. (2011). Biochemical and molecular mechanisms of action of bisphosphonates. Bone, 49, 34–41.
  • Semwal, R. B., Semwal, D. K., Combrinck, S., & Viljoen, A. M. (2015). Gingerols and shogaols: Important nutraceutical principles from ginger. Phytochemistry, 117, 554–568.
  • Shanbhogue, V. V., Hansen, S., Frost, M., Brixen, K., & Hermann, A. P. (2017). Bone disease in diabetes: another manifestation of microvascular disease? Lancet Diabetes Endocrinology, 5, 827–838.
  • Shanmugam, K. R., Mallikarjuna, K., Kesireddy, N., & Reddy, K. S. (2011). Neuroprotective effect of ginger on anti-oxidant enzymes in streptozotocin-induced diabetic rats. Food and Chemical Toxicology, 49, 893–897.
  • Shukla, Y., & Singh, M. (2007). Cancer preventive properties of ginger: A brief review. Food and Chemical Toxicology, 45, 683–690.
  • Sun, G., Vasdev, S., Martin, G. R., Gadag, V., Zhang, H. (2005). Altered calcium homeostasis is correlated with abnormalities of fasting serum glucose, insulin resistance, and beta-cell function in the Newfoundland population. Diabetes 2005, 54, 3336–3339.
  • Thomas, D. M., Hards, D. K., Rogers, S. D., Ng, K. W., & Best, J. D. (1996). Insulin Receptor Expression in Bone. Journal of Bone and Mineral Research, 11, 1312–1320.
  • Thomson, M., Al-Amin, Z. M., Al-Qattan, K. K., Shaban, L. H., & Ali, M. (2007). Anti-diabetic and hypolipidaemic properties of garlic (Allium sativum) in streptozotocin-induced diabetic rats. International Journal of Diabetes and Metabolism, 15, 3.
  • Thrailkill, K. M., Lumpkin, C. K., Bunn, R. C., Kemp, S. F., & Fowlkes, J. L. (2005). Is insulin an anabolic agent in bone? Dissecting the diabetic bone for clues. American Journal of Physiology-Endocrinology and Metabolism, 289, 735–745.
  • Tufekci, K., Kayacan, R., & Kurbanoglu, C. (2014). Effects of gamma radiation sterilization and strain rate on compressive behavior of equine cortical bone. Journal of the Mechanical Behavior of Biomedical Materials, 34, 231–242.
  • Van Haaren, E. H., van der Zwaard, B. C., van der Veen, A. J., Heyligers, I. C., Wuisman, P. I. J. M., & Smit, T. H. (2008). Effect of long-term preservation on the mechanical properties of cortical bone in goats. Acta Orthopaedica, 79, 708–716.
  • William, B. J., Simonet, S. W., & Lacey, D. L. (2003). Osteoclast differentiation and activation. Nature, 423, 337–342.
  • Xiao, L., Wang, X. M., Yang, T., Xiong, Y., Zhang, Z. G., Ding, J., Xu, C., & Xiong, C. Y. (2015). Changes of serum osteocalcin, calcium, and potassium in a rat model of type 2 diabetes. Cell Biochemistry and Biophysics, 71, 437–440.
  • Yan, W., & Li, X. (2013). Impact of diabetes and its treatments on skeletal diseases. Frontiers in Medicine, 7, 81–90.
  • Zammel, N., Amri, N., Chaabane, R., Rebai, T., & Badraoui, R. (2018). Proficiencies of Zingiber officinale against spine curve and vertebral damage induced by corticosteroid therapy associated with gonadal hormone deficiency in a rat model of osteoporosis. Biomedicine & Pharmacotherapy, 103, 1429–1435.
Toplam 51 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Veteriner Cerrahi
Bölüm Araştırma Makaleleri
Yazarlar

Bayram Süzer 0000-0002-2687-1221

Nilay Seyidoğlu 0000-0002-2817-5131

Kenan Tüfekçi 0000-0001-5358-1396

Deniz Karakcı 0000-0002-1884-1874

Buket Bakır 0000-0003-3637-3688

Yayımlanma Tarihi 31 Ağustos 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Süzer, B., Seyidoğlu, N., Tüfekçi, K., Karakcı, D., vd. (2022). A Preventive herb against bone loss in diabetic rats: Zingiber officinale. Journal of Istanbul Veterinary Sciences, 6(2), 76-83. https://doi.org/10.30704/http-www-jivs-net.1120974

Bu dergi Creative Commons attribution 4.0 international  (CC-BY 4.0). lisansı ile lisanslanmıştır.