Perspectives of oral antidiabetics in the physical inactivity and its sequelae-Relations to the circulating myokines (Irisin and myostatin): A review
Year 2025,
Volume: 45 Issue: 4, 353 - 366, 01.12.2025
Marwan Al-nimer
,
Vian Esmail
Abstract
ABSTRACT
There are interactions between the effects of oral antidiabetics on physical activity, sarcopenia, dysmobility syndrome, and circulating myokine levels. The geriatric population with type 2 diabetes mellitus are more likely to develop sarcopenia or dysmobility because they are physically inactive due to metabolic dysfunction. In this review, we examined appropriate testing for sarcopenia or dysmobility syndrome (muscle wasting and osteoporosis) and levels of myokines or exerkines, notably irisin and myostatin, which indicate the level of physical activity. Our data showed that the effects of oral antidiabetics on skeletal muscle volume, strength, and bone mineral density were inconsistent. Furthermore, certain oral antidiabetics aggravate sarcopenia in sedentary people, whereas others require physiotherapy. An intriguing discovery is that some oral antidiabetics considerably boost circulating irisin levels associated with greater physical activity and skeletal muscle strength. Exercise rehabilitation is recommended to counteract the detrimental effects of certain oral antidiabetics on sarcopenia or dysmobility syndrome. Exogenous irisin and myostatin inhibitors supplementation is still in the experimental phase.
Ethical Statement
This is a narrative review that it does not require ethical statement as our committees informed us
Supporting Institution
University of Diyala
Thanks
I appreciate your cooperation
References
-
1. Kohl H W 3rd, Craig C L, Lambert E V, Inoue S, Alkandari J R, Leetongin G et al. The pandemic of physical inactivity: global action for public health. Lancet, Lancet Physical Activity Series Working Group 2012, 380(9838), 294-305. https://doi.org/10.1016/S0140-6736(12)60898-8
-
2. Sperandio E F, Arantes R L, da Silva R P, Matheus A C, Lauria V T, Bianchim M S, et al. Screening for physical inactivity among adults: the value of distance walked in the six-minute walk test. A cross-sectional diagnostic study. Sao Paulo Med J. 2016; 134(1), 56-62. https://doi.org/10.1590/1516-3180.2015.00871609
-
3. Wu X Y, Han L H, Zhang J H, Luo S, Hu J W, Sun K. The influence of physical activity, sedentary behavior on health-related quality of life among the general population of children and adolescents: A systematic review. PLoS One. 2017;12(11), 0187668. https://doi.org/10.1371/journal.pone.0187668
-
4. Cruz-Jentoft A J, Bahat G, Bauer J, Boirie Y, Bruyère O, Cederholm T, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019;48(1), 16-31. https://doi.or/10.1093/ageing/afy169
-
5. Hill K D, Farrier K, Russell M, Burton E. Dysmobility syndrome: current perspectives. Clin Interv Aging. 2017;12, 145-152. https://doi.org/10.2147/CIA.S102961
-
6. Orioli L, Samaras S, Sawadogo K, de Barsy M, Lause P, Deswysen Y, et al. Circulating myostatin as a biomarker of muscle mass and strength in individuals with cancer or obesity. Clin Nutr. 2024;43(7), 1800-1808. https://doi.org/10.1016/j.clnu.2024.05.046 Erratum in: Clin Nutr. 2025;48:48. https://doi.org/10.1016/j.clnu.2025.03.014
-
