Review
BibTex RIS Cite

Effectiveness of Microbiological Assays as an Alternative Method to Determine the Potency of Antibiotics: A Review

Year 2024, , 153 - 164, 01.06.2024
https://doi.org/10.52794/hujpharm.1354419

Abstract

In this review, chemical and biological assays performed in the pharmaceutical industry to determine the potency and bioactivity of antibiotics are discussed. Though commonly employed chemical methods can measure the potency of antibiotics, inefficiency in estimating the bioactivity is one of their major limitations. Due to their sensitivity and cost-effectiveness, common microbiological assays can serve as alternative methods. Several factors like doses of antibiotics, homogeneity of agar medium, inoculum concentration, the chemical composition of agar media, size and solubility of samples or drug molecules, pH, relative humidity and exposure time can influence microbiological assays. Based on specific requirements and experimental targets, agar diffusion assays are designed focusing on their costs, errors, accuracy and simplicity. To avoid the misuse and overuse of antibiotics that lead to drug-resistance, parameters like zone of inhibition, minimum inhibitory concentration, minimum bactericidal concentration, mutation prevention concentration and critical concentration are also discussed in this study. Finally, microbiological and high-performance liquid chromatography methods were specifically compared for their sensitivity, accuracy and assessment of biological activity with minimal cost. Due to their advantages and disadvantages, parallel use of both bioassays and chemical methods are suggested to precisely determine the potency of antibiotics.

