Derleme
BibTex RIS Kaynak Göster

The relationship between ketosis and transitional nutritional diseases

Yıl 2024, Cilt: 8 Sayı: 3, 287 - 293, 31.12.2024

Öz

Ketosis is a highly prevalent nutritional condition that affects fresh dairy cows during the transition period. Ketosis occurs when there is a negative energy balance. Clinical findings of ketosis include excessive loss of body condition, decreased feed consumption (especially of concentrated feed), reduced milk yield, and nervous signs. Subclinical ketosis is a serious nutritional disease that may result in displaced abomasum, decreased milk yield, poor reproductive performances, early culling of herds, and economic losses, among other adverse effects. Ketosis is linked to nutritional disorders that are commonly observed after calving including, metritis, mastitis, milk fever, lameness, retained placenta, and displaced abomasum. The two most crucial strategies for preventing ketosis are reducing negative energy balance and increasing dry matter consumption. The density of triacyl-glycerides and non-esterified fatty acids in plasma is higher after calving. Non-esterified fatty acids are oxidized to ketone bodies. A cow starts to mobilize its body fat for energy when it reaches a negative energy balance. Live weight and body condition score fall under such circumstances.

Kaynakça

  • Allen, M. S., Bradford, B. J., & Oba, M. (2009). Board-invited review: The hepatic oxidation theory of the control of feed intake and its application to ruminants. Journal of Animal Science, 87(10), 3317-3334.
  • Arslan, C., & Tufan, T. (2010a). Geçiş dönemindeki süt ineklerinin beslenmesi I. Bu dönemde görülen fizyolojik, hormonal, metabolik ve immonolojik değişiklikler ile beslenme ihtiyaçları. Kafkas Üniversitesi Veteriner Fakültesi Dergisi, 16(1), 151-158.
  • Arslan, C., & Tufan, T. (2010b). Geçiş dönemindeki süt ineklerinin beslenmesi II. Bu dönemde görülen metabolik hastalıklar ve besleme ile önlenmesi. Kafkas Üniversitesi Veteriner Fakültesi Dergisi, 16(1), 159-166.
  • Aschenbach, J. R., Kristensen, N. B., Donkin, S. S., Hammon, H. M., & Penner, G. B. (2010). Gluconeogenesis in dairy cows: the secret of making sweet milk from sour dough. IUBMB Life, 62(12), 869-877.
  • Atalay, H., & Eseceli, H. (2015). Doğum sonrası yüksek verimli sığırlarda ketozis. Balıkesir ili Damızlık Sığır Yetiştiricileri Birliği Yayınları, 7(27), 37-39.
  • Bauman, D. E., & Griinari, J. M. (2001). Regulation and nutritional manipulation of milk fat: low-fat milk syndrome. Livestock Production Science, 70(1-2), 15-29.
  • Berge, A. C., & Vertenten, G. (2014). A field study to determine the prevalence, dairy herd management systems, and fresh cow clinical conditions associated with ketosis in European dairy herds. Journal of Dairy Science, 97(4), 2145-2154.
  • Bertics, S. J., Grummer, R. R., Cadorniga-Valino, C., & Stoddard, E. E. (1992). Effect of prepartum dry matter intake on liver triglyceride concentration and early lactation. Journal of Dairy Science, 75(7), 1914-1922.
  • Bobe, G., Young, J. W., & Beitz, D. C. (2004). Invited review: pathology, etiology, prevention, and treatment of fatty liver in dairy cows. Journal of Dairy Science, 87(10), 3105-3124.
  • Collard, B. L., Boettcher, P. J., Dekkers, J. M., Petitclerc, D., & Schaeffer, L. R. (2000). Relationships between energy balance and health traits of dairy cattle in early lactation. Journal of Dairy Science, 83(11), 2683-2690.
  • Dann, H. M., Morin, D. E., Bollero, G. A., Murphy, M. R., & Drackley, J. K. (2005). Prepartum intake, postpartum induction of ketosis, and periparturient disorders affect the metabolic status of dairy cows. Journal of Dairy Science, 88(9), 3249-3264.
  • Dann, H. M., Litherland, N. B., Underwood, J. P., Bionaz, M., D’angelo, A., McFadden, J. W., & Drackley, J. K. (2006). Diets during far-off and close-up dry periods affect periparturient metabolism and lactation in multiparous cows. Journal of Dairy Science, 89(9), 3563-3577.
  • Duffield, T. F., Kelton, D. F., Leslie, K. E., Lissemore, K. D., & Lumsden, J. H. (1997). Use of test day milk fat and milk protein to detect subclinical ketosis in dairy cattle in Ontario. Canadian Veterinary Journal, 38(11), 713.