7. Park H S, Kim H C, Zhang D, Yeom H, Lim S K. The novel myokine irisin: clinical implications and potential role as a biomarker for sarcopenia in postmenopausal women. Endocrine. 2019; 64(2), 341-348. https://doi.org/10.1007/s12020-018-1814-y
-
8. Villamil-Parra W, Moscoso-Loaiza L. Effects of physical exercise on Irisin and BDNF concentrations, and their relationship with cardiometabolic and mental health of individuals with Metabolic Syndrome: A Systematic Review. Exp Gerontol. 2024;198, 112640. https://doi.org/10.1016/j.exger.2024.112640
-
9. Radikova Z, Mosna L, Eckerstorfer C, Bajer B, Havranova A, Imrich R et al. Plasma irisin and the brain-derived neurotrophic factor levels in sedentary subjects: effect of 8-weeks lifestyle intervention. Endocr Regul. 2024;58(1), 115-128. https://doi.org/10.2478/enr-2024-0013
-
10. Falsetti I, Palmini G, Donati S, Aurilia C, Iantomasi T, Brandi M L. Irisin and its role in postmenopausal osteoporosis and sarcopenia. Biomedicines. 2024;12(4), 928. https://doi.org/10.3390/biomedicines12040928
11. Nishikawa R, Fukuda T, Haruyama A, Shibasaki I, Yamaguchi S, Arikawa T et al. Association between serum GDF-15, myostatin, and sarcopenia in cardiovascular surgery patients. Int J Cardiol Heart Vasc.2022;42, 101114. https://doi.org/10.1016/j.ijcha.2022.101114
-
12. Ma Y, Li X, Zhang H, Ou Y, Zhang Z, Li S et al. Serum myostatin in central south Chinese postmenopausal women: Relationship with body composition, lipids and bone mineral density. Endocr Res. 2016;41(3), 223-238. https://doi.org/10.3109/07435800.2015.1044609
-
13. Herrera J J, Louzon S, Pifer K, Leander D, Merrihew G E, Park J H, et al. Acarbose has sex-dependent and -independent effects on age-related physical function, cardiac health, and lipid biology. JCI Insight. 2020;5(21), e137474. https://doi.org/10.1172/jci.insight.137474
-
14. Lazzaroni E, Ben Nasr M, Loretelli C, Pastore I, Plebani L, Lunati M E, et al. Anti-diabetic drugs and weight loss in patients with type 2 diabetes. Pharmacol Res. 2021;171, 105782. https://doi.org/10.1016/j.phrs.2021.105782
-
15. Yu A Q, Le J, Huang W T, Li B, Liang H X, Wang Q, et al. The Effects of acarbose on non-diabetic overweight and obese patients: A meta-analysis. Adv Ther. 2021;38(2), 1275-1289. https://doi.org/10.1007/s12325-020-01602-9
-
16. Khalili N, Safavipour A. Evaluation of the effects of acarbose on weight and metabolic, inflammatory, and cardiovascular markers in patients with obesity and overweight. Int J Prev Med. 2020;11, 140. https://doi.org/10.4103/ijpvm.IJPVM_229_19
-
17. Jiang L L, Xu X H, Luo M H, Wang H Y, Ding B, Yan R N, et al. Association of acarbose with decreased muscle mass and function in patients with type 2 diabetes: A retrospective, cross-sectional study. Diabetes Ther. 2021;12(11), 2955-2969. https://doi.org/10.1007/s13300-021-01151-6
-
18. Xu Q, Wang F, Wu Y, Li F. The influence of hypoglycemic drugs on exercise-mediated hypoglycemic effects in elderly type 2 diabetic patients. Int J Clin Exp Med. 2015, 8(8), 14054-14059. https://pubmed.ncbi.nlm.nih.gov/26550367/
-
19. Jiang Z, Wang J, Imai D, Snider T, Klug J, Mangalindan R, et al. Short term treatment with a cocktail of rapamycin, acarbose and phenylbutyrate delays aging phenotypes in mice. Sci Rep. 2022;12(1), 7300. https://doi.org/10.1038/s41598-022-11229-1
-
