Research Article
BibTex RIS Cite

Year 2025, Volume: 54 Issue: 5, 1758 - 1773, 29.10.2025
https://doi.org/10.15672/hujms.1563103

Abstract

References

  • [1] R. P. Agarwal and P. J. Y. Wong, Advanced Topics in Difference Equations, Kluwer Academic Publishers Group, Dordrecht, 1997.
  • [2] R. P. Agarwal, Difference Equations and Inequalities: Theory Methods and Applications, Marcel Dekker Inc., New York, 2000.
  • [3] R. P. Agarwal, M. Bohner, S. R. Grace and D. O’Regan, Discrete Oscillation Theory, Hindawi Publishing Corporation, New York, 2005.
  • [4] S. Das, A. K. Tripathy, Oscillation of first order nonautonomous difference syastems of dim-2. (communicated)
  • [5] E. Akin, Limiting behaviour of nonoscillatory solutions for two-dimensional nonlinear time scale systems, Mediterr. J. Math. 14, 1–10, 2017.
  • [6] E. Akin and G. Yeni, Oscillation criteria for four-dimensional time scale systems, Mediterr. J. Math. 15, 1–15, 2018.
  • [7] S. N. Elaydi, An Introduction to Difference Equations, Springer-Verlag, New York, 1996.
  • [8] J. R. Graef and E. Thandapani, Oscillation of two-dimensional difference systems, Comput. Math. Appl. 38, 157–165, 1999.
  • [9] G. A. Grigorian, Oscillatiory criteria for the systems of two first-order linear differential equations, Rocky Mountain J. Math. 47(5), 1497–1524 2017.
  • [10] J. Jiang and X. Tang; Oscillation and asymptotic behaviour of two-dimensional difference systems, Comput. Math. Appl. 54, 1240–1249, 2007.
  • [11] W. T. Li, Classification schemes for nonoscillatory solutons of two-dimensional nonlinear difference systems, Comput. Math. Appl. 42, 341–355, 2001.
  • [12] E. Schmeidel, Oscillation of nonlinear three-dimensional difference systems with delays, Math. Bohem. 135, 163–170, 2010.
  • [13] Z. Sun and H. Qin, The criteria for oscillation of two-dimensional neutral delay dynamical systems on time scales, Fractals, 30, 1–12, 2022 .
  • [14] A. K. Tripathy, Oscillation criteria for first-order systems of linear difference equations, Electron. J. Differential Equations, 2009, 1–11, 2009.
  • [15] A. K. Tripathy, Oscillatory behaviour of a class of nonlinear systems of first order difference equations, Int. J. Difference Equ. 5, 113–127, 2010.
  • [16] A. K. Tripathy, Oscillation criteria for two dimensional linear neutral delay difference systems, Math. Bohem. 148(4), 447–460, 2023.
  • [17] A. K. Tripathy and S. Das, Necessary and sufficient conditions for oscillation of nonlinear neutral difference systems of dim-2, Nonauton. Dyn. Syst. 9, 91–102, 2022.
  • [18] A. K. Tripathy and S. Das, Characterization of first order 2-dim neutral delay difference systems, Differ. Equ. Dyn. Syst. 32(4), 1193–1213, 2024.
  • [19] A. K. Tripathy and S. Das, Oscillation of a class of first order 2-dim functional difference systems, (to appear in Rocky Mountain J. Math.).

On oscillatory first order nonautonomous functional difference systems

Year 2025, Volume: 54 Issue: 5, 1758 - 1773, 29.10.2025
https://doi.org/10.15672/hujms.1563103

Abstract

In this work, an illustrative discussion has been made on sufficient conditions under which all vector solutions of first order 2-dim nonautonomous neutral delay difference systems of the form
$$\Delta \left[%
\begin{array}{c}
u(\theta)+b(\theta)u(\theta-\kappa)\\
v(\theta)+b(\theta)v(\theta-\kappa) \\
\end{array}%
\right]=
\begin{bmatrix}
{ a_{1}(\theta)} \quad a_{2}(\theta) \quad\\
a_{3}(\theta) \quad a_{4}(\theta)\quad \\
\end{bmatrix}
\left[%
\begin{array}{c}
g_1(u(\theta-\gamma))\quad\\
g_2(v(\theta-\eta)) \quad\\
\end{array}%
\right]+\left[%
\begin{array}{cc}
\varphi_1(\theta)\quad\\
\varphi_2(\theta) \quad\\
\end{array}%
\right], \theta\geq\rho$$
are oscillatory, where $\kappa>0,$ $\gamma\geq 0, \eta\geq 0$ are integers, $a_{j}(\theta), j=1,2,3,4, b(\theta), \varphi_{1}(\theta),$ $\varphi_{2}(\theta)$ are sequences of real numbers for $\theta\in\mathbb{N}(\theta_{0})$ and $g_1, g_2\in\mathcal{C}(\mathbb{R}, \mathbb{R})$ are nondecreasing with the properties $\phi g_1(\phi)>0, \psi g_2(\psi)>0$ for $\phi\neq 0, \psi\neq 0.$ We verify our results with the examples.

