Review
BibTex RIS Cite

Year 2025, Volume: 45 Issue: 2, 162 - 174, 01.06.2025
https://doi.org/10.52794/hujpharm.1636945
https://izlik.org/JA53YM27ZR

Abstract

References

  • 1. Wang X, Luan F, Yue H, Song C, Wang S, Feng J, et al. Recent advances of smart materials for ocular drug delivery. Adv Drug Deliv Rev. 2023;115006. https://doi.org/10.1016/j. addr.2023.115006
  • 2. Cholkar K, Dasari SR, Pal D, Mitra AK. Eye: Anatomy, physiology and barriers to drug delivery. In: Ocular transporters and receptors. Elsevier; 2013. p. 1–36. https://doi.org/10.1533/9781908818317.1
  • 3. Rozi MF, Sabere ASM. A review on conventional and novel topical ocular drug delivery system. Journal of Pharmacy. 2021;1(1):19–26. https://doi.org/10.31436/jop.v1i1.32
  • 4. Maulvi FA, Shetty KH, Desai DT, Shah DO, Willcox MDP. Recent advances in ophthalmic preparations: Ocular barriers, dosage forms and routes of administration. Int J Pharm. 2021;608:121105. https://doi.org/10.1016/j.ijpharm.2021.121105
  • 5. Gabai A, Zeppieri M, Finocchio L, Salati C. Innovative strategies for drug delivery to the ocular posterior segment. Pharmaceutics. 2023;15(7):1862. https://doi.org/10.3390/pharmaceutics15071862
  • 6. Lu P, Wang R, Xing Y, Gao Y, Zhang Q, Xing B, et al. Development and evaluation of Panax notoginseng saponins contained in an in situ pH-triggered gelling system for sustained ocular posterior segment drug delivery. Acupuncture and Herbal Medicine. 2021;1(2):107–21. https://doi.org/10.1097/hm9.0000000000000020
  • 7. Castro-Balado A, Mondelo-García C, Zarra-Ferro I, Fernández-Ferreiro A. New ophthalmic drug delivery systems. Farmacia Hospitalaria. 2020;44(4):149–57. https://doi.org/10.7399/fh.11388
  • 8. Li S, Chen L, Fu Y. Nanotechnology-based ocular drug delivery systems: recent advances and future prospects. J Nanobiotechnol. 2023;21(1):232. https://doi.org/10.1186/s12951-023-01992-2
  • 9. Lai CF, Shiau FJ. Enhanced and extended Ophthalmic Drug Delivery by pH-Triggered drug-eluting contact lenses with large-pore mesoporous silica nanoparticles. ACS Appl Mater Interfaces. 2023;15(15):18630–8. https://doi.org/10.1021/acsami.2c22860
  • 10. Kim J, Mondal H, Jin R, Yoon HJ, Kim HJ, Jee JP, et al. Cellulose Acetate Phthalate-Based pH-responsive cyclosporine A-loaded contact lens for the treatment of dry eye. Int J Mol Sci. 2023;24(3):2361. https://doi.org/10.3390/ijms24032361
  • 11. Ahmed S, Amin MM, Sayed S. Ocular drug delivery: a comprehensive review. AAPS PharmSciTech. 2023;24(2):66. https://doi.org/10.1208/s12249-023-02516-9
  • 12. Ross M, Hicks EA, Rambarran T, Sheardown H. Thermo-sensitivity and erosion of chitosan crosslinked poly [N-isopropylacrylamide-co-(acrylic acid)-co-(methyl methacrylate)] hydrogels for application to the inferior fornix. Acta Biomater. 2022;141:151–63. https://doi.org/10.1016/j.actbio.2022.01.043
  • 13. Hamed R, Abu Kwiak AD, Al-Adhami Y, Hammad AM, Obaidat R, Abusara OH, et al. Microemulsions as lipid nanosystems loaded into thermoresponsive in situ microgels for local ocular delivery of prednisolone. Pharmaceutics. 2022;14(9):1975. https://doi.org/10.3390/pharmaceutics14091975
