Review
BibTex RIS Cite

Biomarkers in Breast Cancer Epigenetics: Effect of Environmental Factors

Year 2024, , 165 - 181, 01.06.2024
https://doi.org/10.52794/hujpharm.1424049

Abstract

Breast cancer is one of the leading causes of cancer-related deaths in women worldwide. Breast cancer has been associated with many risk factors like hormonal, genetics and lifestyle. However, emerging evidence highlights the significant role of environmental pollutants as a risk factor in breast cancer development. Especially some environmental pollutants can change gene expression through epigenetic mechanisms like DNA methylation, histone modification and micro-RNA changes. Epigenetic biomarkers from environmental pollutants may aid early diagnosis and prognosis in breast cancer. Nowadays, microRNAs are used as new biomarkers in breast cancer research. The ability to isolate from tissue, whole blood, serum and plasma and the ease of use as a biomarker has made miRNAs an important diagnostic tool. This review aims to shed light on the relationship between epigenetic biomarkers observed to change due to exposure to environmental pollutants and the risk of breast cancer. In this review the effects of environmental pollutants such as aryl hydrocarbon receptor agonists (dioxins, polychlorinated biphenyls, polycyclic aromatic hydrocarbons), phthalates, bisphenol A, and arsenic on epigenetic mechanisms is focused. It is thought that environmental exposures will decrease and personalized preventive strategies can be developed with the increase in epigenetic researches in breast cancer cases.