References

  • 1. Glass BD. Counterfeit drugs and medical devices in developing countries. Res Rep Trop Med. 2014; 5:11-22. https://doi.org/10.2147/RRTM.S39354
  • 2. Li J, Xie S, Ahmed S, Wang F, Gu Y, Zhang C, Chai X, et al. Antimicrobial activity and resistance: Influencing factors. Front Pharmacol. 2017;13(8):364. https://doi.org/10.3389/fphar.2017.00364
  • 3. Branson E. Clinical relevance of minimum inhibitory concentration. Aqua Culture. 2001;196(3-4):289-29. doi:10.1016/S00448486(01)005415
  • 4. Zuluaga AF, Agudelo M, Rodriguez CA, Vesga O. Application of microbiological assay to determine pharmaceutical equivalence of generic intravenous antibiotics. BMC Clin Pharmacol. 2009; 9:1. https://doi.org/10.1186/1472-6904-9-1
  • 5. Michaela P, Donaldj K, Georgeg G, Patrickr M. Laboratory evaluation of five assay methods for vancomycin bioassay high-pressure liquid chromatography fluorescence polarization immunoassay radio immune assay and fluorescence immune assay. J Cli Micro. 1984;311-316. doi: 10.1128/jcm.20.3.311-316.1984.
  • 6. Lourenco FR, Barbosa EA, Pinto TJA. Evaluating Measurement Uncertainty in the Microbiological Assay of Vancomycin from Methodology Validation Data. Lat Am J Pharm. 2011;30:554–557.
  • 7. Dafale NA, Agarwal PK, Semwal UP, Singh GN. Development and Validation of Microbial Bioassay for the Quantification of Potency of the Antibiotic Cefuroxime Axetil. Anal Methods. 2013;5:690-698. https://doi.org/10.1039/C2AY25848J
  • 8. Dafale NA, Semwal UP, Agarwal PK, Sharma P, Singh GN. Quantification of Ceftriaxone Sodium in Pharmaceutical Preparations by New Validated Microbiological Bioassay. Anal Methods. 2012;8(4):2490-2498. https://doi.org/10.1039/C2AY25145K
  • 9. Ghisleni DDM, Okamoto RT, Amaral CMO, Lourenco FR. Pinto TJA. An Alternative Capillary Electrophoresis Method for the Quantification of Caspofungin in Lyophilisate Powder and Its Measurement Uncertainty. African J Pharmacy and Pharmacol. 2014;8(40):1025-1032. https://doi.org/10.5897/AJPP2013.3985
  • 10. Pedroso TM, Salgado HRN. Development and validation of a microbiological assay by turbidimetry to determine the potency of cefazolin sodium in the lyophilized powder form. Anal Methods. 2014;6:1391-1396. https://doi.org/10.1039/C3AY41483C
  • 11. Pinto TJA, Lourenco FR, Kaneko TM. Microbiological assay of gentamycin employing an alternative experimental design. AOAC Annual Meeting and Exposition. Anais Anahein-California. 2007;157.
  • 12. Saviano AM, Francisco FL, Lourenco FR. Rational development and validation of a new microbiological assay for Linezolid and its Measurement Uncertainty. Talanta. 2014;127:225-229. https://doi.org/10.1016/j.talanta.2014.04.019
  • 13. Nwose CN, Udobi CE, Onele DU, Asuquo GE. Use of alternative indicator organisms for the microbiological assay of four antibiotics commonly sold in Uyo, Nigeria. European J of Med and Health Sci. 2022; 4(3):112-121. https://doi.org/10.24018/ejmed.2022.4.3.1358
  • 14. Rajia S, Hasan I, Ahmed B, Islam AU. Development and validation of a microbiological assay for the quantification of marketed chloramphenicol eye drop. IOSR-JPBS. 2020;15(3):13-19. https://doi.org/10.9790/3008-1503011319
  • 15. Prescott LM, Harley JP, Klein DA. Microbiology, Seventh ed., Mcgraw-Hill, New York, 2008;835-858.
  • 16. Magaldi S, Mata-ES, Hartung CC. Well diffusion for antifungal susceptibility testing. Int J Infect Dis. 2004;8:39–45. https:// doi.org/10.1016/j.ijid.2003.03.002
  • 17. Valgas C, De Souza SM, Smania EFA, Smania Jr A. Screening methods to determine antibacterial activity of natural products. Braz J Microbiol. 2007;38:369–380. https://doi. org/10.1590/S1517-83822007000200034
  • 18. Vaikosen EN, Origbo SO, Ere D, Odaderia P. Comparative application of biological and ninhydrin derivatized spectrophotometric assays in the evaluation and validation of amikacin sulfate injection. Braz J Pharm Sci. 2022;58: e202285. https://doi.org/10.1590/s217597902022e201185
  • 19. Jahangirian H, Haron MJ, Ismail MHS, Rafiee-Moghaddam R, Afsah-Hejri L, Abdollahi Y, Rezayi M, et al. Well diffusion method for evaluation of antibacterial activity of copper phenyl fattyhydroxamate synthesized from canola and palm kernel oils. Digest J Nanomaterials and Bio. 2013;8(3):1263 – 1270.
  • 20. Kowalska-Krochmal B, Dudek-Wicher R. The minimum inhibitory concentration of antibiotics: methods, interpretation, clinical relevance. Pathogens. 2021;10(2):165. https://doi.org/10.3390/pathogens10020165