20. Sato M, Fujita H, Yokoyama H, Mikada A, Horikawa Y, Takahashi Y, et al. Relationships among postprandial plasma active GLP-1 and GIP excursions, skeletal muscle mass, and body fat mass in patients with type 2 diabetes treated with either miglitol, sitagliptin, or their combination: A secondary analysis of the MASTER study. J Clin Med. 2023;12(9), 3104. https://doi.org/10.3390/jcm12093104
-
21. Chavda V, Shah P, Patel S S, Bhadada S. Pre-exposure of voglibose exerts cerebroprotective effects through attenuating activation of the polyol pathway and inflammation. Eur J Neurosci. 2021;53(8), 2541-2552. https://doi.org/10.1111/ejn.15151
-
22. Do H J, Jin T, Chung J H, Hwang J W, Shin MJ. Voglibose administration regulates body weight and energy intake in high fat-induced obese mice. Biochem Biophys Res Commun.2014;443(3), 1110-1117. https://doi.org/10.1016/j.bbrc.2013.12.120
-
23. Ma T, Tian X, Zhang B, Li M, Wang Y, Yang C et al. Low-dose metformin targets the lysosomal AMPK pathway through PEN2. Nature. 2022;603(7899), 159-165. https://doi.org/10.1038/s41586-022-04431-8
-
24. Triggle C R, Mohammed I, Bshesh K, Marei I, Ye K, Ding H, et al. Metformin: Is it a drug for all reasons and diseases? Metabolism. 2022;133, 155223. https://doi.org/10.1016/j.metabol.2022.155223
-
25. Farahani A, Farahani A, Kashfi K, Ghasemi A. Inhibition of hepatic gluconeogenesis in type 2 diabetes by metformin: complementary role of nitric oxide. Med Gas Res. 2025;15(4), 507-519. https://doi.org/10.4103/mgr.MEDGASRES-D-24-00100
-
26. Coll A P, Chen M, Taskar P, Rimmington D, Patel S, Tadross J A et al. GDF15 mediates the effects of metformin on body weight and energy balance. Nature 2020;578(7795), 444-448. https://doi.org/10.1038/s41586-019-1911-y
-
27. Ida S, Kaneko R, Imataka K, Okubo K, Shirakura Y, Azuma K, et al. Effects of antidiabetic drugs on muscle mass in type 2 diabetes mellitus. Curr Diabetes Rev. 2021;17(3), 293-303. https://doi.org/10.2174/1573399816666200705210006
-
28. Lee C G, Boyko E J, Barrett-Connor E, Miljkovic I, Hoffman A R, Everson-Rose S A,et al. Osteoporotic Fractures in Men (MrOS) Study Research Group. Insulin sensitizers may attenuate lean mass loss in older men with diabetes. Diabetes Care. 2011;34(11), 2381-2386. https://doi.org/10.2337/dc11-1032
-
29. Lee C G, Schwartz A V, Yaffe K, Hillier T A, LeBlanc E S, Cawthon P M. Study of Osteoporotic Fractures Research Group. Changes in physical performance in older women according to presence and treatment of diabetes mellitus. J Am Geriatr Soc. 2013;61(11):1872-1878. https://doi.org/10.1111/jgs.12502
-
30. Kuai Z, Ye Y, Zhang X, Gao L, Tang G, Yuan J. Exploring SGLT-2 inhibitors and sarcopenia in FAERS: a post-marketing surveillance study. Expert Opin Drug Saf. 2024;1-8. https://doi.org/10.1080/14740338.2024.2412234
-
31. Aghili R, Malek M, Valojerdi A E, Banazadeh Z, Najafi L, Khamseh M E. Body composition in adults with newly diagnosed type 2 diabetes: effects of metformin. J Diabetes Metab Disord. 2014;13(1), 88. https://doi.org/10.1186/s40200-014-0088-z
-
32. Koshizaka M, Ishikawa K, Ishibashi R, Maezawa Y, Sakamoto K, Uchida D et al. Effects of ipragliflozin versus metformin in combination with sitagliptin on bone and muscle in Japanese patients with type 2 diabetes mellitus: Subanalysis of a prospective, randomized, controlled study (PRIME-V study). J Diabetes Investig. 2021;12(2),200-206. https://doi.org/10.1111/jdi.13340