References

  • 1. Moslehi R, Freedman E, Zeinomar N, Veneroso C, Levine PH. Importance of hereditary and selected environmental risk factors in the etiology of inflammatory breast cancer: a case-comparison study. BMC Canc. 2016;16:334. https://doi.org/10.1186/s12885-016-2369-z
  • 2. Knower KC, To SQ, Leung YK, Ho SM, Clyne CD. Endocrine disruption of the epigenome: a breast cancer link. Endocr Relat Cancer. 2014;21(2):T33-T55. https://doi.org/10.1530/ERC-13-0513
  • 3. Moslehi R, Stagnar C, Srinivasan S, Radziszowski P, Carpenter DO. The possible role of arsenic and gene-arsenic interactions in susceptibility to breast cancer: a systematic review. Rev Environ Health. 2021;36(4):523-534. https://doi.org/10.1515/reveh-2020-0080
  • 4. Park HL. Epigenetic biomarkers for environmental exposures and personalized breast cancer prevention. Int J Environ Res Public Health. 2020;17(4):1181. https://doi.org/10.3390/ijerph17041181
  • 5. Buocikova V, Rios-Mondragon I, Pilalis E, Chatziioannou A, Miklikova S, Mego M, et al. Epigenetics in breast cancer therapy—New strategies and future nanomedicine perspectives. Cancers. 2020;12(12):3622. https://doi.org/10.3390/cancers12123622
  • 6. Sharavanan VJ, Sivaramakrishnan M, Sivarajasekar N, Senthilrani N, Kothandan R, Dhakal N, et al. Pollutants inducing epigenetic changes and diseases. Environ Chem Lett. 2020;18:325-343. https://doi.org/10.1007/s10311-01900944-3
  • 7. Thakur C, Qiu Y, Fu Y, Bi Z, Zhang W, Ji H, et al. Epigenetics and environment in breast cancer: New paradigms for anticancer therapies. Front Oncol. 2022;12:971288. https://doi.org/10.3389/fonc.2022.971288
  • 8. Evron E, Dooley WC, Umbricht CB, Rosenthal D, Sacchi N, Gabrielson E, et al. Detection of breast cancer cells in ductal lavage fluid by methylation specific PCR. Lancet. 2001;357(9265):1335–1336. https://doi.org/10.1016/S01406736(00)045013
  • 9. Krassenstein R, Sauter E, Dulaimi E, Battagli C, Ehya H, Klein-Szanto A, et al. Detection of breast cancer in nipple aspirate fluid by CpG island hypermethylation. Clin Cancer Res. 2004;10(1):28–32. https://doi.org/10.1158/1078-0432.ccr0410-3
  • 10. Silva JM, Garcia JM, Dominguez G, Silva J, Miralles C, Cantos B, et al. Persistence of tumor DNA in plasma of breast cancer patients after mastectomy. Ann Surg Oncol. 2002;9(1):71–76. https://doi.org/10.1245/aso.2002.9.1.71
  • 11. Dulaimi E, Hillinck J, de Caceres II, Al-Saleem T, Cairns P. Tumor suppressor gene promoter hypermethylation in serum of breast cancer patients. Clin Cancer Res. 2004;10(18): 6189–6193. https://doi.org/10.1158/1078-0432.CCR-04-0597
  • 12. Kapoor-Vazirani P, Kagey JD, Powell DR, Vertino PM. Role of hMOF-dependent histone H4 lysine 16 acetylation in the maintenance of TMS1/ASC gene activity. Cancer Res. 2008;68(16):6810-6821. https://doi.org/10.1158/0008-5472.CAN-08-0141
  • 13. Yang X, Karuturi RM, Sun F, Aau M, Yu K, Shao R, et al. CDKN1C (p57) is a direct target of EZH2 and suppressed by multiple epigenetic mechanisms in breast cancer cells. PLoS One. 2009;4(4):e5011. https://doi.org/10.1371/journal.pone.0005011
  • 14. Christodoulatos GS, Dalamaga M. Micro-RNAs as clinical bi- omarkers and therapeutic targets in breast cancer: quo vadis?. World J Clin Oncol. 2014;5(2):71–81. https://doi.org/10.5306/wjco.v5.i2.71
  • 15. Mattiske S, Suetani RJ, Neilsen PM, Callen DF. The oncogenic role of miR-155 in breast cancer. Cancer Epidemiol Biomarkers Prev. 2012;21(8):1236-1243. https://doi.org/10.1158/1055-9965.EPI-120173
  • 16. Corcoran C, Friel AM, Duffy MJ, Crown J, O’Driscoll L. Intracellular and extracellular microRNAs in breast cancer. Clin Chem. 2011;57(1):18-32. https://doi.org/10.1373/clinc-hem.2010.150730
  • 17. Zhang H, Cai K, Wang J, Wang X, Cheng K, Shi F, et al. MiR-7, inhibited indirectly by lincRNA HOTAIR, directly inhibits SETDB1 and reverses the EMT of breast cancer stem cells by downregulating the STAT3 pathway. Stem Cells. 2014;32(11):2858–2868. https://doi.org/10.1002/stem.1795
  • 18. Yu N, Huangyang P, Yang X, Han X, Yan R, Jia H, et al. MicroRNA-7 suppresses the invasive potential of breast cancer cells and sensitizes cells to DNA damages by targeting histone methyltransferase SET8. J Biol Chem. 2013;288(27):19633–19642. https://doi.org/10.1074/jbc.M113.475657
  • 19. Ahmad A, Ginnebaugh KR, Yin S, Bollig-Fischer A, Reddy KB, Sarkar FH. Functional role of miR-10b in tamoxifen resistance of ER-positive breast cancer cells through down- regulation of HDAC4. BMC Cancer. 2015;15(1):540. https://doi.org/10.1186/s12885-015-1561-x
  • 20. Ma L, Teruya-Feldstein J, Weinberg RA. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature. 2007;449(7163):682–688. https://doi.org/10.1038/nature06174
  • 21. Ao X, Nie P, Wu B, Xu W, Zhang T, Wang S, et al. Decreased expression of microRNA-17 and microRNA-20b promotes breast cancer resistance to taxol therapy by upregulation of NCOA3. Cell Death Dis. 2016;7(11):e2463. https://doi.org/10.1038/cddis.2016.367
  • 22. Hossain A, Kuo MT, Saunders GF. Mir-17-5p regulates breast cancer cell proliferation by inhibiting translation of AIB1 mRNA. Mol Cell Biol. 2006;26(21):8191–8201. https://doi.org/10.1128/MCB.00242-06
  • 23. Zhu S, Si ML, Wu H, Mo YY. MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). J Biol Chem. 2007;282(19):14328–14336. https://doi.org/10.1074/jbc.M611393200
  • 24. Frankel LB, Christoffersen NR, Jacobsen A, Lindow M, Krogh A, Lund AH. Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J Biol Chem. 2008;283(2):1026–1033. https://doi.org/10.1074/jbc.M707224200
  • 25. Qi L, Bart J, Tan LP, Platteel I, Sluis Tvd, Huitema S, et al. Expression of miR-21 and its targets (PTEN, PDCD4, TM1) in flat epithelial atypia of the breast in relation to ductal carcinoma in situ and invasive carcinoma. BMC Cancer. 2009;9:163. https://doi.org/10.1186/1471-2407-9-163
  • 26. Wang B, Li D, Filkowski J, Rodriguez-Juarez R, Storozynsky Q, Malach M, et al. A dual role of miR-22 modulated by RelA/ p65 in resensitizing fulvestrant-resistant breast cancer cells to fulvestrant by targeting FOXP1 and HDAC4 and constitutive acetylation of p53 at Lys382. Oncogenesis. 2018;7(7):54. https://doi.org/10.1038/s41389-018-0063-5
  • 27. Pandey P, Zhang Y, Zhang S, Li Y, Tucker-Kellog G, Yang H, et al. TIP60-miR-22 axis as a prognostic marker of breast cancer progression. Oncotarget. 2015;6(38):41290–41306. https://doi.org/10.18632/oncotarget.5636
  • 28. Song SJ, Poliseno L, Song MS, Ala U, Webster K, Ng C, et al. MicroRNA-antagonism regulates breast cancer stemness and metastasis via TET-family-dependent chromatin remodeling. Cell. 2013;154(2):311–324. https://doi.org/10.1016/j.cell.2013.06.026
  • 29. Shao P, Liu Q, Maina PK, Cui J, Bair TB, Li T, et al. Histone demethylase PHF8 promotes epithelial to mesenchymal transition and breast tumorigenesis. Nucleic Acids Res. 2017;45(4):1687–1702. https://doi.org/10.1093/nar/gkw1093
  • 30. Zhou Y, Hu Y, Yang M, Jat P, Li K, Lombardo Y, et al. The miR-106b~25 cluster promotes bypass of doxorubicin-induced senescence and increase in motility and invasion by targeting the E-cadherin transcriptional activator EP300. Cell Death Differ. 2014;21(3):462–474. https://doi.org/10.1038/cdd.2013.167
  • 31. Zhang B, Liu XX, He JR, Zhou CX, Guo M, He M, et al. Pathologically decreased miR-26a antagonizes apoptosis and facilitates carcinogenesis by targeting MTDH and EZH2 in breast cancer. Carcinogenesis. 2011;32(1):2–9. https://doi.org/10.1093/carcin/bgq209
  • 32. Pei YF, Lei Y, Liu XQ. MiR-29a promotes cell proliferation and EMT in breast cancer by targeting ten eleven translocation 1. Biochim. Biophys. Acta. 2016;1862(11):2177–2185. https://doi.org/10.1016/j.bbadis.2016.08.014
  • 33. Valastyan S, Reinhardt F, Benaich N, Calogrias D, Szász AM, Wang ZC, et al. A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis. Cell. 2009;137(6):1032–1046. https://doi.org/10.1016/j.cell.2009.03.047