  • 21. Hausdorfer E, Sompek E, Allerberger F, Dierich MP, Rusch Gerdes S. E-test for susceptibility testing of mycobacterium tuberculosis. Int J Tuberc Lung Dis. 1998; 2:751–755.
  • 22. Black JG. Microbiology principles and explorations, Sixth ed., John Wiley & Sons Inc.; 2005; 352-384.
  • 23. Dang BN, Graham DY. Helicobacter pylori infection and an- tibiotic resistance: a WHO High Priority. Nat Rev Gastroenterol Hepatol. 2017;383–384. https://doi.org/10.1038/nrgas-tro.2017.57
  • 24. United States Pharmacopoeia, United States pharmacopoeial convention, Rockville, MD, U.S.A, 2009. 86–93.
  • 25. Indian Pharmacopoeia, Indian Pharmacopoeia commission, Ghaziabad, India, 2014, 50–59.
  • 26. British Pharmacopoeia, The Stationary Office, London, 2015;396-402.
  • 27. Salgado HR, Roncari AF. Microbiological assay for the determination of Azithromycin in ophthalmic solutions. Yao Xue Xue Bao. 2005;40(6):544-9.
  • 28. Moreno AH, Conz da Silva MF, Salgado HRN. Stability study of Azithromycin in ophthalmic preparations. Braz J Pharm Sci. 2009;45(2):219-226. https://doi.org/10.1590/S1984- 82502009000200005
  • 29. Costa MCN, Barden AT, Andrade JM, Oppe TP, Schapoval EE. Quantitative evaluation of Besifloxacin ophthalmic suspension by HPLC, application to bioassay method and cytotoxicity studies. Talanta. 2014;119:367–374. https://doi.org/10.1016/j.talanta.2013.10.051
  • 30. Dang PK, Degand G, Danyi S, Pierret G, Delahaut P, Ton VD, Maghuin-Rogister G, et al. Validation of a two-plate microbiological method for screening antibiotic residues in shrimp tissue. Anal Chim Acta. 2010;672(1-2):30-9. https://doi.org/10.1016/j.aca.2010.03.055
  • 31. Huratado FK, Souza MJ, de Melo J, Rolim CMB. Microbiological assay and HPLC method for the determination of Fluconazole in pharmaceutical injectable formulation. Lat Am J Pharm. 2008;27 (2): 224-8
  • 32. Dafale NA, Semwal UP, Agarwal PK, Sharma P, Singh GN. Development and validation of microbial bioassay for quan- tification of Levofloxacin in pharmaceutical preparations. J Pharm Anal. 2015;5(1):18–26. https://doi.org/10.1016/j.jpha.2014.07.007
  • 33. De Haro Moreno A, Salgado HR. Microbiological assay for Ceftazidime injection. J AOAC Int. 2007; 90(5):1379-1382
  • 34. Chierentin L, Salgado HRN. Development and validation of a rapid turbidimetric assay to determine the potency of Norfloxacin in tablets. Braz J Pharma Sci. 2015;51(3):629-635. http://dx.doi.org/10.1590/S1984-82502015000300014
  • 35. Salgado HRN, Lopes CC, Lucchesi MB. Microbiological assay for Gatifloxacin in pharmaceutical formulations. J Pharm Biomed Anal. 2006;40(2):443–446. https://doi.org/10.1016/j.jpba.2005.07.020
  • 36. Cazedey ECL, Salgado HRN. A novel and rapid microbiological assay for ciprofloxacin hydrochloride. J Pharm Anal. 2013,3(5):382-386. https://doi.org/10.1016/j.jpha.2013.03.007.
  • 37. Cazedey ECL, Salgado HRN. Development and validation of a microbiological agar assay for determination of Orbifloxacin in pharmaceutical preparation. Pharmaceutics. 2011,3(3):572-581. https://doi.org/10.3390/pharmaceutics3030572
  • 38. Bhargav HS, Sachin DS, Poornav SP, Darshan KM. Measure- ment of the zone of inhibition of an antibiotic. IEEE 6th International Conference on Advanced Computing. 2016; https://doi.org/10.1109/IACC.2016.82
  • 39. Doern GV, Brecher SM. The clinical predictive value (or Lack Thereof) of the results of In Vitro antimicrobial susceptibility tests. J Clin Microbiol. 2011;49(9):S11–4. https://doi.org/10.1128/JCM.00580-11
  • 40. Struillou L, Cohen Y, Lounis N, Bertrand G, Grosset J, Vilde JL, Pocidalo JJ, et al. Activities of Roxithromycin against Mycobacterium avium infections in human macrophages and C57bl/6 MIC. Antimicrob Agents Chemother. 1995; 39(4):878–881. https://doi.org/10.1128/AAC.39.4.878
  • 41. Hsieh YC, Chang KY, Huang YC, Lin HC, Ho YH, Huang LM, et al. Clonal spread of highly beta-lactam-resistant Streptococcus pneumoniae Isolates in Taiwan. Antimicrob Agents Chemother. 2008;52(6):2266–2269. https://doi.org/10.1128/AAC.00046-08
  • 42. Jagannathan R, Mahadevan PR. Minimum Inhibitory Concentration of drugs against Mycobacterium leprae as determined by an in vitro assay. J Biosci. 1986;10(1):137–144.
  • 43. Guna R, Munoz C, Dominguez V, Garcia-Garcia A, Galvez J, de Julian-Ortiz JV, Borras R. In-vitro activity of Linezolid, Clarithromysin and Moxifloxacin against clinical isolates of Mycobacterium kansaii. J Antimicrob Chemother. 2005;55(6):950–953. https://doi.org/10.1093/jac/dki111