References

  • [1] R. P. Agarwal and P. J. Y. Wong, Advanced Topics in Difference Equations, Kluwer Academic Publishers Group, Dordrecht, 1997.
  • [2] R. P. Agarwal, Difference Equations and Inequalities: Theory Methods and Applications, Marcel Dekker Inc., New York, 2000.
  • [3] R. P. Agarwal, M. Bohner, S. R. Grace and D. O’Regan, Discrete Oscillation Theory, Hindawi Publishing Corporation, New York, 2005.
  • [4] S. Das, A. K. Tripathy, Oscillation of first order nonautonomous difference syastems of dim-2. (communicated)
  • [5] E. Akin, Limiting behaviour of nonoscillatory solutions for two-dimensional nonlinear time scale systems, Mediterr. J. Math. 14, 1–10, 2017.
  • [6] E. Akin and G. Yeni, Oscillation criteria for four-dimensional time scale systems, Mediterr. J. Math. 15, 1–15, 2018.
  • [7] S. N. Elaydi, An Introduction to Difference Equations, Springer-Verlag, New York, 1996.
  • [8] J. R. Graef and E. Thandapani, Oscillation of two-dimensional difference systems, Comput. Math. Appl. 38, 157–165, 1999.
  • [9] G. A. Grigorian, Oscillatiory criteria for the systems of two first-order linear differential equations, Rocky Mountain J. Math. 47(5), 1497–1524 2017.
  • [10] J. Jiang and X. Tang; Oscillation and asymptotic behaviour of two-dimensional difference systems, Comput. Math. Appl. 54, 1240–1249, 2007.
  • [11] W. T. Li, Classification schemes for nonoscillatory solutons of two-dimensional nonlinear difference systems, Comput. Math. Appl. 42, 341–355, 2001.
  • [12] E. Schmeidel, Oscillation of nonlinear three-dimensional difference systems with delays, Math. Bohem. 135, 163–170, 2010.
  • [13] Z. Sun and H. Qin, The criteria for oscillation of two-dimensional neutral delay dynamical systems on time scales, Fractals, 30, 1–12, 2022 .
  • [14] A. K. Tripathy, Oscillation criteria for first-order systems of linear difference equations, Electron. J. Differential Equations, 2009, 1–11, 2009.
  • [15] A. K. Tripathy, Oscillatory behaviour of a class of nonlinear systems of first order difference equations, Int. J. Difference Equ. 5, 113–127, 2010.
  • [16] A. K. Tripathy, Oscillation criteria for two dimensional linear neutral delay difference systems, Math. Bohem. 148(4), 447–460, 2023.
  • [17] A. K. Tripathy and S. Das, Necessary and sufficient conditions for oscillation of nonlinear neutral difference systems of dim-2, Nonauton. Dyn. Syst. 9, 91–102, 2022.
  • [18] A. K. Tripathy and S. Das, Characterization of first order 2-dim neutral delay difference systems, Differ. Equ. Dyn. Syst. 32(4), 1193–1213, 2024.
  • [19] A. K. Tripathy and S. Das, Oscillation of a class of first order 2-dim functional difference systems, (to appear in Rocky Mountain J. Math.).
There are 19 citations in total.

Details

Primary Language English
Subjects Ordinary Differential Equations, Difference Equations and Dynamical Systems
Journal Section Mathematics
Authors

Sunita Das 0000-0002-1661-3560

Arun Kumar Tripathy 0000-0002-5417-9064

Early Pub Date January 27, 2025
Publication Date October 29, 2025
Submission Date October 7, 2024
Acceptance Date January 12, 2025
Published in Issue Year 2025 Volume: 54 Issue: 5

Cite

APA Das, S., & Tripathy, A. K. (2025). On oscillatory first order nonautonomous functional difference systems. Hacettepe Journal of Mathematics and Statistics, 54(5), 1758-1773. https://doi.org/10.15672/hujms.1563103
AMA Das S, Tripathy AK. On oscillatory first order nonautonomous functional difference systems. Hacettepe Journal of Mathematics and Statistics. October 2025;54(5):1758-1773. doi:10.15672/hujms.1563103
Chicago Das, Sunita, and Arun Kumar Tripathy. “On Oscillatory First Order Nonautonomous Functional Difference Systems”. Hacettepe Journal of Mathematics and Statistics 54, no. 5 (October 2025): 1758-73. https://doi.org/10.15672/hujms.1563103.
EndNote Das S, Tripathy AK (October 1, 2025) On oscillatory first order nonautonomous functional difference systems. Hacettepe Journal of Mathematics and Statistics 54 5 1758–1773.
IEEE S. Das and A. K. Tripathy, “On oscillatory first order nonautonomous functional difference systems”, Hacettepe Journal of Mathematics and Statistics, vol. 54, no. 5, pp. 1758–1773, 2025, doi: 10.15672/hujms.1563103.
ISNAD Das, Sunita - Tripathy, Arun Kumar. “On Oscillatory First Order Nonautonomous Functional Difference Systems”. Hacettepe Journal of Mathematics and Statistics 54/5 (October2025), 1758-1773. https://doi.org/10.15672/hujms.1563103.
JAMA Das S, Tripathy AK. On oscillatory first order nonautonomous functional difference systems. Hacettepe Journal of Mathematics and Statistics. 2025;54:1758–1773.
MLA Das, Sunita and Arun Kumar Tripathy. “On Oscillatory First Order Nonautonomous Functional Difference Systems”. Hacettepe Journal of Mathematics and Statistics, vol. 54, no. 5, 2025, pp. 1758-73, doi:10.15672/hujms.1563103.
Vancouver Das S, Tripathy AK. On oscillatory first order nonautonomous functional difference systems. Hacettepe Journal of Mathematics and Statistics. 2025;54(5):1758-73.