  • 34. Wu MY, Fu J, Xiao X, Wu J, Wu RC. MiR-34a regulates therapy resistance by targeting HDAC1 and HDAC7 in breast cancer. Cancer Lett. 2014;354(2):311–319. https://doi.org/10.1016/j.canlet.2014.08.031
  • 35. O’Day E, Lal A. MicroRNAs and their target gene networks in breast cancer. Breast Cancer Res. 2010;12(2):201. https://doi.org/10.1186/bcr2484
  • 36. Ma W, Xiao GG, Mao J, Lu Y, Song B, Wang L, et al. Dysregulation of the miR-34a-SIRT1 axis inhibits breast cancer stemness. Oncotarget. 2015;6(12):10432–10444. https://doi.org/10.18632/oncotarget.3394
  • 37. Liu F, Sang M, Meng L, Gu L, Liu S, Li J, et al. MiR92b promotes autophagy and suppresses viability and invasion in breast cancer by targeting EZH2. Int J Oncol. 2018;53(4):1505-1515. https://doi.org/10.3892/ijo.2018.4486
  • 38. Varambally S, Cao Q, Mani RS, Shankar S, Wang X, Ateeq B, et al. Genomic Loss of microRNA-101 Leads to Overexpression of Histone Methyltransferase EZH2 in Cancer. Science. 2008;322(5908):1695–1699. https://doi.org/10.1126/science.1165395
  • 39. Hsieh TH, Hsu CY, Tsai CF, Long CY, Chai CY, Hou MF, et al. MiR-125a-5p is a prognostic biomarker that targets HDAC4 to suppress breast tumorigenesis. Oncotarget. 2014;6(1):494–509. https://doi.org/10.18632/oncotarget.2674
  • 40. Adlakha YK, Saini N. miR-128 exerts pro-apoptotic effect in a p53 transcription-dependent and -independent manner via PUMA-Bak axis. Cell Death Dis. 2013;4(3):e542. https://doi.org/10.1038/cddis.2013.46
  • 41. Eedunuri VK, Rajapakshe K, Fiskus W, Geng C, Chew SA, Foley C, et al. miR-137 Targets p160 Steroid Receptor Co-activators SRC1, SRC2, and SRC3 and Inhibits Cell Proliferation. Mol Endocrinol. 2015;29(8):1170–1183. https://doi.org/10.1210/me.2015-1080
  • 42. Wang K, Yang F, Men X, Li G, Sun C. MiR-138 suppresses EMT through degradation KDM6B in breast carcinoma. Int J Clin Exp Med. 2016;9:4724–4733.
  • 43. Ng EK, Li R, Shin VY, Siu JM, Ma ES, Kwong A. MicroRNA-143 is downregulated in breast cancer and regulates DNA methyltransferases 3A in breast cancer cells. Tumour Biol. 2014;35(3):2591–2598. https://doi.org/10.1007/s13277-013-1341-7
  • 44. Elhelbawy NG, Zaid IF, Khalifa AA, Gohar SF, Fouda EA. miRNA-148a and miRNA-30c expressions as potential biomarkers in breast cancer patients. Biochem Biophys Rep. 2021;27:101060. https://doi.org/10.1016/j.bbrep.2021.101060
  • 45. Xu Q, Jiang Y, Yin Y, Li Q, He J, Jing Y, et al. A regulatory circuit of miR-148a/152 and DNMT1 in modulating cell transformation and tumor angiogenesis through IGF-IR and IRS1. J Mol Cell Biol. 2013;5(1):3–13. https://doi.org/10.1093/jmcb/mjs049
  • 46. Kong W, Yang H, He L, Zhao J-j, Coppola D, Dalton WS, et al. MicroRNA-155 is regulated by the transforming growth factor beta/Smad pathway and contributes to epithelial cell plasticity by targeting RhoA. Mol Cell Biol. 2008;28(22):6773–6784. https://doi.org/10.1128/MCB.00941-08
  • 47. Tang H, Liu P, Yang L, Xie X, Ye F, Wu M, et al. miR-185 suppresses tumor proliferation by directly targeting E2F6 and DNMT1 and indirectly upregulating BRCA1 in triple-negative breast cancer. Mol Cancer Ther. 2014;13(12):3185–3197. https://doi.org/10.1158/1535-7163.MCT-14-0243
  • 48. Derfoul A, Juan AH, Difilippantonio MJ, Palanisamy N, Ried T, Sartorelli V. Decreased microRNA-214 levels in breast cancer cells coincides with increased cell proliferation, invasion and accumulation of the Polycomb Ezh2 methyltransferase. Carcinogenesis. 2011;32(11):1607–1614. https://doi.org/10.1093/carcin/bgr184
  • 49. Eades G, Yao Y, Yang M, Zhang Y, Chumsri S, Zhou Q. miR- 200a regulates SIRT1 expression and epithelial to mesenchymal transition (EMT)-like transformation in mammary epithelial cells. J Biol Chem. 2011;286(29):25992–26002. https://doi.org/10.1074/jbc.M111.229401
  • 50. Pang Y, Liu J, Li X, Xiao G, Wang H, Yang G, et al. MYC and DNMT3A-mediated DNA methylation represses microRNA-200b in triple negative breast cancer. J Cell Mol Med. 2018;22(12):6262–6274. https://doi.org/10.1111/jcmm.13916
  • 51. Iliopoulos D, Lindahl-Allen M, Polytarchou C, Hirsch HA, Tsichlis PN, Struhl K. Loss of miR-200 inhibition of Suz12 leads to polycomb-mediated repression required for the formation and maintenance of cancer stem cells. Mol Cell. 2010;39(5):761–772. https://doi.org/10.1016/j.molcel.2010.08.013
  • 52. Adams BD, Furneaux H, White BA. The micro-ribonucleic acid (miRNA) miR-206 targets the human estrogen receptor- alpha (ERalpha) and represses ERalpha messenger RNA and protein expression in breast cancer cell lines. Mol Endocri- nol. 2007;21(5):1132–1147. https://doi.org/10.1210/me.2007-0022
  • 53. Chen LL, Zhang ZJ, Yi ZB, Li JJ. MicroRNA-211-5p suppresses tumour cell proliferation, invasion, migration and metastasis in triple-negative breast cancer by directly targeting SETBP1. Br J Cancer. 2017;117(1):78–88. https://doi.org/10.1038/bjc.2017.150
  • 54. Roscigno G, Quintavalle C, Donnarumma E, Puoti I, Di- az-Lagares A, Iaboni M, et al. Mir-221 promotes stemness of breast cancer cells by targeting DNMT3b. Oncotarget. 2015;7(1):580–592. https://doi.org/10.18632/oncotarget.5979
  • 55. Shi Z, Li Y, Qian X, Hu Y, Liu J, Zhang S, et al. MiR-340 Inhibits Triple-Negative Breast Cancer Progression by Reversing EZH2 Mediated miRNAs Dysregulated Expressions. J Cancer. 2017;8(15):3037–3048. https://doi.org/10.7150/jca.19315
  • 56. Weng C, Nguyen T, Shively JE. miRNA-342 Regulates CEACAM1-induced Lumen Formation in a Three-dimensional Model of Mammary Gland Morphogenesis. J Biol Chem. 2016;291(32):16777–16786. https://doi.org/10.1074/jbc.M115.710152
  • 57. Huang Q, Gumireddy K, Schrier M, le Sage C, Nagel R, Nair S, et al. The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nat Cell Biol. 2008;10(2):202-210. https://doi.org/10.1038/ncb1681
  • 58. Wu M, Fan B, Guo Q, Li Y, Chen R, Lv N, et al. Knockdown of SETDB1 inhibits breast cancer progression by miR-381-3p-related regulation. Biol Res. 2018;51(1):39. https://doi.org/10.1186/s40659-018-0189-0
  • 59. Bamodu OA, Huang WC, Lee WH, Wu A, Wang LS, Hsiao M, et al. Aberrant KDM5B expression promotes aggressive breast cancer through MALAT1 overexpression and downregulation of hsa-miR-448. BMC Cancer. 2016;16(1):160. https://doi.org/10.1186/s12885-016-2108-5
  • 60. Romagnolo DF, Daniels KD, Grunwald JT, Ramos SA, Propper CR, Selmin OI. Epigenetics of breast cancer: Modifying role of environmental and bioactive food compounds. Mol Nutr Food Res. 2016;60(6):1310-1329. https://doi.org/10.1002/mnfr.201501063
  • 61. Sweeney C, Lazennec G, Vogel CF. Environmental exposure and the role of AhR in the tumor microenvironment of breast cancer. Front Pharmacol. 2022;13:1095289. https://doi.org/10.3389/fphar.2022.1095289
  • 62. Eltom SE, Gasmelseed AA, Saoudi-Guentri D. The aryl hydrocarbon receptor is over-expressed and constitutively activated in advanced breast carcinoma. Cancer Res. 2006;66(8_Supp- lement):408.
  • 63. Schlezinger JJ, Liu D, Farago M, Seldin DC, Belguise K, Sonenshein GE, et al. A role for the aryl hydrocarbon receptor in mammary gland tumorigenesis. Biol Chem. 2006;387(9):1175- 1187. https://doi.org/10.1515/BC.2006.145
  • 64. Del Pup L, Mantovani A, Cavaliere C, Facchini G, Luce A, Sperlongano P, et al. Carcinogenetic mechanisms of endocrine disruptors in female cancers. Oncol Rep. 2016;36(2):603-612. https://doi.org/10.3892/or.2016.4886
  • 65. Tsuchiya Y, Nakajima M, Takagi S, Taniya T, Yokoi T. MicroRNA regulates the expression of human cytochrome P450 1B1. Cancer Res. 2006;66(18):9090-9098. https://doi.org/10.1158/0008-5472.CAN-06-1403
  • 66. Papoutsis AJ, Borg JL, Selmin OI, Romagnolo DF. BRCA-1 promoter hypermethylation and silencing induced by the aromatic hydrocarbon receptor-ligand TCDD are prevented by resveratrol in MCF-7 cells. J Nutr Biochem. 2012;23(10):1324-1332. https://doi.org/10.1016/j.jnutbio.2011.08.001