  • 14. Cruz-Gálvez CC, Ordaz-Favila JC, Villar-Calvo VM, Cancino-Marentes ME, Bosch-Canto V. Retinoblastoma: Review and new insights. Front Oncol. 2022;12:963780. https://doi.org/10.3389/fonc.2022.963780
  • 15. Yavuz B, Kompella UB. Ocular drug delivery. Pharmacologic Therapy of Ocular Disease. 2017;57–93. https://doi.org/10.1007/164_2016_84
  • 16. Nguyen DD, Lai JY. Advancing the stimuli response of polymer-based drug delivery systems for ocular disease treatment. Polym Chem-UK. 2020;11(44):6988–7008. https://doi.org/10.1039/d0py00919a
  • 17. Mousavikhamene Z, Abdekhodaie MJ, Ahmadieh H. Facilitation of transscleral drug delivery by drug loaded magnetic polymeric particles. Materials Science and Engineering: C. 2017;79:812–20. https://doi.org/10.1016/j.msec.2017.05.015
  • 18. Annala A, Ilochonwu BC, Wilbie D, Sadeghi A, Hennink WE, Vermonden T. Self-Healing Thermosensitive Hydrogel for Sustained Release of Dexamethasone for Ocular Therapy. ACS polymers Au. 2022;3(1):118–31. https://doi.org/10.1021/acspolymersau.2c00038
  • 19. Abbas MN, Khan SA, Sadozai SK, Khalil IA, Anter A, Fouly M El, et al. Nanoparticles loaded thermoresponsive in situ gel for ocular antibiotic delivery against bacterial keratitis. Polymers-Basel. 2022;14(6):1135. https://doi.org/10.3390/polym14061135
  • 20. Sadeq ZA, Sabri LA, Al-Kinani KK. Natural polymer Effect on gelation and rheology of ketotifen-loaded pH-sensitive in situ ocular gel (Carbapol). Journal of Advanced Pharmacy Education and Research. 2022;12(2–2022):45–50. https://doi.org/10.51847/zof4tcfekt
  • 21. Ilochonwu BC, Van Der Lugt SA, Annala A, Di Marco G, Sampon T, Siepmann J, et al. Thermo-responsive Diels-Alder stabilized hydrogels for ocular drug delivery of a corticosteroid and an anti-VEGF fab fragment. J Control Release. 2023;361:334–49. https://doi.org/10.1016/j.jcon- rel.2023.07.052
  • 22. De Luca I, Di Cristo F, Conte R, Peluso G, Cerruti P, Calarco A. In-Situ thermoresponsive hydrogel containing resveratrol-loaded nanoparticles as a localized drug delivery platform for dry eye disease. Antioxidants. 2023;12(5):993. https://doi.org/10.3390/antiox12050993
  • 23. Xu H, Liu Y, Jin L, Chen X, Chen X, Wang Q, et al. Preparation and characterization of ion-sensitive brimonidine tartrate in situ gel for ocular delivery. Pharmaceuticals. 2023;16(1):90. https://doi.org/10.3390/ph16010090
  • 24. Saurabh SS, Rathore KS, Ghosh S. Formulation and evaluation of cetirizine hydrochloride pH trigged in-situ ocular gel. Int J App Pharm. 2023;15(2):106–16. https://doi.org/10.22159/ijap.2023v15i2.46040
  • 25. Bhattacharjee J, Roy S. Smart materials for sustainable energy. Nat Resour Conserv Res. 2024;7:5536. https://doi.org/10.24294/nrcr.v7i1.5536
  • 26. Yin Y, Rogers JA. Introduction: smart materials. Vol. 122, Chem Rev. ACS Publications; 2022. p. 4885–6. https://doi.org/10.1021/acs.chemrev.2c00074
  • 27. Polat HK. In situ gels triggered by temperature for ocular delivery of dexamethasone and dexamethasone/SBE-β-CD complex. J Res Pharm. 2022;26(4):873–83. https://doi.org/10.29228/jrp.186