  • 44. Landman D, Bratu S, Alam M, Quale J. Citywide Emergence of Pseudomonas aeruginosa strains with reduced susceptibility to Polymyxin B. J Antimicrob Chemother. 2005;55(6):954–957. https://doi.org/10.1093/jac/dki153
  • 45. Jureen P, Angeby K, Sturegard E, Chryssanthou E, Giske CG, Werngren J, Nordvall M, et al. Wild-type MIC distributions for amino glycoside and cyclic polypeptide antibiotics used for treatment of Mycobacterium tuberculosis infections. J Clin Microbiol. 2010;48(5):1853–1858. https://doi.org/10.1128/JCM.00240-10
  • 46. Shryock TR, White DW, Staples JM, Werner CS. Minimum inhibitory concentration breakpoints and disk diffusion inhibitory zone interpretive criteria for Tilmicosin susceptibility testing against Pasteurella species associated with Bovine respiratory disease. J Vet Diagn Invest. 1996;8(3):337–44. https://doi.org/10.1177/104063879600800310
  • 47. Wexler HM, Lavin PT, Molitoris E, Finegold SM. Statistical analysis of the effects of trial, reader, and replicates on MIC determination for Cefoxitin. Antimicrob Agents Chemother. 1990;34(11):2246-9. https://doi.org/10.1128/AAC.34.11.2246
  • 48. Silva E, Diaz JA, Arias MJ, Hernandez AP, de la Torre A. Comparative in-vitro study of the antimicrobial activities of different commercial antibiotic products for intravenous administration. BMC Clin Pharmacol. 2010;10:3. https://doi. org/10.1186/1472-6904-10-3
  • 49. Doern GV. Antimicrobial use and the emergence of antimicrobial resistance with Streptococcus pneumoniae in the United States. Clin Infect Dis. 2001;33:S187–S192. https://doi.org/10.1086/321847
  • 50. Rodriguez-Melcon C, Alonso-Calleja C, Garcia-Fernandez C, Carballo J, Capita R. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) for twelve antimicrobials (biocides and antibiotics) in eight strains of Listeria monocytogenes. Biology (Basel). 2021;11(1):46. https://doi.org/10.3390/biology11010046
  • 51. Zhao X, Drlica K. Restricting the selection of antibiotic-resistant mutants: A general strategy derived from Fluoroquinolone studies. Clin Infect Dis. 2001;33(3): S147-S156. https://doi.org/10.1086/321841
  • 52. Pasquali F, Manfreda G. Mutant prevention concentration of Ciprofloxacin and Enrofloxacin against Escherichia coli, Salmonella typhimurium and Pseudomonas aeruginosa. Vet Microbiol. 2007;119:304–310. https://doi.org/10.1016/j.vetmic.2006.08.018
  • 53. Blondeau JM, Fitch SD. In vitro killing of canine strains of Staphylococcus pseudintermedius and Escherichia coli by cefazolin, cefovecin, doxycycline and pradofloxacin over a range of bacterial densities. Vet Dermatol. 2020;31:187–e39. https://doi.org/10.1111/vde.12835
  • 54. Drugeon HB, Juvin ME, Caillon J, Courtieu AL. Assessment of formulas for calculating critical concentration by the agar diffusion method. Antimicrob Agents Chemother. 1987;31(6):870–5. https://doi.org/10.1128/AAC.31.6.870
  • 55. Rutala WA, Weber DJ. Disinfection and sterilization in health care facilities: An overview and current issues. Infect Dis Clin North Am. 2016;30(3):609-37. https://doi.org/10.1016/j.idc.2016.04.002
  • 56. Baertschi SW, Pack BW, Hyzer CSH, Nussbaum MA. Assessing mass balance in pharmaceutical drug products: New insights into an old topic. Trends Analyt Chem. 2013; 49:126-136. https://doi.org/10.1016/j.trac.2013.06.006
  • 57. Reddy G, Dagar C, Ramesh T. Development and validatıon of microbıal bioassay for quantificatıon of Cephalexin in pharmaceutical preparatıons. Int Res J Pharm. 2017;8:51-58. https://doi.org/10.7897/2230-8407.08696.
  • 58. Huratado FK, Souza MJ, de Melo J, Rolim CMB. Microbio- logical assay and HPLC method for the determination of Fluconazole in pharmaceutical injectable formulation. Lat Am J Pharm. 2008;27(2): 224-8.
  • 59. Vieira DC, Fiuza TF, Salgado HR. Development and validation of a rapid turbidimetric assay to determine the potency of cefuroxime sodium in powder for dissolution for injection. Pathogens. 2014;3(3):656-66. https://doi.org/10.3390/pathogens3030656
  • 60. Manfio ML, Agarrayua DA, Machado JC, Schmidt CA. A fully validated microbiological assay to evaluate the potency of ceftriaxone sodium, Braz J Pharm Sci. 2013;49(4): 753-762. https://doi.org/10.1590/S1984-82502013000400015
  • 61. Abdelaziz AA, Elbanna TE, Gamaleldeen NM. Validated microbiological and HPLC methods for the determination of moxifloxacin in pharmaceutical preparations and human plasma. Braz J Microbiol. 2012;43(4):1291-1301. https://doi.org/10.1590/S1517-83822012000400008
  • 62. Kumar GA, Ramya V. Quantification of gentamicin by microbial assay technique and reverse phase HPLC. Eur J Exp Biol. 2012;2(6): 2083-2089