  • 67. Beedanagari SR, Taylor RT, Bui P, Wang F, Nickerson DW, Hankinson O. Role of epigenetic mechanisms in differential regulation of the dioxin-inducible human CYP1A1 and CYP1B1 genes. Mol Pharmacol. 2010;78(4):608-616. https://doi.org/10.1124/mol.110.064899
  • 68. Donovan MG, Selmin OI, Romagnolo DF. Focus: Nutrition and Food Science: Aryl Hydrocarbon Receptor Diet and Breast Cancer Risk. Yale J Biol Med. 2018;91(2):105-127.
  • 69. Jeffy BD, Chirnomas RB, Romagnolo DF. Epigenetics of breast cancer: polycyclic aromatic hydrocarbons as risk factors. Environ Mol Mutagen. 2002;39(2-3):235-244. https://doi.org/10.1002/em.10051
  • 70. Romagnolo DF, Papoutsis AJ, Laukaitis C, Selmin OI. Constitutive expression of AhR and BRCA-1 promoter CpG hypermethylation as biomarkers of ERα-negative breast tumorigenesis. BMC Cancer. 2015;15:1026. https://doi.org/10.1186/s12885-015-2044-9
  • 71. Miret NV, Pontillo CA, Buján S, Chiappini FA, Randi AS. Mechanisms Of Breast Cancer Progression Induced BY Environment-Polluting ARYL Hydrocarbon Receptor Agonists. Biochem Pharmacol. 2023;216:115773. https://doi.org/10.1016/j.bcp.2023.115773
  • 72. Sahay D, Terry MB, Miller R. Is breast cancer a result of epigenetic responses to traffic-related air pollution? A review of the latest evidence. Epigenomics. 2019;11(6):701-714. https://doi.org/10.2217/epi-2018-0158
  • 73. Singh S, Li SSL. Epigenetic effects of environmental chemicals bisphenol A and phthalates. Int J Mol Sci. 2012;13(8):10143-10153. https://doi.org/10.3390/ijms130810143
  • 74. Böckers M, Paul NW, Efferth T. Butyl octyl phthalate interacts with estrogen receptor α in MCF7 breast cancer cells to promote cancer development. World Acad Sci J. 2021;3(2): 1-1. https://doi.org/10.3892/wasj.2021.92
  • 75. Deb P, Bhan A, Hussain I, Ansari KI, Bobzean SA, Pandita TK, et al. Endocrine disrupting chemical, bisphenol-A, induces breast cancer associated gene HOXB9 expression in vitro and in vivo. Gene. 2016;590(2):234-243. https://doi.org/10.1016/j.gene.2016.05.009
  • 76. Bhan A, Hussain I, Ansari KI, Bobzean SA, Perrotti LI, Mandal SS. Histone methyltransferase EZH2 is transcriptionally induced by estradiol as well as estrogenic endocrine disruptors bisphenol-A and diethylstilbestrol. J Mol Biol. 2014;426(20):3426-3441. https://doi.org/10.1016/j.jmb.2014.07.025
  • 77. Bhan A, Hussain I, Ansari KI, Bobzean SA, Perrotti LI, Mandal SS. Bisphenol-A and diethylstilbestrol exposure induces the expression of breast cancer associated long noncoding RNA HOTAIR in vitro and in vivo. J Steroid Biochem Mol Biol. 2014;141:160-170. https://doi.org/10.1016/j.jsbmb.2014.02.002
  • 78. Orloff K, Mistry K, Metcalf S. Biomonitoring for environmental exposures to arsenic. J Toxicol Environ Health B Crit Rev. 2009;12(7):509-524. https://doi.org/10.1080/10937400903358934
  • 79. Straif K, Benbrahim-Tallaa L, Baan R, Grosse Y, Secretan B, El Ghissassi F, et al. A review of human carcinogens–Part C: metals, arsenic, dusts, and fibres. Lancet Oncol. 2009;10(5): 453–454. https://doi.org/10.1016/s1470-2045(09)70134-2
  • 80. Smeester L, Rager JE, Bailey KA, Guan X, Smith N, Garcia- Vargas G, et al. Epigenetic changes in individuals with arsenicosis. Chem Res Toxicol. 2011;24(2):165–167. https://doi.org/10.1021/tx1004419
  • 81. Chen QY, DesMarais T, Costa M. Metals and mechanisms of carcinogenesis. Annu Rev Pharmacol Toxicol. 2019;59:537–554. https://doi.org/10.1146/annurev-pharmtox-010818-021031
  • 82. Wu K, Li L, Thakur C, Lu Y, Zhang X, Yi Z, et al. Proteomic characterization of the world trade center dust-activated mdig and c-myc signaling circuit linked to multiple myeloma. Sci Rep. 2016;6(1):36305. https://doi.org/10.1038/srep36305
  • 83. Zhang Y, Lu Y, Yuan BZ, Castranova V, Shi X, Stauffer JL, et al. The human mineral dust-induced gene, mdig, is a cell growth regulating gene associated with lung cancer. Oncogene. 2005;24(31):4873–4882. https://doi.org/10.1038/sj.onc.1208668
  • 84. Zhang Q, Thakur C, Shi J, Sun J, Fu Y, Stemmer P, et al. New discoveries of mdig in the epigenetic regulation of cancers. Semin Cancer Biol. 2019;57:27–35. https://doi.org/10.1016/j.semcancer.2019.06.013
  • 85. Cos P, De Bruyne T, Apers S, Vanden Berghe D, Pieters L, Vlietinck AJ. Phytoestrogens: recent developments. Planta Med. 2003;69(7):589–599. https://doi.org/10.1055/s-2003-41122
  • 86. Maggiolini M, Bonofiglio D, Marsico S, Panno ML, Cenni B, Picard D, et al. Estrogen receptor α mediates the proliferative but not the cytotoxic dose-dependent effects of two major phytoestrogens on human breast cancer cells. Mol Pharmacol. 2001;60(3):595–602.
  • 87. Trock BJ, Hilakivi-Clarke L, Clarke R. Meta-analysis of soy intake and breast cancer risk. J Natl Cancer Inst. 2006;98(7):459–471. https://doi.org/10.1093/jnci/djj102
  • 88. Bosviel R, Dumollard E, Dechelotte P, Bignon YJ, Bernard Gallon D. Can soy phytoestrogens decrease DNA methylation in BRCA1 and BRCA2 oncosuppressor genes in breast cancer?. OMICS. 2012;16(5):235–244. https://doi.org/10.1089/omi.2011.0105
  • 89. King-Batoon A, Leszczynska JM, Klein CB. Modulation of gene methylation by genistein or lycopene in breast cancer cells. Environ Mol Mutagen. 2008;49(1):36–45. https://doi.org/10.1002/em.20363
  • 90. Qin W, Zhu W, Shi H, Hewett JE, Ruhlen RL, MacDonald RS, et al. Soy isoflavones have an antiestrogenic effect and alter mammary promoter hypermethylation in healthy premenopausal women. Nutr Cancer. 2009;61(2):238–244. https://doi.org/10.1080/01635580802404196
  • 91. Li Y, Liu L, Andrews LG, Tollefsbol TO. Genistein depletes telomerase activity through cross-talk between genetic and epigenetic mechanisms. Int J Cancer. 2009;125(2):286– 296. https://doi.org/10.1002/ijc.24398
  • 92. Paluszczak J, Krajka-Kuzniak V, Baer-Dubowska W. The effect of dietary polyphenols on the epigenetic regulation of gene expression in MCF7 breast cancer cells. Toxicol Lett. 2010;192(2):119–125. https://doi.org/10.1016/j.toxlet.2009.10.010
  • 93. Papoutsis AJ, Lamore SD, Wondrak GT, Selmin OI, Romagnolo DF. Resveratrol prevents epigenetic silencing of BRCA-1 by the aromatic hydrocarbon receptor in human breast cancer cells. J Nutr. 2010;140(9):1607–1614. https://doi.org/10.3945/jn.110.123422
  • 94. Harris RM, Waring RH. Diethylstilboestrol - a long term legacy. Maturitas. 2012;72(2):108–112. https://doi.org/10.1016/j.maturitas.2012.03.002
  • 95. Herbst AL, Ulfelder H, Poskanzer DC. Adenocarcinoma of the vagina. Association of maternal stilbestrol therapy with tumor appearance in young women. N Engl J Med. 1971;284(15):878– 881. https://doi.org/10.1056/NEJM197104222841604
  • 96. Sato K, Fukata H, Kogo Y, Ohgane J, Shiota K, Mori C. Neonatal exposure to diethylstilbestrol alters expression of DNA methyl-transferases and methylation of genomic DNA in the mouse uterus. Endocr J. 2009;56(1):131–139. https://doi.org/10.1507/endocrj.K08E-239
  • 97. Doherty LF, Bromer JG, Zhou Y, Aldad TS, Taylor HS. In utero exposure to diethylstilbestrol (DES) or bisphenol-A (BPA) increases EZH2 expression in the mammary gland: an epigenetic mechanism linking endocrine disruptors to breast cancer. Horm Cancer. 2010;1(3):146–155. https://doi.org/10.1007/s12672-010-0015-9
  • 98. Hsu PY, Deatherage DE, Rodriguez BA, Liyanarachchi S, Weng YI, Zuo T, et al. Xenoestrogen-induced epigenetic repression of microRNA-9-3 in breast epithelial cells. Cancer Res. 2009;69(14):5936–5945. https://doi.org/10.1158/0008-5472.CAN-08-4914
  • 99. Weng YI, Hsu PY, Liyanarachchi S, Liu, J, Deatherage DE, Huang YW, et al. Epigenetic influences of low-dose bisphenol A in primary human breast epithelial cells. Toxicol Appl Pharmacol. 2010;248(2):111-121. https://doi.org/10.1016/j.taap.2010.07.014
  • 100. Qin XY, Fukuda T, Yang L, Zaha H, Akanuma H, Zeng Q, et al. Effects of bisphenol A exposure on the proliferation and senescence of normal human mammary epithelial cells. Cancer Biol Ther. 2012;13(5):296-306. https://doi.org/10.4161/cbt.18942