  • 28. Qi R, Mundy E, Amsden BG. Visible light degradable micelles for intraocular corticosteroid delivery. J Mater Chem B. 2024;12(8):2099–113. https://doi.org/10.1039/d3tb02793g
  • 29. Zhu Q, Wei Y, Li C, Mao S. Inner layer-embedded contact lenses for ion-triggered controlled drug delivery. Mater Sci Eng C. 2018;93:36–48. https://doi.org/10.1016/j.msec.2018.07.065
  • 30. Allam A, Elsabahy M, El Badry M, Eleraky NE. Betaxolol-loaded niosomes integrated within pH-sensitive in situ forming gel for management of glaucoma. Int J Pharm. 2021;598:120380. https://doi.org/10.1016/j.ijpharm.2021.120380
  • 31. Cao X, Wang C, Deng Z, Zhong Y, Chen H. Efficient ocular delivery of siRNA via pH-sensitive vehicles for corneal neovascularization inhibition. Int J Pharm X. 2023;5:100183. https://doi.org/10.1016/j.ijpx.2023.100183
  • 32. Noreen S, Ghumman SA, Batool F, Ijaz B, Basharat M, Noureen S, et al. Terminalia arjuna gum/alginate in situ gel system with prolonged retention time for ophthalmic drug delivery. Int J Biol Macromol. 2020;152:1056–67. https://doi.org/10.1016/j.ijbiomac.2019.10.193
  • 33. Terreni E, Zucchetti E, Tampucci S, Burgalassi S, Monti D, Chetoni P. Combination of nanomicellar technology and in situ gelling polymer as ocular drug delivery system (ODDS) for cyclosporine-A. Pharmaceutics. 2021;13(2):192. https://doi.org/10.3390/pharmaceutics13020192
  • 34. Maddiboyina B, Jhawat V, Desu PK, Gandhi S, Nakkala RK, Singh S. Formulation and evaluation of thermosensitive flurbiprofen in situ nano gel for the ocular delivery. J Biomat Sci-Polym E. 2021;32(12):1584–97. https://doi.org/10.1080/09205063.2021.1927460
  • 35. Wang L, Pan H, Gu D, Sun H, Chen K, Tan G, et al. A novel carbon dots/thermo-sensitive in situ gel for a composite ocular drug delivery system: characterization, ex-vivo imaging, and in vivo evaluation. Int J Mol Sci. 2021;22(18):9934. https://doi.org/10.3390/ijms22189934
  • 36. Permana AD, Utami RN, Layadi P, Himawan A, Juniarti N, Anjani QK, et al. Thermosensitive and mucoadhesive in situ ocular gel for effective local delivery and antifungal activity of itraconazole nanocrystal in the treatment of fungal keratitis. Int J Pharm. 2021;602:120623. https://doi.org/10.1016/j.ijp-harm.2021.120623
  • 37. Morsi N, Ibrahim M, Refai H, El Sorogy H. Nanoemulsion-based electrolyte triggered in situ gel for ocular delivery of acetazolamide. Eur J Pharm Sci. 2017;104:302–14. https://doi.org/10.1016/j.ejps.2017.04.013
  • 38. Tagalpallewar A, Rai P, Polshettiwar S, Manish W, Baheti A. Formulation, optimization and evaluation of ion triggered ophthalmic in situ gel. Pharm Res Int. 2021;33:58–77. https://doi.org/10.9734/jpri/2021/v33i28a31511
  • 39. Xia H, Yang J, Song F, Pu G, Dong F, Liang Z, et al. Development of ion-triggered in situ gel containing ketoconazole/hydroxypropyl-β-cyclodextrin for ocular delivery: in vitro and in vivo evaluation. Drug Deliv. 2024;31(1):2424217. https://doi.org/10.1080/10717544.2024.2424217