Effectiveness of Microbiological Assays as an Alternative Method to Determine the Potency of Antibiotics: A Review

Year 2024, , 153 - 164, 01.06.2024
https://doi.org/10.52794/hujpharm.1354419

Abstract

In this review, chemical and biological assays performed in the pharmaceutical industry to determine the potency and bioactivity of antibiotics are discussed. Though commonly employed chemical methods can measure the potency of antibiotics, inefficiency in estimating the bioactivity is one of their major limitations. Due to their sensitivity and cost-effectiveness, common microbiological assays can serve as alternative methods. Several factors like doses of antibiotics, homogeneity of agar medium, inoculum concentration, the chemical composition of agar media, size and solubility of samples or drug molecules, pH, relative humidity and exposure time can influence microbiological assays. Based on specific requirements and experimental targets, agar diffusion assays are designed focusing on their costs, errors, accuracy and simplicity. To avoid the misuse and overuse of antibiotics that lead to drug-resistance, parameters like zone of inhibition, minimum inhibitory concentration, minimum bactericidal concentration, mutation prevention concentration and critical concentration are also discussed in this study. Finally, microbiological and high-performance liquid chromatography methods were specifically compared for their sensitivity, accuracy and assessment of biological activity with minimal cost. Due to their advantages and disadvantages, parallel use of both bioassays and chemical methods are suggested to precisely determine the potency of antibiotics.