Meme Kanseri Epigenetiğinde Biyobelirteçler: Çevresel Faktörlerin Etkisi

Year 2024, , 165 - 181, 01.06.2024
https://doi.org/10.52794/hujpharm.1424049

Abstract

Meme kanseri, dünya çapında kadınlardaki kansere bağlı ölümlerin başlıca nedenlerinden biridir. Meme kanseri hormonal, genetik, yaşam tarzı gibi birçok risk faktörü ile ilişkilendirilmiştir. Ancak günümüzde artan kanıtlar çevresel kirleticilere maruziyetin meme kanseri gelişiminde göz ardı edilemez bir risk faktörü olduğunu ortaya koymaktadır. Özellikle, bazı çevresel kirleticiler; DNA metilasyonu, histon modifikasyonu ve mikroRNA (miRNA)’ lardaki değişiklikler gibi epigenetik mekanizmalarla gen ifadesini değiştirebilir. Çevresel kirleticilere bağlı bu modifikasyonlarda saptanan epigenetik biyobelirteçlerin, meme kanserinde erken teşhis ve prognozun belirlenmesinde anahtar olabileceği düşünülmektedir. Günümüzde miRNA’lar meme kanseri araştırmalarında yeni biyobelirteçler olarak kullanılmaktadır. Doku, tam kan, serum ve plazmadan izole edilebilmesi ve biyobelirteç olarak kullanım kolaylığı miRNA’ları önemli bir teşhis aracı haline getirmiştir. Bu derlemenin çevresel kirleticilere maruziyet sonucu değişiklik gözlenen epigenetik biyobelirteçler ile meme kanseri riski arasındaki ilişkiye ışık tutacağı düşünülmektedir. Bu derlemede aril hidrokarbon reseptör agonistleri (dioksinler, poliklorlu bifeniller, polisiklik aromatik hidrokarbonlar), ftalatlar, bisfenol A ve arsenik gibi çevresel kirleticilerin epigenetik mekanizmalardaki etkisine odaklanılmıştır. Meme kanseri vakalarında epigenetik araştırmaların artması ile çevresel maruziyetlerin azalacağı ve kişiselleştirilmiş önleyici stratejilerin geliştirilebileceği düşünülmektedir.