  • De Vries, M. J., Van Der Beek, S., Kaal-Lansbergen, L. M. T. E., Ouweltjes, W., & Wilmink, J. B. M. (1999). Modeling of energy balance in early lactation and the effect of energy deficits in early lactation on first detected estrus postpartum in dairy cows. Journal of Dairy Science, 82(9), 1927-1934.
  • Drackley, J. K. (1999). ADS Foundation Scholar Award Biology Of Dairy Cows During The Transition Period: The Final Frontier. Journal of Dairy Science, 82(11), 2259-2273.
  • Drackley, J. K., Overton, T. R., & Douglas, G. N. (2001). Adaptations of glucose and long-chain fatty acid metabolism in liver of dairy cows during the periparturient period. Journal of Dairy Science, 84, E100-E112.
  • Dubuc, J., Duffield, T. F., Leslie, K. E., Walton, J. S., & LeBlanc, S. J. (2010). Risk factors for postpartum uterine diseases in dairy cows. Journal of Dairy Science, 93(12), 5764-5771.
  • Emery, R. S., Liesman, J. S., & Herdt, T. H. (1992). Metabolism of long chain fatty acids by ruminant liver. Journal of Nutrition, 122, 832-837.
  • Graber, M., Kohler, S., Kaufmann, T., Doherr, M. G., Bruckmaier, R. M., & Van Dorland, H. A. (2010). A field study on characteristics and diversity of gene expression in the liver of dairy cows during the transition period. Journal of Dairy Science, 93(11), 5200-5215.
  • Grummer, R. R., Mashek, D. G., & Hayırlı, A. (2004). Dry matter intake and energy balance in the transition period. Veterinary Clinics: Food Animal Practice, 20(3), 447-470.
  • Grummer, R. R. (2008). Nutritional and management strategies for the prevention of fatty liver in dairy cattle. Veterinary Journal, 176(1), 10-20.
  • Hayırlı, A., Grummer, R. R., Nordheim, E. V., & Crump, P. M. (2002). Animal and dietary factors affecting feed intake during the prefresh transition period in Holsteins. Journal of Dairy Science, 85(12), 3430-3443.
  • Herdt, T. H. (2000). Ruminant adaptation to negative energy balance: Influences on the etiology of ketosis and fatty liver. Veterinary Clinics of North America: Food Animal Practice, 16(2), 215-230.
  • Holtenius, P., Olsson, G., & Björkman, C. (1993). Periparturient concentrations of insulin glucagon and ketone bodies in dairy cows fed two different levels of nutrition and varying concentrate/roughage ratios. Journal of Veterinary Medicine Series A, 40(1‐10), 118-127.
  • Holtenius, P., & Holtenius, K. (1996). New aspects of ketone bodies in energy metabolism of dairy cows: a review. Journal of Veterinary Medicine Series A, 43(1‐10), 579-587.
  • Ingvartsen, K. L., & Andersen, J. B. (2000). Integration of metabolism and intake regulation: a review focusing on periparturient animals. Journal of Dairy Science, 83(7), 1573-1597.
  • Jorritsma, R., Jorritsma, H., Schukken, Y. H., Bartlett, P. C., Wensing, T. H., & Wentink, G. H. (2001). Prevalence and indicators of post partum fatty infiltration of the liver in nine commercial dairy herds in The Netherlands. Livestock Production Science, 68(1), 53-60.
  • Kelley, A. W. (2014). Physiological impacts and lactational performance of dairy cows fed Brown midrib corn silage during dry period through early to midlactation, Master of Science (MS), Utah State University, US, digitalcommons. usu. edu/etd/index.9.html
  • Kleppe, B. B., Aiello, R. J., Grummer, R. R., & Armentano, L. E. (1988). Triglyceride accumulation and very low density lipoprotein secretion by rat and goat hepatocytes in vitro. Journal of Dairy Science, 71(7), 1813-1822.
  • Komatsu, T., Itoh, F., Kushibiki, S., & Hodate, K. (2005). Changes in gene expression of glucose transporters in lactating and nonlactating cows. Journal of Animal Science, 83(3), 557-564.
  • LeBlanc, S. J., Leslie, K. E., & Duffield, T. F. (2005). Metabolic predictors of displaced abomasum in dairy cattle. Journal of Dairy Science, 88(1), 159-170.
  • Leblanc, S. (2010). Monitoring metabolic health of dairy cattle in the transition period. Journal of Reproduction and Development, 56, 29-35.
  • Lomax, M. A., Baird, G. D., Mallinson, C. B., & Symonds, H. W. (1979). Differences between lactating and non-lactating dairy cows in concentration and secretion rate of insulin. Biochemical Journal, 180(2), 281-289.
  • McCarthy, M. M., Yasui, T., Ryan, C. M., Mechor, G. D., & Overton, T. R. (2015). Performance of early-lactation dairy cows as affected by dietary starch and monensin supplementation. Journal of Dairy Science, 98(5), 3335-3350.