-
33. Sexton P, Metcalf P, Kolbe J. Respiratory effects of insulin sensitisation with metformin: a prospective observational study. COPD. 2014;11(2),133-142. https://doi.org/10.3109/15412555.2013.808614
-
34. Karim A, Waheed A, Ahmad F, Qaisar R. Metformin effects on plasma zonulin levels correlate with enhanced physical performance in osteoarthritis patients with diabetes. Inflammopharmacology. 2024;32(5), 3195-3203. https://doi.org/10.1007/s10787-024-01558-0
-
35. Masters M C, Granche J, Yang J, Overton E T, Letendre S, Koletar S L, et al. Association between metformin use and cognitive and physical function in persons with HIV and diabetes. AIDS Res Hum Retroviruses. 2023;39(6), 302-309. https://doi.org/10.1089/AID.2022.0129
-
36. Santulli G, Visco V, Varzideh F, Guerra G, Kansakar U, Gasperi M, et al. Prediabetes increases the risk of frailty in prefrail older adults with hypertension: Beneficial effects of metformin. Hypertension. 2024;81(7), 1637-1643. https://doi.org/10.1161/HYPERTENSIONAHA.124.23087
-
37. Laksmi P W, Setiati S, Tamin T Z, Soewondo P, Rochmah W, Nafrialdi N. Effect of metformin on handgrip strength, gait speed, myostatin serum level, and health-related quality of life: A double-blind randomized controlled trial among non-diabetic pre-frail elderly Patients. Acta Med Indones.2017;49(2), 118-127. https://pubmed.ncbi.nlm.nih.gov/28790226/
-
38. Qaisar R, Javed M, Khan I M, Ahmad F, Karim A. Metformin improves skeletal muscle and physical capacity by stabilizing neuromuscular junction in older adults. Arch Gerontol Geriatr. 2024;127, 105587. https://doi.org/10.1016/j.archger.2024.105587
-
39. Chen F, Xu S, Wang Y, Chen F, Cao L, Liu T et al. Risk factors for sarcopenia in the elderly with type 2 diabetes mellitus and the effect of metformin. J Diabetes Res. 2020, 3950404. https://doi.org/10.1155/2020/3950404
-
40. Qaisar R, Karim A, Muhammad T, Iqbal M S, Ahmad F. Metformin improves sarcopenia-related quality of life in geriatric adults: A randomized controlled trial. Arch Med Res. 2024;55(4), 102998. https://doi.og/10.1016/j.arcmed.2024.102998
-
41. Wei Y K, Chen P B, Ju L L, Deng G H. Causal association of metformin and osteoporosis: A 2-sample Mendelian randomization study. Medicine (Baltimore). 2023;102(43), e35191. https://doi.org/10.1097/MD.0000000000035191
-
42. Zheng L, Shen X, Xie Y, Lian H, Yan S, Wang S. Metformin promotes osteogenic differentiation and prevents hyperglycaemia-induced osteoporosis by suppressing PPARγ expression. Acta Biochim Biophys Sin (Shanghai). 2023;55(3), 394-403. https://doi.org/10.3724/abbs.2023043
-
43. Nirwan N, Vohora D. Linagliptin in combination with metformin ameliorates diabetic osteoporosis through modulating BMP-2 and sclerostin in the high-fat diet fed C57BL/6 mice. Front Endocrinol (Lausanne). 2022;13, 944323. https://doi.org/10.3389/fendo.2022.944323
-
44. Blümel J E, Arteaga E, Aedo S, Arriola-Montenegro J, López M, Martino M, et al. Metformin use is associated with a lower risk of osteoporosis in adult women independent of type 2 diabetes mellitus and obesity. REDLINC IX study. Gynecol Endocrinol. 2020;36(5), 421-425. https://doi.org/10.1080/09513590.2020.1718092
-