References

  • 1. Glass BD. Counterfeit drugs and medical devices in developing countries. Res Rep Trop Med. 2014; 5:11-22. https://doi.org/10.2147/RRTM.S39354
  • 2. Li J, Xie S, Ahmed S, Wang F, Gu Y, Zhang C, Chai X, et al. Antimicrobial activity and resistance: Influencing factors. Front Pharmacol. 2017;13(8):364. https://doi.org/10.3389/fphar.2017.00364
  • 3. Branson E. Clinical relevance of minimum inhibitory concentration. Aqua Culture. 2001;196(3-4):289-29. doi:10.1016/S00448486(01)005415
  • 4. Zuluaga AF, Agudelo M, Rodriguez CA, Vesga O. Application of microbiological assay to determine pharmaceutical equivalence of generic intravenous antibiotics. BMC Clin Pharmacol. 2009; 9:1. https://doi.org/10.1186/1472-6904-9-1
  • 5. Michaela P, Donaldj K, Georgeg G, Patrickr M. Laboratory evaluation of five assay methods for vancomycin bioassay high-pressure liquid chromatography fluorescence polarization immunoassay radio immune assay and fluorescence immune assay. J Cli Micro. 1984;311-316. doi: 10.1128/jcm.20.3.311-316.1984.
  • 6. Lourenco FR, Barbosa EA, Pinto TJA. Evaluating Measurement Uncertainty in the Microbiological Assay of Vancomycin from Methodology Validation Data. Lat Am J Pharm. 2011;30:554–557.
  • 7. Dafale NA, Agarwal PK, Semwal UP, Singh GN. Development and Validation of Microbial Bioassay for the Quantification of Potency of the Antibiotic Cefuroxime Axetil. Anal Methods. 2013;5:690-698. https://doi.org/10.1039/C2AY25848J
  • 8. Dafale NA, Semwal UP, Agarwal PK, Sharma P, Singh GN. Quantification of Ceftriaxone Sodium in Pharmaceutical Preparations by New Validated Microbiological Bioassay. Anal Methods. 2012;8(4):2490-2498. https://doi.org/10.1039/C2AY25145K
  • 9. Ghisleni DDM, Okamoto RT, Amaral CMO, Lourenco FR. Pinto TJA. An Alternative Capillary Electrophoresis Method for the Quantification of Caspofungin in Lyophilisate Powder and Its Measurement Uncertainty. African J Pharmacy and Pharmacol. 2014;8(40):1025-1032. https://doi.org/10.5897/AJPP2013.3985
  • 10. Pedroso TM, Salgado HRN. Development and validation of a microbiological assay by turbidimetry to determine the potency of cefazolin sodium in the lyophilized powder form. Anal Methods. 2014;6:1391-1396. https://doi.org/10.1039/C3AY41483C
  • 11. Pinto TJA, Lourenco FR, Kaneko TM. Microbiological assay of gentamycin employing an alternative experimental design. AOAC Annual Meeting and Exposition. Anais Anahein-California. 2007;157.
  • 12. Saviano AM, Francisco FL, Lourenco FR. Rational development and validation of a new microbiological assay for Linezolid and its Measurement Uncertainty. Talanta. 2014;127:225-229. https://doi.org/10.1016/j.talanta.2014.04.019
  • 13. Nwose CN, Udobi CE, Onele DU, Asuquo GE. Use of alternative indicator organisms for the microbiological assay of four antibiotics commonly sold in Uyo, Nigeria. European J of Med and Health Sci. 2022; 4(3):112-121. https://doi.org/10.24018/ejmed.2022.4.3.1358
  • 14. Rajia S, Hasan I, Ahmed B, Islam AU. Development and validation of a microbiological assay for the quantification of marketed chloramphenicol eye drop. IOSR-JPBS. 2020;15(3):13-19. https://doi.org/10.9790/3008-1503011319
  • 15. Prescott LM, Harley JP, Klein DA. Microbiology, Seventh ed., Mcgraw-Hill, New York, 2008;835-858.
  • 16. Magaldi S, Mata-ES, Hartung CC. Well diffusion for antifungal susceptibility testing. Int J Infect Dis. 2004;8:39–45. https:// doi.org/10.1016/j.ijid.2003.03.002
  • 17. Valgas C, De Souza SM, Smania EFA, Smania Jr A. Screening methods to determine antibacterial activity of natural products. Braz J Microbiol. 2007;38:369–380. https://doi. org/10.1590/S1517-83822007000200034
  • 18. Vaikosen EN, Origbo SO, Ere D, Odaderia P. Comparative application of biological and ninhydrin derivatized spectrophotometric assays in the evaluation and validation of amikacin sulfate injection. Braz J Pharm Sci. 2022;58: e202285. https://doi.org/10.1590/s217597902022e201185
  • 19. Jahangirian H, Haron MJ, Ismail MHS, Rafiee-Moghaddam R, Afsah-Hejri L, Abdollahi Y, Rezayi M, et al. Well diffusion method for evaluation of antibacterial activity of copper phenyl fattyhydroxamate synthesized from canola and palm kernel oils. Digest J Nanomaterials and Bio. 2013;8(3):1263 – 1270.
  • 20. Kowalska-Krochmal B, Dudek-Wicher R. The minimum inhibitory concentration of antibiotics: methods, interpretation, clinical relevance. Pathogens. 2021;10(2):165. https://doi.org/10.3390/pathogens10020165
  • 21. Hausdorfer E, Sompek E, Allerberger F, Dierich MP, Rusch Gerdes S. E-test for susceptibility testing of mycobacterium tuberculosis. Int J Tuberc Lung Dis. 1998; 2:751–755.
  • 22. Black JG. Microbiology principles and explorations, Sixth ed., John Wiley & Sons Inc.; 2005; 352-384.