  • 40. Tian B, Liu Y, Liu J. Smart stimuli-responsive drug delivery systems based on cyclodextrin: A review. Carbohyd Polym. 2021;251:116871. https://doi.org/10.1016/j.carbpol.2020.116871
  • 41. Alvarez-Lorenzo C, Concheiro A. Smart drug delivery systems: from fundamentals to the clinic. Chem Commun. 2014;50(58):7743–65. https://doi.org/10.1039/c4cc01429d
  • 42. Bassetto M, Ajoy D, Poulhes F, Obringer C, Walter A, Messadeq N, et al. Magnetically assisted drug delivery of topical eye drops maintains retinal function in vivo in mice. Pharmaceutics. 2021;13(10):1650. https://doi.org/10.3390/pharmace-utics13101650
  • 43. Basuki JS, Qie F, Mulet X, Suryadinata R, Vashi A V, Peng YY, et al. Photo-modulated therapeutic protein release from a hydrogel depot using visible light. Angew Chem-Ger Edit. 2017;129(4):986–91. https://doi.org/10.1002/ange.201610618
  • 44. Yu Y, Huang Y, Feng W, Yang M, Shao B, Li J, et al. NIR-triggered upconversion nanoparticles@ thermo-sensitive liposome hybrid theranostic nanoplatform for controlled drug delivery. RSC Adv. 2021;11(46):29065–72. https://doi.org/10.1039/d1ra04431a
  • 45. Long K, Yang Y, Lv W, Jiang K, Li Y, Lo ACY, et al. Green light-triggered intraocular drug release for intravenous chemotherapy of retinoblastoma. Adv Sci. 2021;8(20):2101754. https://doi.org/10.1002/advs.202101754
  • 46. Zheng Q, Ge C, Li K, Wang L, Xia X, Liu X, et al. Remote-controlled dexamethasone-duration on eye-surface with a micelle-magnetic nanoparticulate co-delivery system for dry eye disease. Acta Pharm Sin B. 2024; https://doi.org/10.1016/j.apsb.2024.05.004
  • 47. Wang C, Seo SJ, Kim JS, Lee SH, Jeon JK, Kim JW, et al. Intravitreal implantable magnetic micropump for on-demand VEGFR-targeted drug delivery. J Control Release. 2018;283:105–12. https://doi.org/10.1016/j.jcon-rel.2018.05.030
  • 48. Seggio M, Tessaro AL, Nostro A, Ginestra G, Graziano ACE, Cardile V, et al. A thermoresponsive gel photoreleasing nitric oxide for potential ocular applications. J Mater Chem B. 2020;8(39):9121–8. https://doi.org/10.1039/d0tb01194k
  • 49. Pilipenko IM, Korzhikov-Vlakh VA, Zakharova N V, Urtti A, Tennikova TB. Thermo-and pH-sensitive glycosaminoglycans derivatives obtained by controlled grafting of poly (N-isopropylacrylamide). Carbohyd Polym. 2020;248:116764. https://doi.org/10.1016/j.carbpol.2020.116764
  • 50. Yang H, Ding S, Fan D, Zhu Z, Fan Y, Li J, et al. Design and evaluation of a dual-sensitive in situ gel for the controlled release of pranoprofen. AAPS PharmSciTech. 2024;25(2):35. https://doi.org/10.1208/s12249-024-02748-3
  • 51. Wang S, Chen B, Ouyang L, Wang D, Tan J, Qiao Y, et al. A novel stimuli-responsive injectable antibacterial hydrogel to achieve synergetic photothermal/gene-targeted therapy towards uveal melanoma. Adv Sci. 2021;8(18):2004721. https://doi.org/10.1002/advs.202004721
  • 52. Zhu K, Qian S, Guo H, Wang Q, Chu X, Wang X, et al. pH-activatable organic nanoparticles for efficient low-temperature photothermal therapy of ocular bacterial infection. ACS Nano. 2022;16(7):11136–51. https://doi.org/10.1021/acsnano.2c03971