45. Brown J C, Spielmann G, Yang S, Compton S L E, Jones L W, Irwin M L, et al. Effects of exercise or metformin on myokine concentrations in patients with breast and colorectal cancer: A phase II multi-centre factorial randomized trial. J Cachexia Sarcopenia Muscle. 2024;15(4), 1520-1527. https://doi.org/10.1002/jcsm.13509
-
46. Varikasuvu S R, Pérez-López F R, Thangappazham B, Raj H, Vykunta A. Effect of metformin intervention on circulating irisin levels in polycystic ovary syndrome: a systematic review and collaborative meta-analysis. Gynecol Endocrinol. 2022;38(3), 207-212. https://doi.org/10.1080/09513590.2021.1998439
-
47. Oliveira F R, Mamede M, Bizzi M F, Rocha A L L, Ferreira C N, Gomes K B, et al. Effects of short term metformin treatment on brown adipose tissue activity and plasma irisin levels in women with polycystic ovary syndrome: A randomized controlled trial. Horm Metab Res. 2020;52(10), 718-723. https://doi.org/10.1055/a-1157-0615
-
48. Toaama H, Sarhat E, Mohammed H. Metformin modulated adipokines biochemical markers in type-2 diabetes patients. Georgian Med News. 2024;(350), 95-97. https://pubmed.ncbi.nlm.nih.gov/39089278/
-
49. Oguz A, Sahin M, Tuzun D, Kurutas E B, Ulgen C, Bozkus O, et al. Irisin is a predictor of sarcopenic obesity in type 2 diabetes mellitus: A cross-sectional study. Medicine (Baltimore).2021;100(26), e26529. https://doi.org/10.1097/MD.0000000000026529
-
50. Baek J Y, Jang I Y, Jung H W, Park S J, Lee J Y, Choi E, et al. Serum irisin level is independent of sarcopenia and related muscle parameters in older adults. Exp Gerontol. 2022;162, 111744. https://doi.org/10.1016/j.exger.2022.111744
-
51. AlKhairi I, Cherian P, Abu-Farha M, Madhoun A A, Nizam R, Melhem M, et al. Increased expression of meteorin-like hormone in type 2 diabetes and obesity and its association with irisin. Cells. 2019;8(10), 1283. https://doi.org/10.3390/cells8101283
-
52. Berezin A A, Lichtenauer M, Boxhammer E, Stöhr E, Berezin A E. Discriminative value of serum irisin in prediction of heart failure with different phenotypes among patients with type 2 diabetes mellitus. Cells. 2022;11(18), 2794. https://doi.org/10.3390/cells11182794
-
53. Lee E J, Ahmad S S, Lim J H, Ahmad K, Shaikh S, Lee Y S, et al. Interaction of fibromodulin and myostatin to regulate skeletal muscle aging: An opposite regulation in muscle aging, diabetes, and intracellular lipid accumulation. Cells. 2021;10(8), 2083. https://doi.org/10.3390/cells10082083
-
54. Shabkhiz F, Khalafi M, Rosenkranz S, Karimi P, Moghadami K. Resistance training attenuates circulating FGF-21 and myostatin and improves insulin resistance in elderly men with and without type 2 diabetes mellitus: A randomised controlled clinical trial. Eur J Sport Sci. 2021;21(4), 636-645. https://doi.org/10.1080/17461391.2020.1762755
-
55. Carvalho L P, Basso-Vanelli R P, Di Thommazo-Luporini L, Mendes R G, Oliveira-Junior M C, Vieira R P, et al. Myostatin and adipokines: The role of the metabolically unhealthy obese phenotype in muscle function and aerobic capacity in young adults. Cytokine. 2018;107, 118–124. https://doi.org/10.1016/j.cyto.2017.12.008
-
56. Li X, Kong X, Li R. Correlation between lipoprotein(a), albuminuria, myostatin and sarcopenia in elderly patients with type 2 diabetes. J. Diabetes Complicat. 2023;37, 108382. https://doi.org/10.1016/j.jdiacomp.2022.108382