References

  • 1. Moslehi R, Freedman E, Zeinomar N, Veneroso C, Levine PH. Importance of hereditary and selected environmental risk factors in the etiology of inflammatory breast cancer: a case-comparison study. BMC Canc. 2016;16:334. https://doi.org/10.1186/s12885-016-2369-z
  • 2. Knower KC, To SQ, Leung YK, Ho SM, Clyne CD. Endocrine disruption of the epigenome: a breast cancer link. Endocr Relat Cancer. 2014;21(2):T33-T55. https://doi.org/10.1530/ERC-13-0513
  • 3. Moslehi R, Stagnar C, Srinivasan S, Radziszowski P, Carpenter DO. The possible role of arsenic and gene-arsenic interactions in susceptibility to breast cancer: a systematic review. Rev Environ Health. 2021;36(4):523-534. https://doi.org/10.1515/reveh-2020-0080
  • 4. Park HL. Epigenetic biomarkers for environmental exposures and personalized breast cancer prevention. Int J Environ Res Public Health. 2020;17(4):1181. https://doi.org/10.3390/ijerph17041181
  • 5. Buocikova V, Rios-Mondragon I, Pilalis E, Chatziioannou A, Miklikova S, Mego M, et al. Epigenetics in breast cancer therapy—New strategies and future nanomedicine perspectives. Cancers. 2020;12(12):3622. https://doi.org/10.3390/cancers12123622
  • 6. Sharavanan VJ, Sivaramakrishnan M, Sivarajasekar N, Senthilrani N, Kothandan R, Dhakal N, et al. Pollutants inducing epigenetic changes and diseases. Environ Chem Lett. 2020;18:325-343. https://doi.org/10.1007/s10311-01900944-3
  • 7. Thakur C, Qiu Y, Fu Y, Bi Z, Zhang W, Ji H, et al. Epigenetics and environment in breast cancer: New paradigms for anticancer therapies. Front Oncol. 2022;12:971288. https://doi.org/10.3389/fonc.2022.971288
  • 8. Evron E, Dooley WC, Umbricht CB, Rosenthal D, Sacchi N, Gabrielson E, et al. Detection of breast cancer cells in ductal lavage fluid by methylation specific PCR. Lancet. 2001;357(9265):1335–1336. https://doi.org/10.1016/S01406736(00)045013
  • 9. Krassenstein R, Sauter E, Dulaimi E, Battagli C, Ehya H, Klein-Szanto A, et al. Detection of breast cancer in nipple aspirate fluid by CpG island hypermethylation. Clin Cancer Res. 2004;10(1):28–32. https://doi.org/10.1158/1078-0432.ccr0410-3
  • 10. Silva JM, Garcia JM, Dominguez G, Silva J, Miralles C, Cantos B, et al. Persistence of tumor DNA in plasma of breast cancer patients after mastectomy. Ann Surg Oncol. 2002;9(1):71–76. https://doi.org/10.1245/aso.2002.9.1.71
  • 11. Dulaimi E, Hillinck J, de Caceres II, Al-Saleem T, Cairns P. Tumor suppressor gene promoter hypermethylation in serum of breast cancer patients. Clin Cancer Res. 2004;10(18): 6189–6193. https://doi.org/10.1158/1078-0432.CCR-04-0597
  • 12. Kapoor-Vazirani P, Kagey JD, Powell DR, Vertino PM. Role of hMOF-dependent histone H4 lysine 16 acetylation in the maintenance of TMS1/ASC gene activity. Cancer Res. 2008;68(16):6810-6821. https://doi.org/10.1158/0008-5472.CAN-08-0141
  • 13. Yang X, Karuturi RM, Sun F, Aau M, Yu K, Shao R, et al. CDKN1C (p57) is a direct target of EZH2 and suppressed by multiple epigenetic mechanisms in breast cancer cells. PLoS One. 2009;4(4):e5011. https://doi.org/10.1371/journal.pone.0005011
  • 14. Christodoulatos GS, Dalamaga M. Micro-RNAs as clinical bi- omarkers and therapeutic targets in breast cancer: quo vadis?. World J Clin Oncol. 2014;5(2):71–81. https://doi.org/10.5306/wjco.v5.i2.71
  • 15. Mattiske S, Suetani RJ, Neilsen PM, Callen DF. The oncogenic role of miR-155 in breast cancer. Cancer Epidemiol Biomarkers Prev. 2012;21(8):1236-1243. https://doi.org/10.1158/1055-9965.EPI-120173
  • 16. Corcoran C, Friel AM, Duffy MJ, Crown J, O’Driscoll L. Intracellular and extracellular microRNAs in breast cancer. Clin Chem. 2011;57(1):18-32. https://doi.org/10.1373/clinc-hem.2010.150730
  • 17. Zhang H, Cai K, Wang J, Wang X, Cheng K, Shi F, et al. MiR-7, inhibited indirectly by lincRNA HOTAIR, directly inhibits SETDB1 and reverses the EMT of breast cancer stem cells by downregulating the STAT3 pathway. Stem Cells. 2014;32(11):2858–2868. https://doi.org/10.1002/stem.1795
  • 18. Yu N, Huangyang P, Yang X, Han X, Yan R, Jia H, et al. MicroRNA-7 suppresses the invasive potential of breast cancer cells and sensitizes cells to DNA damages by targeting histone methyltransferase SET8. J Biol Chem. 2013;288(27):19633–19642. https://doi.org/10.1074/jbc.M113.475657
  • 19. Ahmad A, Ginnebaugh KR, Yin S, Bollig-Fischer A, Reddy KB, Sarkar FH. Functional role of miR-10b in tamoxifen resistance of ER-positive breast cancer cells through down- regulation of HDAC4. BMC Cancer. 2015;15(1):540. https://doi.org/10.1186/s12885-015-1561-x
  • 20. Ma L, Teruya-Feldstein J, Weinberg RA. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature. 2007;449(7163):682–688. https://doi.org/10.1038/nature06174
  • 21. Ao X, Nie P, Wu B, Xu W, Zhang T, Wang S, et al. Decreased expression of microRNA-17 and microRNA-20b promotes breast cancer resistance to taxol therapy by upregulation of NCOA3. Cell Death Dis. 2016;7(11):e2463. https://doi.org/10.1038/cddis.2016.367
  • 22. Hossain A, Kuo MT, Saunders GF. Mir-17-5p regulates breast cancer cell proliferation by inhibiting translation of AIB1 mRNA. Mol Cell Biol. 2006;26(21):8191–8201. https://doi.org/10.1128/MCB.00242-06
  • 23. Zhu S, Si ML, Wu H, Mo YY. MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). J Biol Chem. 2007;282(19):14328–14336. https://doi.org/10.1074/jbc.M611393200
  • 24. Frankel LB, Christoffersen NR, Jacobsen A, Lindow M, Krogh A, Lund AH. Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J Biol Chem. 2008;283(2):1026–1033. https://doi.org/10.1074/jbc.M707224200
  • 25. Qi L, Bart J, Tan LP, Platteel I, Sluis Tvd, Huitema S, et al. Expression of miR-21 and its targets (PTEN, PDCD4, TM1) in flat epithelial atypia of the breast in relation to ductal carcinoma in situ and invasive carcinoma. BMC Cancer. 2009;9:163. https://doi.org/10.1186/1471-2407-9-163
  • 26. Wang B, Li D, Filkowski J, Rodriguez-Juarez R, Storozynsky Q, Malach M, et al. A dual role of miR-22 modulated by RelA/ p65 in resensitizing fulvestrant-resistant breast cancer cells to fulvestrant by targeting FOXP1 and HDAC4 and constitutive acetylation of p53 at Lys382. Oncogenesis. 2018;7(7):54. https://doi.org/10.1038/s41389-018-0063-5
  • 27. Pandey P, Zhang Y, Zhang S, Li Y, Tucker-Kellog G, Yang H, et al. TIP60-miR-22 axis as a prognostic marker of breast cancer progression. Oncotarget. 2015;6(38):41290–41306. https://doi.org/10.18632/oncotarget.5636
  • 28. Song SJ, Poliseno L, Song MS, Ala U, Webster K, Ng C, et al. MicroRNA-antagonism regulates breast cancer stemness and metastasis via TET-family-dependent chromatin remodeling. Cell. 2013;154(2):311–324. https://doi.org/10.1016/j.cell.2013.06.026
  • 29. Shao P, Liu Q, Maina PK, Cui J, Bair TB, Li T, et al. Histone demethylase PHF8 promotes epithelial to mesenchymal transition and breast tumorigenesis. Nucleic Acids Res. 2017;45(4):1687–1702. https://doi.org/10.1093/nar/gkw1093
  • 30. Zhou Y, Hu Y, Yang M, Jat P, Li K, Lombardo Y, et al. The miR-106b~25 cluster promotes bypass of doxorubicin-induced senescence and increase in motility and invasion by targeting the E-cadherin transcriptional activator EP300. Cell Death Differ. 2014;21(3):462–474. https://doi.org/10.1038/cdd.2013.167
  • 31. Zhang B, Liu XX, He JR, Zhou CX, Guo M, He M, et al. Pathologically decreased miR-26a antagonizes apoptosis and facilitates carcinogenesis by targeting MTDH and EZH2 in breast cancer. Carcinogenesis. 2011;32(1):2–9. https://doi.org/10.1093/carcin/bgq209
  • 32. Pei YF, Lei Y, Liu XQ. MiR-29a promotes cell proliferation and EMT in breast cancer by targeting ten eleven translocation 1. Biochim. Biophys. Acta. 2016;1862(11):2177–2185. https://doi.org/10.1016/j.bbadis.2016.08.014
  • 33. Valastyan S, Reinhardt F, Benaich N, Calogrias D, Szász AM, Wang ZC, et al. A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis. Cell. 2009;137(6):1032–1046. https://doi.org/10.1016/j.cell.2009.03.047
  • 34. Wu MY, Fu J, Xiao X, Wu J, Wu RC. MiR-34a regulates therapy resistance by targeting HDAC1 and HDAC7 in breast cancer. Cancer Lett. 2014;354(2):311–319. https://doi.org/10.1016/j.canlet.2014.08.031