  • Mulligan, F. J., O’grady, L., Rice, D. A., & Doherty, M. L. (2006). A herd health approach to dairy cow nutrition and production diseases of the transition cow. Animal Reproduction Science, 96(3-4), 331-353.
  • NASEM 2021 (National Academies of Science, Engineering, and Medicine) Nutrient Requirements of Dairy Cattle, 8th ed., Washington, DC.,US, National Academies Press
  • Nielsen, N. I., & Ingvartsen, K. L. (2004). Propylene glycol for dairy cows: A review of the metabolism of propylene glycol and its effects on physiological parameters, feed intake, milk production and risk of ketosis. Animal Feed Science and Technology, 115(3-4), 191-213.
  • Ospina, P. A., Nydam, D. V., Stokol, T., & Overton, T. R. (2010). Association between the proportion of sampled transition cows with increased nonesterified fatty acids and β-hydroxybutyrate and disease incidence, pregnancy rate, and milk production at the herd level. Journal of Dairy Science, 93(8), 3595-3601.
  • Overton, T. R., & Waldron, M. R. (2004). Nutritional management of transition dairy cows: strategies to optimize metabolic health. Journal of Dairy Science, 87, E105-E119.
  • Pullen, D. L., Liesman, J. S., & Emery, R. S. (1990). A species comparison of liver slice synthesis and secretion of triacylglycerol from nonesterified fatty acids in media. Journal of Animal Science, 68(5), 1395-1399.
  • Rabelo, E., Rezende, R. L., Bertics, S. J., & Grummer, R. R. (2005). Effects of pre-and postfresh transition diets varying in dietary energy density on metabolic status of periparturient dairy cows. Journal of Dairy Science, 88(12), 4375-4383.
  • Reynolds, C. K., Huntington, G. B., Tyrrell, H. F., & Reynolds, P. J. (1988). Net portal-drained visceral and hepatic metabolism of glucose, L-lactate, and nitrogenous compounds in lactating Holstein cows. Journal of Dairy Science, 71(7), 1803-1812.
  • Reynolds, C. K., Aikman, P. C., Lupoli, B., Humphries, D. J., & Beever, D. E. (2003). Splanchnic metabolism of dairy cows during the transition from late gestation through early lactation. Journal of Dairy Science, 86(4), 1201-1217.
  • Rukkwamsuk, T., Kruip, T. A. M., & Wensing, T. (1999). Relationship between overfeeding and overconditioning in the dry period and the problems of high producing dairy cows during the postparturient period. Veterinary Quarterly, 21(3), 71-77.
  • Roche, J. R., Friggens, N. C., Kay, J. K., Fisher, M. W., Stafford, K. J., & Berry, D. P. (2009). Invited review: Body condition score and its association with dairy cow productivity, health, and welfare. Journal of Dairy Science, 92(12), 5769-5801.
  • Serbester, U., Çınar, M., & Hayırlı, A. (2012). Sütçü ineklerde negatif enerji dengesi ve metabolik indikatörleri. Kafkas Üniversitesi Veteriner Fakültesi Dergisi, 18(4).
  • Stockdale, C. R. (2001). Body condition at calving and the performance of dairy cows in early lactation under Australian conditions: a review. Australian Journal of Experimental Agriculture, 41(6), 823-839.
  • Tatone, E. H., Gordon, J. L., Hubbs, J., LeBlanc, S. J., DeVries, T. J., & Duffield, T. F. (2016). A systematic review and meta-analysis of the diagnostic accuracy of point-of-care tests for the detection of hyperketonemia in dairy cows. Preventive Veterinary Medicine, 130, 18-32.
  • Toni, F., Vincenti, L., Grigoletto, L., Ricci, A., & Schukken, Y. H. (2011). Early lactation ratio of fat and protein percentage in milk is associated with health, milk production, and survival. Journal of Dairy Science, 94(4), 1772-1783.
  • Van Dorland, H. A., Richter, S., Morel, I., Doherr, M. G., Castro, N., & Bruckmaier, R. M. (2009). Variation in hepatic regulation of metabolism during the dry period and in early lactation in dairy cows. Journal of Dairy Science, 92(5), 1924-1940.
  • Weber, C., Hametner, C., Tuchscherer, A., Losand, B., Kanitz, E., Otten, W., ... & Hammon, H. M. (2013). Hepatic gene expression involved in glucose and lipid metabolism in transition cows: Effects of fat mobilization during early lactation in relation to milk performance and metabolic changes. Journal of Dairy Science, 96(9), 5670-5681.
  • Zhang, Z., Li, X., Wang, H., Guo, C., Gao, L., Liu, L., ... & Liu, G. (2011). Concentrations of sodium, potassium, magnesium, and iron in the serum of dairy cows with subclinical ketosis. Biological Trace Element Research, 144, 525-528.