-
57. Chen S, Yan S, Aiheti N, Kuribanjiang K, Yao X, Wang Q, et al. A bi-directional Mendelian randomization study of sarcopenia-related traits and type 2 diabetes mellitus. Front Endocrinol (Lausanne). 2023;14, 1109800. https://doi.org/10.3389/fendo.2023.1109800
-
58. LeRoith D, Biessels G J, Braithwaite S S, Casanueva F F, Draznin B, Halter J B, et al. Treatment of diabetes in older adults: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2019;104(5), 1520-1574. https://doi.org/10.1210/jc.2019-00198
-
59. Bron M, Wilson C, Fleck P. A post hoc analysis of HbA1c, hypoglycemia, and weight change outcomes with alogliptin vs glipizide in older patients with type 2 diabetes. Diabetes Ther. 2014;5(2), 521-534. https://doi.orh/10.1007/s13300-014-0088-5
-
60. Espeland M A, Pratley R E, Rosenstock J, Kadowaki T, Seino Y, Zinman B, et al. Cardiovascular outcomes and safety with linagliptin, a dipeptidyl peptidase-4 inhibitor, compared with the sulphonylurea glimepiride in older people with type 2 diabetes: A subgroup analysis of the randomized CAROLINA trial. Diabetes Obes Metab. 2021;23(2), 569-580. https://doi.org/10.1111/dom.14254
-
61. Fouad Algendy A, Illigens B, Alyazeedi A. Increased frequency of severe hypoglycemia with the modified-release gliclazide compared to glimepiride in diabetic older adults; Propensity Score-adjusted analysis. Diabetes Metab Syndr Obes. 2022;15, 1563-1575. https://doi.org/10.2147/DMSO.S339331
-
62. Li M, Liu H, Shao H, Zhang P, Gao M, Huang L, et al. Glyburide attenuates B(a)p and LPS-induced inflammation-related lung tumorigenesis in mice. Environ Toxicol. 2021;36(8), 1713-1722. https://doi.org/10.1002/tox.23293
-
63. Tricarico D, Selvaggi M, Passantino G, De Palo P, Dario C, Centoducati P, et al. ATP sensitive potassium channels in the skeletal muscle function: involvement of the KCNJ11 (kir6.2) gene in the determination of mechanical Warner Bratzer shear force. Front Physiol. 2016;7, 167. https://doi.org/10.3389/fphys.2016.00167
-
64. Cetrone M, Mele A, Tricarico D. Effects of the antidiabetic drugs on the age-related atrophy and sarcopenia associated with diabetes type II. Curr Diabetes Rev. 2014;10(4), 231-237. https://doi.org/10.2174/1573399810666140918121022
-
65. Demirel S, Ozyener F. Irisin relaxes rat trachea via KV channels, KATP channels, and BKCa channels. Protein Pept Lett 2022;29(9), 760-768. https://doi.org/10.2174/0929866529666220729115541
-
66. Kalaitzoglou E, Fowlkes J L, Popescu I, Thrailkill K M. Diabetes pharmacotherapy and effects on the musculoskeletal system. Diabetes Metab Res Rev. 2019;35(2), e3100. https://doi.org/10.1002/dmrr.3100
-
67. Mele A, Calzolaro S, Cannone G, Cetrone M, Conte D, Tricarico D. Database search of spontaneous reports and pharmacological investigations on the sulfonylureas and glinides-induced atrophy in skeletal muscle. Pharmacol Res Perspect. 2014;2(1), e00028. https://doi.org/10.1002/prp2.28
-
68. Li Y, Wang X, Zhang Y. Clinical effects of exercise rehabilitation combined with repaglinide in the treatment of diabetes. Dis Markers. 2022, 6309188. https://doi.org/10.1155/2022/6309188
-