  • 35. O’Day E, Lal A. MicroRNAs and their target gene networks in breast cancer. Breast Cancer Res. 2010;12(2):201. https://doi.org/10.1186/bcr2484
  • 36. Ma W, Xiao GG, Mao J, Lu Y, Song B, Wang L, et al. Dysregulation of the miR-34a-SIRT1 axis inhibits breast cancer stemness. Oncotarget. 2015;6(12):10432–10444. https://doi.org/10.18632/oncotarget.3394
  • 37. Liu F, Sang M, Meng L, Gu L, Liu S, Li J, et al. MiR92b promotes autophagy and suppresses viability and invasion in breast cancer by targeting EZH2. Int J Oncol. 2018;53(4):1505-1515. https://doi.org/10.3892/ijo.2018.4486
  • 38. Varambally S, Cao Q, Mani RS, Shankar S, Wang X, Ateeq B, et al. Genomic Loss of microRNA-101 Leads to Overexpression of Histone Methyltransferase EZH2 in Cancer. Science. 2008;322(5908):1695–1699. https://doi.org/10.1126/science.1165395
  • 39. Hsieh TH, Hsu CY, Tsai CF, Long CY, Chai CY, Hou MF, et al. MiR-125a-5p is a prognostic biomarker that targets HDAC4 to suppress breast tumorigenesis. Oncotarget. 2014;6(1):494–509. https://doi.org/10.18632/oncotarget.2674
  • 40. Adlakha YK, Saini N. miR-128 exerts pro-apoptotic effect in a p53 transcription-dependent and -independent manner via PUMA-Bak axis. Cell Death Dis. 2013;4(3):e542. https://doi.org/10.1038/cddis.2013.46
  • 41. Eedunuri VK, Rajapakshe K, Fiskus W, Geng C, Chew SA, Foley C, et al. miR-137 Targets p160 Steroid Receptor Co-activators SRC1, SRC2, and SRC3 and Inhibits Cell Proliferation. Mol Endocrinol. 2015;29(8):1170–1183. https://doi.org/10.1210/me.2015-1080
  • 42. Wang K, Yang F, Men X, Li G, Sun C. MiR-138 suppresses EMT through degradation KDM6B in breast carcinoma. Int J Clin Exp Med. 2016;9:4724–4733.
  • 43. Ng EK, Li R, Shin VY, Siu JM, Ma ES, Kwong A. MicroRNA-143 is downregulated in breast cancer and regulates DNA methyltransferases 3A in breast cancer cells. Tumour Biol. 2014;35(3):2591–2598. https://doi.org/10.1007/s13277-013-1341-7
  • 44. Elhelbawy NG, Zaid IF, Khalifa AA, Gohar SF, Fouda EA. miRNA-148a and miRNA-30c expressions as potential biomarkers in breast cancer patients. Biochem Biophys Rep. 2021;27:101060. https://doi.org/10.1016/j.bbrep.2021.101060
  • 45. Xu Q, Jiang Y, Yin Y, Li Q, He J, Jing Y, et al. A regulatory circuit of miR-148a/152 and DNMT1 in modulating cell transformation and tumor angiogenesis through IGF-IR and IRS1. J Mol Cell Biol. 2013;5(1):3–13. https://doi.org/10.1093/jmcb/mjs049
  • 46. Kong W, Yang H, He L, Zhao J-j, Coppola D, Dalton WS, et al. MicroRNA-155 is regulated by the transforming growth factor beta/Smad pathway and contributes to epithelial cell plasticity by targeting RhoA. Mol Cell Biol. 2008;28(22):6773–6784. https://doi.org/10.1128/MCB.00941-08
  • 47. Tang H, Liu P, Yang L, Xie X, Ye F, Wu M, et al. miR-185 suppresses tumor proliferation by directly targeting E2F6 and DNMT1 and indirectly upregulating BRCA1 in triple-negative breast cancer. Mol Cancer Ther. 2014;13(12):3185–3197. https://doi.org/10.1158/1535-7163.MCT-14-0243
  • 48. Derfoul A, Juan AH, Difilippantonio MJ, Palanisamy N, Ried T, Sartorelli V. Decreased microRNA-214 levels in breast cancer cells coincides with increased cell proliferation, invasion and accumulation of the Polycomb Ezh2 methyltransferase. Carcinogenesis. 2011;32(11):1607–1614. https://doi.org/10.1093/carcin/bgr184
  • 49. Eades G, Yao Y, Yang M, Zhang Y, Chumsri S, Zhou Q. miR- 200a regulates SIRT1 expression and epithelial to mesenchymal transition (EMT)-like transformation in mammary epithelial cells. J Biol Chem. 2011;286(29):25992–26002. https://doi.org/10.1074/jbc.M111.229401
  • 50. Pang Y, Liu J, Li X, Xiao G, Wang H, Yang G, et al. MYC and DNMT3A-mediated DNA methylation represses microRNA-200b in triple negative breast cancer. J Cell Mol Med. 2018;22(12):6262–6274. https://doi.org/10.1111/jcmm.13916
  • 51. Iliopoulos D, Lindahl-Allen M, Polytarchou C, Hirsch HA, Tsichlis PN, Struhl K. Loss of miR-200 inhibition of Suz12 leads to polycomb-mediated repression required for the formation and maintenance of cancer stem cells. Mol Cell. 2010;39(5):761–772. https://doi.org/10.1016/j.molcel.2010.08.013
  • 52. Adams BD, Furneaux H, White BA. The micro-ribonucleic acid (miRNA) miR-206 targets the human estrogen receptor- alpha (ERalpha) and represses ERalpha messenger RNA and protein expression in breast cancer cell lines. Mol Endocri- nol. 2007;21(5):1132–1147. https://doi.org/10.1210/me.2007-0022
  • 53. Chen LL, Zhang ZJ, Yi ZB, Li JJ. MicroRNA-211-5p suppresses tumour cell proliferation, invasion, migration and metastasis in triple-negative breast cancer by directly targeting SETBP1. Br J Cancer. 2017;117(1):78–88. https://doi.org/10.1038/bjc.2017.150
  • 54. Roscigno G, Quintavalle C, Donnarumma E, Puoti I, Di- az-Lagares A, Iaboni M, et al. Mir-221 promotes stemness of breast cancer cells by targeting DNMT3b. Oncotarget. 2015;7(1):580–592. https://doi.org/10.18632/oncotarget.5979
  • 55. Shi Z, Li Y, Qian X, Hu Y, Liu J, Zhang S, et al. MiR-340 Inhibits Triple-Negative Breast Cancer Progression by Reversing EZH2 Mediated miRNAs Dysregulated Expressions. J Cancer. 2017;8(15):3037–3048. https://doi.org/10.7150/jca.19315
  • 56. Weng C, Nguyen T, Shively JE. miRNA-342 Regulates CEACAM1-induced Lumen Formation in a Three-dimensional Model of Mammary Gland Morphogenesis. J Biol Chem. 2016;291(32):16777–16786. https://doi.org/10.1074/jbc.M115.710152
  • 57. Huang Q, Gumireddy K, Schrier M, le Sage C, Nagel R, Nair S, et al. The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nat Cell Biol. 2008;10(2):202-210. https://doi.org/10.1038/ncb1681
  • 58. Wu M, Fan B, Guo Q, Li Y, Chen R, Lv N, et al. Knockdown of SETDB1 inhibits breast cancer progression by miR-381-3p-related regulation. Biol Res. 2018;51(1):39. https://doi.org/10.1186/s40659-018-0189-0
  • 59. Bamodu OA, Huang WC, Lee WH, Wu A, Wang LS, Hsiao M, et al. Aberrant KDM5B expression promotes aggressive breast cancer through MALAT1 overexpression and downregulation of hsa-miR-448. BMC Cancer. 2016;16(1):160. https://doi.org/10.1186/s12885-016-2108-5
  • 60. Romagnolo DF, Daniels KD, Grunwald JT, Ramos SA, Propper CR, Selmin OI. Epigenetics of breast cancer: Modifying role of environmental and bioactive food compounds. Mol Nutr Food Res. 2016;60(6):1310-1329. https://doi.org/10.1002/mnfr.201501063
  • 61. Sweeney C, Lazennec G, Vogel CF. Environmental exposure and the role of AhR in the tumor microenvironment of breast cancer. Front Pharmacol. 2022;13:1095289. https://doi.org/10.3389/fphar.2022.1095289
  • 62. Eltom SE, Gasmelseed AA, Saoudi-Guentri D. The aryl hydrocarbon receptor is over-expressed and constitutively activated in advanced breast carcinoma. Cancer Res. 2006;66(8_Supp- lement):408.
  • 63. Schlezinger JJ, Liu D, Farago M, Seldin DC, Belguise K, Sonenshein GE, et al. A role for the aryl hydrocarbon receptor in mammary gland tumorigenesis. Biol Chem. 2006;387(9):1175- 1187. https://doi.org/10.1515/BC.2006.145
  • 64. Del Pup L, Mantovani A, Cavaliere C, Facchini G, Luce A, Sperlongano P, et al. Carcinogenetic mechanisms of endocrine disruptors in female cancers. Oncol Rep. 2016;36(2):603-612. https://doi.org/10.3892/or.2016.4886
  • 65. Tsuchiya Y, Nakajima M, Takagi S, Taniya T, Yokoi T. MicroRNA regulates the expression of human cytochrome P450 1B1. Cancer Res. 2006;66(18):9090-9098. https://doi.org/10.1158/0008-5472.CAN-06-1403
  • 66. Papoutsis AJ, Borg JL, Selmin OI, Romagnolo DF. BRCA-1 promoter hypermethylation and silencing induced by the aromatic hydrocarbon receptor-ligand TCDD are prevented by resveratrol in MCF-7 cells. J Nutr Biochem. 2012;23(10):1324-1332. https://doi.org/10.1016/j.jnutbio.2011.08.001
  • 67. Beedanagari SR, Taylor RT, Bui P, Wang F, Nickerson DW, Hankinson O. Role of epigenetic mechanisms in differential regulation of the dioxin-inducible human CYP1A1 and CYP1B1 genes. Mol Pharmacol. 2010;78(4):608-616. https://doi.org/10.1124/mol.110.064899
  • 68. Donovan MG, Selmin OI, Romagnolo DF. Focus: Nutrition and Food Science: Aryl Hydrocarbon Receptor Diet and Breast Cancer Risk. Yale J Biol Med. 2018;91(2):105-127.