The relationship between ketosis and transitional nutritional diseases

Yıl 2024, Cilt: 8 Sayı: 3, 287 - 293, 31.12.2024

Öz

Ketosis is a highly prevalent nutritional condition that affects fresh dairy cows during the transition period. Ketosis occurs when there is a negative energy balance. Clinical findings of ketosis include excessive loss of body condition, decreased feed consumption (especially of concentrated feed), reduced milk yield, and nervous signs. Subclinical ketosis is a serious nutritional disease that may result in displaced abomasum, decreased milk yield, poor reproductive performances, early culling of herds, and economic losses, among other adverse effects. Ketosis is linked to nutritional disorders that are commonly observed after calving including, metritis, mastitis, milk fever, lameness, retained placenta, and displaced abomasum. The two most crucial strategies for preventing ketosis are reducing negative energy balance and increasing dry matter consumption. The density of triacyl-glycerides and non-esterified fatty acids in plasma is higher after calving. Non-esterified fatty acids are oxidized to ketone bodies. A cow starts to mobilize its body fat for energy when it reaches a negative energy balance. Live weight and body condition score fall under such circumstances.

Kaynakça

  • Allen, M. S., Bradford, B. J., & Oba, M. (2009). Board-invited review: The hepatic oxidation theory of the control of feed intake and its application to ruminants. Journal of Animal Science, 87(10), 3317-3334.
  • Arslan, C., & Tufan, T. (2010a). Geçiş dönemindeki süt ineklerinin beslenmesi I. Bu dönemde görülen fizyolojik, hormonal, metabolik ve immonolojik değişiklikler ile beslenme ihtiyaçları. Kafkas Üniversitesi Veteriner Fakültesi Dergisi, 16(1), 151-158.
  • Arslan, C., & Tufan, T. (2010b). Geçiş dönemindeki süt ineklerinin beslenmesi II. Bu dönemde görülen metabolik hastalıklar ve besleme ile önlenmesi. Kafkas Üniversitesi Veteriner Fakültesi Dergisi, 16(1), 159-166.
  • Aschenbach, J. R., Kristensen, N. B., Donkin, S. S., Hammon, H. M., & Penner, G. B. (2010). Gluconeogenesis in dairy cows: the secret of making sweet milk from sour dough. IUBMB Life, 62(12), 869-877.
  • Atalay, H., & Eseceli, H. (2015). Doğum sonrası yüksek verimli sığırlarda ketozis. Balıkesir ili Damızlık Sığır Yetiştiricileri Birliği Yayınları, 7(27), 37-39.
  • Bauman, D. E., & Griinari, J. M. (2001). Regulation and nutritional manipulation of milk fat: low-fat milk syndrome. Livestock Production Science, 70(1-2), 15-29.
  • Berge, A. C., & Vertenten, G. (2014). A field study to determine the prevalence, dairy herd management systems, and fresh cow clinical conditions associated with ketosis in European dairy herds. Journal of Dairy Science, 97(4), 2145-2154.
  • Bertics, S. J., Grummer, R. R., Cadorniga-Valino, C., & Stoddard, E. E. (1992). Effect of prepartum dry matter intake on liver triglyceride concentration and early lactation. Journal of Dairy Science, 75(7), 1914-1922.
  • Bobe, G., Young, J. W., & Beitz, D. C. (2004). Invited review: pathology, etiology, prevention, and treatment of fatty liver in dairy cows. Journal of Dairy Science, 87(10), 3105-3124.
  • Collard, B. L., Boettcher, P. J., Dekkers, J. M., Petitclerc, D., & Schaeffer, L. R. (2000). Relationships between energy balance and health traits of dairy cattle in early lactation. Journal of Dairy Science, 83(11), 2683-2690.