69. Sohi Y H, Golestani A, Panahi G, Tabatabaei-Malazy O, Khalagi K, Fahimfar N, et al. The association between anti-diabetic agents and osteoporosis, sarcopenia, and osteosarcopenia among Iranian older adults; Bushehr Elderly Health (BEH) program. Daru. 2024;32(1), 145-159. https://doi.org/10.1007/s40199-023-00497-5
-
70. Chen S Z, Xiao J D. Rosiglitazone and imidapril alone or in combination alleviate muscle and adipose depletion in a murine cancer cachexia model. Tumour Biol. 2014;35(1), 323-332 https://doi.org/10.1007/s13277-013-1043-1
-
71. Trobec K, Palus S, Tschirner A, von Haehling S, Doehner W, Lainscak M. Rosiglitazone reduces body wasting and improves survival in a rat model of cancer cachexia. Nutrition. 2014;30(9), 1069-1075. https://doi.org/10.1016/j.nut.2013.12.005
-
72. Langer H T, Ramsamooj S, Dantas E, Murthy A, Ahmed M, Ahmed T, et al. Restoring adiponectin via rosiglitazone ameliorates tissue wasting in mice with lung cancer. Acta Physiol (Oxf). 2024;240(8), e14167. https://doi.org/10.1111/apha.14167
-
73. Mehta D, Dankert J, Yim N, Leclerc K, Leucht P. Rosiglitazone induces adipogenesis of both marrow and periosteum derived mesenchymal stem cells during endochondral fracture healing. J Orthop Sci. 2023;28(2), 460-467 https://doi.org/10.1016/j.jos.2021.11.005
-
74. Clayton S A, Mizener A D, Whetsell M, Rentz L E, Meadows E, Geldenhuys W, et al. Preclinical multi-omic assessment of pioglitazone in skeletal muscles of mice implanted with human HER2/neu overexpressing breast cancer xenografts. Cancers (Basel). 2024;16(21), 3640. https://doi.org/10.3390/cancers16213640
-
75. Son O. Comparison of the effect of dapagliflozin and pioglitazone on the risk of osteoporosis in postmenopausal women with type-2 diabetes. Pak J Med Sci. 2023;39(5), 1238-1242. https://doi.org/10.12669/pjms.39.5.7580
-
76. Di Maio G, Alessio N, Peluso G, Perrotta S, Monda M, Di Bernardo G. Molecular and physiological effects of browning agents on white adipocytes from bone marrow mesenchymal stromal cells. Int J Mol Sci. 2022;23(20), 12151. https://doi.org/10.3390/ijms232012151
-
77. Mashayekhi M, Nian H, Mayfield D, Devin J K, Gamboa J L, Yu C, et al. Weight loss-independent effect of liraglutide on insulin sensitivity in individuals with obesity and prediabetes. Diabetes. 2024;73(1):38-50. https://doi.org/10.2337/db23-0356
-
78. Takuma K, Fuchigami A, Shigiyama F, Kumashiro N, Hirose T. Comparison of the effects of sitagliptin and dapagliflozin on time in range in Japanese patients with type 2 diabetes stratified by body mass index: A sub-analysis of the DIVERSITY-CVR study. Diabetes Obes Metab. 2023;25(8), 2131-2141. https://doi.org/10.1111/dom.15089
-
79. Yang B R, Cha S H, Lee K E, Kim J W, Lee J, Shin, K H. Effect of dipeptidyl peptidase IV inhibitors, thiazolidinedione, and sulfonylurea on osteoporosis in patients with type 2 diabetes: population-based cohort study. Osteoporos Int. 2021;32(9), 1705-1712. https://doi.org/10.1007/s00198-020-05801-6
-
80. He J, Zhao D, Peng B, Wang X, Wang S, Zhao X, et al. A novel mechanism of Vildagliptin in regulating bone metabolism and mitigating osteoporosis. Int Immunopharmacol. 2024;130, 111671. https://doi.org/10.1016/j.intimp.2024.111671
-
81. Chen Q, Liu T, Zhou H, Peng H, Yan C. Risk of fractures associated with dipeptidyl peptidase-4 inhibitor treatment: A systematic review and meta-analysis of randomized controlled trials. Diabetes Ther. 2019;10(5), 1879-1892. https://doi.org/10.1007/s13300-019-0668-5