  • 69. Jeffy BD, Chirnomas RB, Romagnolo DF. Epigenetics of breast cancer: polycyclic aromatic hydrocarbons as risk factors. Environ Mol Mutagen. 2002;39(2-3):235-244. https://doi.org/10.1002/em.10051
  • 70. Romagnolo DF, Papoutsis AJ, Laukaitis C, Selmin OI. Constitutive expression of AhR and BRCA-1 promoter CpG hypermethylation as biomarkers of ERα-negative breast tumorigenesis. BMC Cancer. 2015;15:1026. https://doi.org/10.1186/s12885-015-2044-9
  • 71. Miret NV, Pontillo CA, Buján S, Chiappini FA, Randi AS. Mechanisms Of Breast Cancer Progression Induced BY Environment-Polluting ARYL Hydrocarbon Receptor Agonists. Biochem Pharmacol. 2023;216:115773. https://doi.org/10.1016/j.bcp.2023.115773
  • 72. Sahay D, Terry MB, Miller R. Is breast cancer a result of epigenetic responses to traffic-related air pollution? A review of the latest evidence. Epigenomics. 2019;11(6):701-714. https://doi.org/10.2217/epi-2018-0158
  • 73. Singh S, Li SSL. Epigenetic effects of environmental chemicals bisphenol A and phthalates. Int J Mol Sci. 2012;13(8):10143-10153. https://doi.org/10.3390/ijms130810143
  • 74. Böckers M, Paul NW, Efferth T. Butyl octyl phthalate interacts with estrogen receptor α in MCF7 breast cancer cells to promote cancer development. World Acad Sci J. 2021;3(2): 1-1. https://doi.org/10.3892/wasj.2021.92
  • 75. Deb P, Bhan A, Hussain I, Ansari KI, Bobzean SA, Pandita TK, et al. Endocrine disrupting chemical, bisphenol-A, induces breast cancer associated gene HOXB9 expression in vitro and in vivo. Gene. 2016;590(2):234-243. https://doi.org/10.1016/j.gene.2016.05.009
  • 76. Bhan A, Hussain I, Ansari KI, Bobzean SA, Perrotti LI, Mandal SS. Histone methyltransferase EZH2 is transcriptionally induced by estradiol as well as estrogenic endocrine disruptors bisphenol-A and diethylstilbestrol. J Mol Biol. 2014;426(20):3426-3441. https://doi.org/10.1016/j.jmb.2014.07.025
  • 77. Bhan A, Hussain I, Ansari KI, Bobzean SA, Perrotti LI, Mandal SS. Bisphenol-A and diethylstilbestrol exposure induces the expression of breast cancer associated long noncoding RNA HOTAIR in vitro and in vivo. J Steroid Biochem Mol Biol. 2014;141:160-170. https://doi.org/10.1016/j.jsbmb.2014.02.002
  • 78. Orloff K, Mistry K, Metcalf S. Biomonitoring for environmental exposures to arsenic. J Toxicol Environ Health B Crit Rev. 2009;12(7):509-524. https://doi.org/10.1080/10937400903358934
  • 79. Straif K, Benbrahim-Tallaa L, Baan R, Grosse Y, Secretan B, El Ghissassi F, et al. A review of human carcinogens–Part C: metals, arsenic, dusts, and fibres. Lancet Oncol. 2009;10(5): 453–454. https://doi.org/10.1016/s1470-2045(09)70134-2
  • 80. Smeester L, Rager JE, Bailey KA, Guan X, Smith N, Garcia- Vargas G, et al. Epigenetic changes in individuals with arsenicosis. Chem Res Toxicol. 2011;24(2):165–167. https://doi.org/10.1021/tx1004419
  • 81. Chen QY, DesMarais T, Costa M. Metals and mechanisms of carcinogenesis. Annu Rev Pharmacol Toxicol. 2019;59:537–554. https://doi.org/10.1146/annurev-pharmtox-010818-021031
  • 82. Wu K, Li L, Thakur C, Lu Y, Zhang X, Yi Z, et al. Proteomic characterization of the world trade center dust-activated mdig and c-myc signaling circuit linked to multiple myeloma. Sci Rep. 2016;6(1):36305. https://doi.org/10.1038/srep36305
  • 83. Zhang Y, Lu Y, Yuan BZ, Castranova V, Shi X, Stauffer JL, et al. The human mineral dust-induced gene, mdig, is a cell growth regulating gene associated with lung cancer. Oncogene. 2005;24(31):4873–4882. https://doi.org/10.1038/sj.onc.1208668
  • 84. Zhang Q, Thakur C, Shi J, Sun J, Fu Y, Stemmer P, et al. New discoveries of mdig in the epigenetic regulation of cancers. Semin Cancer Biol. 2019;57:27–35. https://doi.org/10.1016/j.semcancer.2019.06.013
  • 85. Cos P, De Bruyne T, Apers S, Vanden Berghe D, Pieters L, Vlietinck AJ. Phytoestrogens: recent developments. Planta Med. 2003;69(7):589–599. https://doi.org/10.1055/s-2003-41122
  • 86. Maggiolini M, Bonofiglio D, Marsico S, Panno ML, Cenni B, Picard D, et al. Estrogen receptor α mediates the proliferative but not the cytotoxic dose-dependent effects of two major phytoestrogens on human breast cancer cells. Mol Pharmacol. 2001;60(3):595–602.
  • 87. Trock BJ, Hilakivi-Clarke L, Clarke R. Meta-analysis of soy intake and breast cancer risk. J Natl Cancer Inst. 2006;98(7):459–471. https://doi.org/10.1093/jnci/djj102
  • 88. Bosviel R, Dumollard E, Dechelotte P, Bignon YJ, Bernard Gallon D. Can soy phytoestrogens decrease DNA methylation in BRCA1 and BRCA2 oncosuppressor genes in breast cancer?. OMICS. 2012;16(5):235–244. https://doi.org/10.1089/omi.2011.0105
  • 89. King-Batoon A, Leszczynska JM, Klein CB. Modulation of gene methylation by genistein or lycopene in breast cancer cells. Environ Mol Mutagen. 2008;49(1):36–45. https://doi.org/10.1002/em.20363
  • 90. Qin W, Zhu W, Shi H, Hewett JE, Ruhlen RL, MacDonald RS, et al. Soy isoflavones have an antiestrogenic effect and alter mammary promoter hypermethylation in healthy premenopausal women. Nutr Cancer. 2009;61(2):238–244. https://doi.org/10.1080/01635580802404196
  • 91. Li Y, Liu L, Andrews LG, Tollefsbol TO. Genistein depletes telomerase activity through cross-talk between genetic and epigenetic mechanisms. Int J Cancer. 2009;125(2):286– 296. https://doi.org/10.1002/ijc.24398
  • 92. Paluszczak J, Krajka-Kuzniak V, Baer-Dubowska W. The effect of dietary polyphenols on the epigenetic regulation of gene expression in MCF7 breast cancer cells. Toxicol Lett. 2010;192(2):119–125. https://doi.org/10.1016/j.toxlet.2009.10.010
  • 93. Papoutsis AJ, Lamore SD, Wondrak GT, Selmin OI, Romagnolo DF. Resveratrol prevents epigenetic silencing of BRCA-1 by the aromatic hydrocarbon receptor in human breast cancer cells. J Nutr. 2010;140(9):1607–1614. https://doi.org/10.3945/jn.110.123422
  • 94. Harris RM, Waring RH. Diethylstilboestrol - a long term legacy. Maturitas. 2012;72(2):108–112. https://doi.org/10.1016/j.maturitas.2012.03.002
  • 95. Herbst AL, Ulfelder H, Poskanzer DC. Adenocarcinoma of the vagina. Association of maternal stilbestrol therapy with tumor appearance in young women. N Engl J Med. 1971;284(15):878– 881. https://doi.org/10.1056/NEJM197104222841604
  • 96. Sato K, Fukata H, Kogo Y, Ohgane J, Shiota K, Mori C. Neonatal exposure to diethylstilbestrol alters expression of DNA methyl-transferases and methylation of genomic DNA in the mouse uterus. Endocr J. 2009;56(1):131–139. https://doi.org/10.1507/endocrj.K08E-239
  • 97. Doherty LF, Bromer JG, Zhou Y, Aldad TS, Taylor HS. In utero exposure to diethylstilbestrol (DES) or bisphenol-A (BPA) increases EZH2 expression in the mammary gland: an epigenetic mechanism linking endocrine disruptors to breast cancer. Horm Cancer. 2010;1(3):146–155. https://doi.org/10.1007/s12672-010-0015-9
  • 98. Hsu PY, Deatherage DE, Rodriguez BA, Liyanarachchi S, Weng YI, Zuo T, et al. Xenoestrogen-induced epigenetic repression of microRNA-9-3 in breast epithelial cells. Cancer Res. 2009;69(14):5936–5945. https://doi.org/10.1158/0008-5472.CAN-08-4914
  • 99. Weng YI, Hsu PY, Liyanarachchi S, Liu, J, Deatherage DE, Huang YW, et al. Epigenetic influences of low-dose bisphenol A in primary human breast epithelial cells. Toxicol Appl Pharmacol. 2010;248(2):111-121. https://doi.org/10.1016/j.taap.2010.07.014
  • 100. Qin XY, Fukuda T, Yang L, Zaha H, Akanuma H, Zeng Q, et al. Effects of bisphenol A exposure on the proliferation and senescence of normal human mammary epithelial cells. Cancer Biol Ther. 2012;13(5):296-306. https://doi.org/10.4161/cbt.18942
There are 100 citations in total.

Details

Primary Language Turkish
Subjects Pharmaceutical Toxicology
Journal Section Review Articles
Authors

Ela Tuğrul Karataş 0000-0001-7372-709X

Muhammet Osman Karataş 0009-0002-1883-1438

Sibel Özden 0000-0002-1662-2504

Publication Date June 1, 2024
Submission Date January 23, 2024
Acceptance Date March 25, 2024
Published in Issue Year 2024

Cite

Vancouver Tuğrul Karataş E, Karataş MO, Özden S. Meme Kanseri Epigenetiğinde Biyobelirteçler: Çevresel Faktörlerin Etkisi. HUJPHARM. 2024;44(2):165-81.