  • Dann, H. M., Morin, D. E., Bollero, G. A., Murphy, M. R., & Drackley, J. K. (2005). Prepartum intake, postpartum induction of ketosis, and periparturient disorders affect the metabolic status of dairy cows. Journal of Dairy Science, 88(9), 3249-3264.
  • Dann, H. M., Litherland, N. B., Underwood, J. P., Bionaz, M., D’angelo, A., McFadden, J. W., & Drackley, J. K. (2006). Diets during far-off and close-up dry periods affect periparturient metabolism and lactation in multiparous cows. Journal of Dairy Science, 89(9), 3563-3577.
  • Duffield, T. F., Kelton, D. F., Leslie, K. E., Lissemore, K. D., & Lumsden, J. H. (1997). Use of test day milk fat and milk protein to detect subclinical ketosis in dairy cattle in Ontario. Canadian Veterinary Journal, 38(11), 713.
  • De Vries, M. J., Van Der Beek, S., Kaal-Lansbergen, L. M. T. E., Ouweltjes, W., & Wilmink, J. B. M. (1999). Modeling of energy balance in early lactation and the effect of energy deficits in early lactation on first detected estrus postpartum in dairy cows. Journal of Dairy Science, 82(9), 1927-1934.
  • Drackley, J. K. (1999). ADS Foundation Scholar Award Biology Of Dairy Cows During The Transition Period: The Final Frontier. Journal of Dairy Science, 82(11), 2259-2273.
  • Drackley, J. K., Overton, T. R., & Douglas, G. N. (2001). Adaptations of glucose and long-chain fatty acid metabolism in liver of dairy cows during the periparturient period. Journal of Dairy Science, 84, E100-E112.
  • Dubuc, J., Duffield, T. F., Leslie, K. E., Walton, J. S., & LeBlanc, S. J. (2010). Risk factors for postpartum uterine diseases in dairy cows. Journal of Dairy Science, 93(12), 5764-5771.
  • Emery, R. S., Liesman, J. S., & Herdt, T. H. (1992). Metabolism of long chain fatty acids by ruminant liver. Journal of Nutrition, 122, 832-837.
  • Graber, M., Kohler, S., Kaufmann, T., Doherr, M. G., Bruckmaier, R. M., & Van Dorland, H. A. (2010). A field study on characteristics and diversity of gene expression in the liver of dairy cows during the transition period. Journal of Dairy Science, 93(11), 5200-5215.
  • Grummer, R. R., Mashek, D. G., & Hayırlı, A. (2004). Dry matter intake and energy balance in the transition period. Veterinary Clinics: Food Animal Practice, 20(3), 447-470.
  • Grummer, R. R. (2008). Nutritional and management strategies for the prevention of fatty liver in dairy cattle. Veterinary Journal, 176(1), 10-20.
  • Hayırlı, A., Grummer, R. R., Nordheim, E. V., & Crump, P. M. (2002). Animal and dietary factors affecting feed intake during the prefresh transition period in Holsteins. Journal of Dairy Science, 85(12), 3430-3443.
  • Herdt, T. H. (2000). Ruminant adaptation to negative energy balance: Influences on the etiology of ketosis and fatty liver. Veterinary Clinics of North America: Food Animal Practice, 16(2), 215-230.
  • Holtenius, P., Olsson, G., & Björkman, C. (1993). Periparturient concentrations of insulin glucagon and ketone bodies in dairy cows fed two different levels of nutrition and varying concentrate/roughage ratios. Journal of Veterinary Medicine Series A, 40(1‐10), 118-127.
  • Holtenius, P., & Holtenius, K. (1996). New aspects of ketone bodies in energy metabolism of dairy cows: a review. Journal of Veterinary Medicine Series A, 43(1‐10), 579-587.