-
82. Wang Q, Ma L, Zhang Y, Zhang L, An Y, Liu J,Wang G. Effect of Sitagliptin on serum irisin levels in patients with newly diagnosed type 2 diabetes mellitus. Diabetes Ther. 2021;12(4), 1029-1039. https://doi.org/10.1007/s13300-021-01023-z
-
83. Yabe D, Shiki K, Homma G, Meinicke T, Ogura Y, Seino Y. EMPA-ELDERLY Investigators. Efficacy and safety of the sodium-glucose co-transporter-2 inhibitor empagliflozin in elderly Japanese adults (≥65 years) with type 2 diabetes: A randomized, double-blind, placebo-controlled, 52-week clinical trial (EMPA-ELDERLY). Diabetes Obes Metab. 2023;25(12), 3538-3548. https://doi.0rg/10.1111/dom.15249
-
84. Huang Q, Chen J, Liao S, Long J, Fang R, He Y, et al. The SGLT2 inhibitor empagliflozin inhibits skeletal muscle fibrosis in naturally aging male mice through the AMPKα/MMP9/TGF-β1/Smad pathway. Biogerontology. 2024;25(3), 567-581. https://doi.org/10.1007/s10522-024-10093-y
-
85. Yang S, Lin Y, Xie Y, Fu T, Wu T, Lan X, et al.Empagliflozin ameliorates the impaired osteogenic differentiation ability of adipose-derived stem cells in diabetic osteoporosis by activating autophagy. Stem Cells. 2024;42(7), 623-635. https://doi.org/10.1093/stmcls/sxae019
-
86. Li X, McPherson M, Hager M, Lee M, Chang P, Miller R A. Four anti-aging drugs and calorie-restricted diet produce parallel effects in fat, brain, muscle, macrophages, and plasma of young mice. Geroscience. 2023;45(4), 2495-2510. https://doi.org/10.1007/s11357-023-00770-0
-
87. Yamakage H, Tanaka M, Inoue T, Odori S, Kusakabe T, Satoh-Asahara N. Effects of dapagliflozin on the serum levels of fibroblast growth factor 21 and myokines and muscle mass in Japanese patients with type 2 diabetes: A randomized, controlled trial. J Diabetes Investig. 2020;11(3), 653-661. https://doi.org/10.1111/jdi.13179
-
88. De Iuliis A, Montinaro E, Fatati G, Plebani M, Colosimo C. Diabetes mellitus and Parkinson’s disease: dangerous liaisons between insulin and dopamine. Neural Regen Res. 2022;17(3),523-533. https://doi.org/10.4103/1673-5374.320965
-
89. Zhang X, Xu S, Hu Y, Liu Q, Liu C, Chai H, et al. Irisin exhibits neuroprotection by preventing mitochondrial damage in Parkinson’s disease. NPJ Parkinsons Dis. 2023;9(1), 13. https://doi.org/10.1038/s41531-023-00453-9.
-
90. Tu T, Yin S, Pang J, Zhang X, Zhang L, Zhang, Y, et al. Irisin contributes to neuroprotection by promoting mitochondrial biogenesis after experimental subarachnoid hemorrhage. Front Aging Neurosci. 2021;13, 640215. https://doi.org/10.3389/fnagi.2021.640215
-
91. Alzoughool F, Al-Zghoul M B, Ghanim B Y, Atoum M, Aljawarneh Y, Idkaidek N, et al. Impact of sustained exogenous irisin myokine administration on muscle and myocyte integrity in sprague dawley rats. Metabolites. 2022;12(10), 939. https://doi.org/10.3390/metabo12100939
-
92. Smith R C, Lin B K. Myostatin inhibitors as therapies for muscle wasting associated with cancer and other disorders. Curr Opin Support Palliat Care.2013;7(4), 352-360. https://doi.org/10.1097/SPC.0000000000000013
-
93. Lee E J, Shaikh S, Baig M H, Park S Y, Lim J H, Ahmad S S, Ali S, Ahmad K, Choi I. MIF1 and MIF2 myostatin peptide inhibitors as potent muscle mass regulators. Int J Mol Sci. 2022;23(8), 4222. https://doi.org/10.3390/ijms23084222