  • 23. Dang BN, Graham DY. Helicobacter pylori infection and an- tibiotic resistance: a WHO High Priority. Nat Rev Gastroenterol Hepatol. 2017;383–384. https://doi.org/10.1038/nrgas-tro.2017.57
  • 24. United States Pharmacopoeia, United States pharmacopoeial convention, Rockville, MD, U.S.A, 2009. 86–93.
  • 25. Indian Pharmacopoeia, Indian Pharmacopoeia commission, Ghaziabad, India, 2014, 50–59.
  • 26. British Pharmacopoeia, The Stationary Office, London, 2015;396-402.
  • 27. Salgado HR, Roncari AF. Microbiological assay for the determination of Azithromycin in ophthalmic solutions. Yao Xue Xue Bao. 2005;40(6):544-9.
  • 28. Moreno AH, Conz da Silva MF, Salgado HRN. Stability study of Azithromycin in ophthalmic preparations. Braz J Pharm Sci. 2009;45(2):219-226. https://doi.org/10.1590/S1984- 82502009000200005
  • 29. Costa MCN, Barden AT, Andrade JM, Oppe TP, Schapoval EE. Quantitative evaluation of Besifloxacin ophthalmic suspension by HPLC, application to bioassay method and cytotoxicity studies. Talanta. 2014;119:367–374. https://doi.org/10.1016/j.talanta.2013.10.051
  • 30. Dang PK, Degand G, Danyi S, Pierret G, Delahaut P, Ton VD, Maghuin-Rogister G, et al. Validation of a two-plate microbiological method for screening antibiotic residues in shrimp tissue. Anal Chim Acta. 2010;672(1-2):30-9. https://doi.org/10.1016/j.aca.2010.03.055
  • 31. Huratado FK, Souza MJ, de Melo J, Rolim CMB. Microbiological assay and HPLC method for the determination of Fluconazole in pharmaceutical injectable formulation. Lat Am J Pharm. 2008;27 (2): 224-8
  • 32. Dafale NA, Semwal UP, Agarwal PK, Sharma P, Singh GN. Development and validation of microbial bioassay for quan- tification of Levofloxacin in pharmaceutical preparations. J Pharm Anal. 2015;5(1):18–26. https://doi.org/10.1016/j.jpha.2014.07.007
  • 33. De Haro Moreno A, Salgado HR. Microbiological assay for Ceftazidime injection. J AOAC Int. 2007; 90(5):1379-1382
  • 34. Chierentin L, Salgado HRN. Development and validation of a rapid turbidimetric assay to determine the potency of Norfloxacin in tablets. Braz J Pharma Sci. 2015;51(3):629-635. http://dx.doi.org/10.1590/S1984-82502015000300014
  • 35. Salgado HRN, Lopes CC, Lucchesi MB. Microbiological assay for Gatifloxacin in pharmaceutical formulations. J Pharm Biomed Anal. 2006;40(2):443–446. https://doi.org/10.1016/j.jpba.2005.07.020
  • 36. Cazedey ECL, Salgado HRN. A novel and rapid microbiological assay for ciprofloxacin hydrochloride. J Pharm Anal. 2013,3(5):382-386. https://doi.org/10.1016/j.jpha.2013.03.007.
  • 37. Cazedey ECL, Salgado HRN. Development and validation of a microbiological agar assay for determination of Orbifloxacin in pharmaceutical preparation. Pharmaceutics. 2011,3(3):572-581. https://doi.org/10.3390/pharmaceutics3030572
  • 38. Bhargav HS, Sachin DS, Poornav SP, Darshan KM. Measure- ment of the zone of inhibition of an antibiotic. IEEE 6th International Conference on Advanced Computing. 2016; https://doi.org/10.1109/IACC.2016.82
  • 39. Doern GV, Brecher SM. The clinical predictive value (or Lack Thereof) of the results of In Vitro antimicrobial susceptibility tests. J Clin Microbiol. 2011;49(9):S11–4. https://doi.org/10.1128/JCM.00580-11
  • 40. Struillou L, Cohen Y, Lounis N, Bertrand G, Grosset J, Vilde JL, Pocidalo JJ, et al. Activities of Roxithromycin against Mycobacterium avium infections in human macrophages and C57bl/6 MIC. Antimicrob Agents Chemother. 1995; 39(4):878–881. https://doi.org/10.1128/AAC.39.4.878
  • 41. Hsieh YC, Chang KY, Huang YC, Lin HC, Ho YH, Huang LM, et al. Clonal spread of highly beta-lactam-resistant Streptococcus pneumoniae Isolates in Taiwan. Antimicrob Agents Chemother. 2008;52(6):2266–2269. https://doi.org/10.1128/AAC.00046-08
  • 42. Jagannathan R, Mahadevan PR. Minimum Inhibitory Concentration of drugs against Mycobacterium leprae as determined by an in vitro assay. J Biosci. 1986;10(1):137–144.
  • 43. Guna R, Munoz C, Dominguez V, Garcia-Garcia A, Galvez J, de Julian-Ortiz JV, Borras R. In-vitro activity of Linezolid, Clarithromysin and Moxifloxacin against clinical isolates of Mycobacterium kansaii. J Antimicrob Chemother. 2005;55(6):950–953. https://doi.org/10.1093/jac/dki111
  • 44. Landman D, Bratu S, Alam M, Quale J. Citywide Emergence of Pseudomonas aeruginosa strains with reduced susceptibility to Polymyxin B. J Antimicrob Chemother. 2005;55(6):954–957. https://doi.org/10.1093/jac/dki153
  • 45. Jureen P, Angeby K, Sturegard E, Chryssanthou E, Giske CG, Werngren J, Nordvall M, et al. Wild-type MIC distributions for amino glycoside and cyclic polypeptide antibiotics used for treatment of Mycobacterium tuberculosis infections. J Clin Microbiol. 2010;48(5):1853–1858. https://doi.org/10.1128/JCM.00240-10