  • Ingvartsen, K. L., & Andersen, J. B. (2000). Integration of metabolism and intake regulation: a review focusing on periparturient animals. Journal of Dairy Science, 83(7), 1573-1597.
  • Jorritsma, R., Jorritsma, H., Schukken, Y. H., Bartlett, P. C., Wensing, T. H., & Wentink, G. H. (2001). Prevalence and indicators of post partum fatty infiltration of the liver in nine commercial dairy herds in The Netherlands. Livestock Production Science, 68(1), 53-60.
  • Kelley, A. W. (2014). Physiological impacts and lactational performance of dairy cows fed Brown midrib corn silage during dry period through early to midlactation, Master of Science (MS), Utah State University, US, digitalcommons. usu. edu/etd/index.9.html
  • Kleppe, B. B., Aiello, R. J., Grummer, R. R., & Armentano, L. E. (1988). Triglyceride accumulation and very low density lipoprotein secretion by rat and goat hepatocytes in vitro. Journal of Dairy Science, 71(7), 1813-1822.
  • Komatsu, T., Itoh, F., Kushibiki, S., & Hodate, K. (2005). Changes in gene expression of glucose transporters in lactating and nonlactating cows. Journal of Animal Science, 83(3), 557-564.
  • LeBlanc, S. J., Leslie, K. E., & Duffield, T. F. (2005). Metabolic predictors of displaced abomasum in dairy cattle. Journal of Dairy Science, 88(1), 159-170.
  • Leblanc, S. (2010). Monitoring metabolic health of dairy cattle in the transition period. Journal of Reproduction and Development, 56, 29-35.
  • Lomax, M. A., Baird, G. D., Mallinson, C. B., & Symonds, H. W. (1979). Differences between lactating and non-lactating dairy cows in concentration and secretion rate of insulin. Biochemical Journal, 180(2), 281-289.
  • McCarthy, M. M., Yasui, T., Ryan, C. M., Mechor, G. D., & Overton, T. R. (2015). Performance of early-lactation dairy cows as affected by dietary starch and monensin supplementation. Journal of Dairy Science, 98(5), 3335-3350.
  • Mulligan, F. J., O’grady, L., Rice, D. A., & Doherty, M. L. (2006). A herd health approach to dairy cow nutrition and production diseases of the transition cow. Animal Reproduction Science, 96(3-4), 331-353.
  • NASEM 2021 (National Academies of Science, Engineering, and Medicine) Nutrient Requirements of Dairy Cattle, 8th ed., Washington, DC.,US, National Academies Press
  • Nielsen, N. I., & Ingvartsen, K. L. (2004). Propylene glycol for dairy cows: A review of the metabolism of propylene glycol and its effects on physiological parameters, feed intake, milk production and risk of ketosis. Animal Feed Science and Technology, 115(3-4), 191-213.
  • Ospina, P. A., Nydam, D. V., Stokol, T., & Overton, T. R. (2010). Association between the proportion of sampled transition cows with increased nonesterified fatty acids and β-hydroxybutyrate and disease incidence, pregnancy rate, and milk production at the herd level. Journal of Dairy Science, 93(8), 3595-3601.
  • Overton, T. R., & Waldron, M. R. (2004). Nutritional management of transition dairy cows: strategies to optimize metabolic health. Journal of Dairy Science, 87, E105-E119.
  • Pullen, D. L., Liesman, J. S., & Emery, R. S. (1990). A species comparison of liver slice synthesis and secretion of triacylglycerol from nonesterified fatty acids in media. Journal of Animal Science, 68(5), 1395-1399.
  • Rabelo, E., Rezende, R. L., Bertics, S. J., & Grummer, R. R. (2005). Effects of pre-and postfresh transition diets varying in dietary energy density on metabolic status of periparturient dairy cows. Journal of Dairy Science, 88(12), 4375-4383.