  • 46. Shryock TR, White DW, Staples JM, Werner CS. Minimum inhibitory concentration breakpoints and disk diffusion inhibitory zone interpretive criteria for Tilmicosin susceptibility testing against Pasteurella species associated with Bovine respiratory disease. J Vet Diagn Invest. 1996;8(3):337–44. https://doi.org/10.1177/104063879600800310
  • 47. Wexler HM, Lavin PT, Molitoris E, Finegold SM. Statistical analysis of the effects of trial, reader, and replicates on MIC determination for Cefoxitin. Antimicrob Agents Chemother. 1990;34(11):2246-9. https://doi.org/10.1128/AAC.34.11.2246
  • 48. Silva E, Diaz JA, Arias MJ, Hernandez AP, de la Torre A. Comparative in-vitro study of the antimicrobial activities of different commercial antibiotic products for intravenous administration. BMC Clin Pharmacol. 2010;10:3. https://doi. org/10.1186/1472-6904-10-3
  • 49. Doern GV. Antimicrobial use and the emergence of antimicrobial resistance with Streptococcus pneumoniae in the United States. Clin Infect Dis. 2001;33:S187–S192. https://doi.org/10.1086/321847
  • 50. Rodriguez-Melcon C, Alonso-Calleja C, Garcia-Fernandez C, Carballo J, Capita R. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) for twelve antimicrobials (biocides and antibiotics) in eight strains of Listeria monocytogenes. Biology (Basel). 2021;11(1):46. https://doi.org/10.3390/biology11010046
  • 51. Zhao X, Drlica K. Restricting the selection of antibiotic-resistant mutants: A general strategy derived from Fluoroquinolone studies. Clin Infect Dis. 2001;33(3): S147-S156. https://doi.org/10.1086/321841
  • 52. Pasquali F, Manfreda G. Mutant prevention concentration of Ciprofloxacin and Enrofloxacin against Escherichia coli, Salmonella typhimurium and Pseudomonas aeruginosa. Vet Microbiol. 2007;119:304–310. https://doi.org/10.1016/j.vetmic.2006.08.018
  • 53. Blondeau JM, Fitch SD. In vitro killing of canine strains of Staphylococcus pseudintermedius and Escherichia coli by cefazolin, cefovecin, doxycycline and pradofloxacin over a range of bacterial densities. Vet Dermatol. 2020;31:187–e39. https://doi.org/10.1111/vde.12835
  • 54. Drugeon HB, Juvin ME, Caillon J, Courtieu AL. Assessment of formulas for calculating critical concentration by the agar diffusion method. Antimicrob Agents Chemother. 1987;31(6):870–5. https://doi.org/10.1128/AAC.31.6.870
  • 55. Rutala WA, Weber DJ. Disinfection and sterilization in health care facilities: An overview and current issues. Infect Dis Clin North Am. 2016;30(3):609-37. https://doi.org/10.1016/j.idc.2016.04.002
  • 56. Baertschi SW, Pack BW, Hyzer CSH, Nussbaum MA. Assessing mass balance in pharmaceutical drug products: New insights into an old topic. Trends Analyt Chem. 2013; 49:126-136. https://doi.org/10.1016/j.trac.2013.06.006
  • 57. Reddy G, Dagar C, Ramesh T. Development and validatıon of microbıal bioassay for quantificatıon of Cephalexin in pharmaceutical preparatıons. Int Res J Pharm. 2017;8:51-58. https://doi.org/10.7897/2230-8407.08696.
  • 58. Huratado FK, Souza MJ, de Melo J, Rolim CMB. Microbio- logical assay and HPLC method for the determination of Fluconazole in pharmaceutical injectable formulation. Lat Am J Pharm. 2008;27(2): 224-8.
  • 59. Vieira DC, Fiuza TF, Salgado HR. Development and validation of a rapid turbidimetric assay to determine the potency of cefuroxime sodium in powder for dissolution for injection. Pathogens. 2014;3(3):656-66. https://doi.org/10.3390/pathogens3030656
  • 60. Manfio ML, Agarrayua DA, Machado JC, Schmidt CA. A fully validated microbiological assay to evaluate the potency of ceftriaxone sodium, Braz J Pharm Sci. 2013;49(4): 753-762. https://doi.org/10.1590/S1984-82502013000400015
  • 61. Abdelaziz AA, Elbanna TE, Gamaleldeen NM. Validated microbiological and HPLC methods for the determination of moxifloxacin in pharmaceutical preparations and human plasma. Braz J Microbiol. 2012;43(4):1291-1301. https://doi.org/10.1590/S1517-83822012000400008
  • 62. Kumar GA, Ramya V. Quantification of gentamicin by microbial assay technique and reverse phase HPLC. Eur J Exp Biol. 2012;2(6): 2083-2089
There are 62 citations in total.

Details

Primary Language English
Subjects Pharmaceutical Analytical Chemistry, Pharmaceutical Microbiology, Basic Pharmacology
Journal Section Review Articles
Authors

Sultana Rajia 0000-0003-2239-9625

Yuki Fujii 0000-0001-6408-9620

Sarkar M. A. Kawsar 0000-0001-7964-9117

Yasuhiro Ozeki 0000-0002-2782-6158

Md. Sarwar Jahan 0009-0000-1092-1266

Imtiaj Hasan 0000-0002-4715-9022

Publication Date June 1, 2024
Acceptance Date May 28, 2024
Published in Issue Year 2024

Cite

Vancouver Rajia S, Fujii Y, Kawsar SMA, Ozeki Y, Jahan MS, Hasan I. Effectiveness of Microbiological Assays as an Alternative Method to Determine the Potency of Antibiotics: A Review. HUJPHARM. 2024;44(2):153-64.