  • Reynolds, C. K., Huntington, G. B., Tyrrell, H. F., & Reynolds, P. J. (1988). Net portal-drained visceral and hepatic metabolism of glucose, L-lactate, and nitrogenous compounds in lactating Holstein cows. Journal of Dairy Science, 71(7), 1803-1812.
  • Reynolds, C. K., Aikman, P. C., Lupoli, B., Humphries, D. J., & Beever, D. E. (2003). Splanchnic metabolism of dairy cows during the transition from late gestation through early lactation. Journal of Dairy Science, 86(4), 1201-1217.
  • Rukkwamsuk, T., Kruip, T. A. M., & Wensing, T. (1999). Relationship between overfeeding and overconditioning in the dry period and the problems of high producing dairy cows during the postparturient period. Veterinary Quarterly, 21(3), 71-77.
  • Roche, J. R., Friggens, N. C., Kay, J. K., Fisher, M. W., Stafford, K. J., & Berry, D. P. (2009). Invited review: Body condition score and its association with dairy cow productivity, health, and welfare. Journal of Dairy Science, 92(12), 5769-5801.
  • Serbester, U., Çınar, M., & Hayırlı, A. (2012). Sütçü ineklerde negatif enerji dengesi ve metabolik indikatörleri. Kafkas Üniversitesi Veteriner Fakültesi Dergisi, 18(4).
  • Stockdale, C. R. (2001). Body condition at calving and the performance of dairy cows in early lactation under Australian conditions: a review. Australian Journal of Experimental Agriculture, 41(6), 823-839.
  • Tatone, E. H., Gordon, J. L., Hubbs, J., LeBlanc, S. J., DeVries, T. J., & Duffield, T. F. (2016). A systematic review and meta-analysis of the diagnostic accuracy of point-of-care tests for the detection of hyperketonemia in dairy cows. Preventive Veterinary Medicine, 130, 18-32.
  • Toni, F., Vincenti, L., Grigoletto, L., Ricci, A., & Schukken, Y. H. (2011). Early lactation ratio of fat and protein percentage in milk is associated with health, milk production, and survival. Journal of Dairy Science, 94(4), 1772-1783.
  • Van Dorland, H. A., Richter, S., Morel, I., Doherr, M. G., Castro, N., & Bruckmaier, R. M. (2009). Variation in hepatic regulation of metabolism during the dry period and in early lactation in dairy cows. Journal of Dairy Science, 92(5), 1924-1940.
  • Weber, C., Hametner, C., Tuchscherer, A., Losand, B., Kanitz, E., Otten, W., ... & Hammon, H. M. (2013). Hepatic gene expression involved in glucose and lipid metabolism in transition cows: Effects of fat mobilization during early lactation in relation to milk performance and metabolic changes. Journal of Dairy Science, 96(9), 5670-5681.
  • Zhang, Z., Li, X., Wang, H., Guo, C., Gao, L., Liu, L., ... & Liu, G. (2011). Concentrations of sodium, potassium, magnesium, and iron in the serum of dairy cows with subclinical ketosis. Biological Trace Element Research, 144, 525-528.
Toplam 52 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Veteriner Bilimleri (Diğer)
Bölüm Derleme Makaleler
Yazarlar

Hasan Atalay 0000-0002-5744-7538

Yayımlanma Tarihi 31 Aralık 2024
Gönderilme Tarihi 25 Eylül 2024
Kabul Tarihi 17 Aralık 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 8 Sayı: 3

Kaynak Göster

APA Atalay, H. (2024). The relationship between ketosis and transitional nutritional diseases. Journal of Istanbul Veterinary Sciences, 8(3), 287-293.

Bu dergi Creative Commons attribution 4.0 international  (CC-BY 4.0). lisansı ile lisanslanmıştır.