Smart Ocular Drug Delivery Systems: Design Principles and Recent Advances

Year 2025, Volume: 45 Issue: 2, 162 - 174, 01.06.2025
https://doi.org/10.52794/hujpharm.1636945
https://izlik.org/JA53YM27ZR

Abstract

The effective treatment of ocular diseases is confronted by various factors, including ocular barriers, limited drug bioavailability, invasive procedures, and low patient compliance. Moreover, new ocular delivery systems have only overcome these problems to a certain extent. In response, smart ocular drug delivery systems have gained attention due to their ability to enable modified drug release along with the additional features they provide to the delivery system, the drug, and the treatment. Smart materials (endogenous and exogenous stimuli responsive) allow the carrier systems to exhibit a variety of properties. Studies on smart ocular drug delivery systems are relatively new and the interest in exogenous stimuli sensitive smart materials has increased in recent years. Therefore, in this review we focused on scientific advancements of these technologies to present a clear understanding of design principles which is key to developing more efficient and reliable ocular drug delivery systems. This review covers ocular barriers, diseases, drug delivery routes, conventional and novel ocular delivery systems along with a focus on the achievements of the smart ocular drug delivery systems developed in recent years. Special emphasis was given to the improved, reduced, or enabled properties of these drug delivery systems.

References

  • 1. Wang X, Luan F, Yue H, Song C, Wang S, Feng J, et al. Recent advances of smart materials for ocular drug delivery. Adv Drug Deliv Rev. 2023;115006. https://doi.org/10.1016/j. addr.2023.115006
  • 2. Cholkar K, Dasari SR, Pal D, Mitra AK. Eye: Anatomy, physiology and barriers to drug delivery. In: Ocular transporters and receptors. Elsevier; 2013. p. 1–36. https://doi.org/10.1533/9781908818317.1
  • 3. Rozi MF, Sabere ASM. A review on conventional and novel topical ocular drug delivery system. Journal of Pharmacy. 2021;1(1):19–26. https://doi.org/10.31436/jop.v1i1.32
  • 4. Maulvi FA, Shetty KH, Desai DT, Shah DO, Willcox MDP. Recent advances in ophthalmic preparations: Ocular barriers, dosage forms and routes of administration. Int J Pharm. 2021;608:121105. https://doi.org/10.1016/j.ijpharm.2021.121105
  • 5. Gabai A, Zeppieri M, Finocchio L, Salati C. Innovative strategies for drug delivery to the ocular posterior segment. Pharmaceutics. 2023;15(7):1862. https://doi.org/10.3390/pharmaceutics15071862
  • 6. Lu P, Wang R, Xing Y, Gao Y, Zhang Q, Xing B, et al. Development and evaluation of Panax notoginseng saponins contained in an in situ pH-triggered gelling system for sustained ocular posterior segment drug delivery. Acupuncture and Herbal Medicine. 2021;1(2):107–21. https://doi.org/10.1097/hm9.0000000000000020
  • 7. Castro-Balado A, Mondelo-García C, Zarra-Ferro I, Fernández-Ferreiro A. New ophthalmic drug delivery systems. Farmacia Hospitalaria. 2020;44(4):149–57. https://doi.org/10.7399/fh.11388
  • 8. Li S, Chen L, Fu Y. Nanotechnology-based ocular drug delivery systems: recent advances and future prospects. J Nanobiotechnol. 2023;21(1):232. https://doi.org/10.1186/s12951-023-01992-2
  • 9. Lai CF, Shiau FJ. Enhanced and extended Ophthalmic Drug Delivery by pH-Triggered drug-eluting contact lenses with large-pore mesoporous silica nanoparticles. ACS Appl Mater Interfaces. 2023;15(15):18630–8. https://doi.org/10.1021/acsami.2c22860
  • 10. Kim J, Mondal H, Jin R, Yoon HJ, Kim HJ, Jee JP, et al. Cellulose Acetate Phthalate-Based pH-responsive cyclosporine A-loaded contact lens for the treatment of dry eye. Int J Mol Sci. 2023;24(3):2361. https://doi.org/10.3390/ijms24032361
  • 11. Ahmed S, Amin MM, Sayed S. Ocular drug delivery: a comprehensive review. AAPS PharmSciTech. 2023;24(2):66. https://doi.org/10.1208/s12249-023-02516-9
  • 12. Ross M, Hicks EA, Rambarran T, Sheardown H. Thermo-sensitivity and erosion of chitosan crosslinked poly [N-isopropylacrylamide-co-(acrylic acid)-co-(methyl methacrylate)] hydrogels for application to the inferior fornix. Acta Biomater. 2022;141:151–63. https://doi.org/10.1016/j.actbio.2022.01.043
  • 13. Hamed R, Abu Kwiak AD, Al-Adhami Y, Hammad AM, Obaidat R, Abusara OH, et al. Microemulsions as lipid nanosystems loaded into thermoresponsive in situ microgels for local ocular delivery of prednisolone. Pharmaceutics. 2022;14(9):1975. https://doi.org/10.3390/pharmaceutics14091975
  • 14. Cruz-Gálvez CC, Ordaz-Favila JC, Villar-Calvo VM, Cancino-Marentes ME, Bosch-Canto V. Retinoblastoma: Review and new insights. Front Oncol. 2022;12:963780. https://doi.org/10.3389/fonc.2022.963780
  • 15. Yavuz B, Kompella UB. Ocular drug delivery. Pharmacologic Therapy of Ocular Disease. 2017;57–93. https://doi.org/10.1007/164_2016_84
  • 16. Nguyen DD, Lai JY. Advancing the stimuli response of polymer-based drug delivery systems for ocular disease treatment. Polym Chem-UK. 2020;11(44):6988–7008. https://doi.org/10.1039/d0py00919a
  • 17. Mousavikhamene Z, Abdekhodaie MJ, Ahmadieh H. Facilitation of transscleral drug delivery by drug loaded magnetic polymeric particles. Materials Science and Engineering: C. 2017;79:812–20. https://doi.org/10.1016/j.msec.2017.05.015
  • 18. Annala A, Ilochonwu BC, Wilbie D, Sadeghi A, Hennink WE, Vermonden T. Self-Healing Thermosensitive Hydrogel for Sustained Release of Dexamethasone for Ocular Therapy. ACS polymers Au. 2022;3(1):118–31. https://doi.org/10.1021/acspolymersau.2c00038
  • 19. Abbas MN, Khan SA, Sadozai SK, Khalil IA, Anter A, Fouly M El, et al. Nanoparticles loaded thermoresponsive in situ gel for ocular antibiotic delivery against bacterial keratitis. Polymers-Basel. 2022;14(6):1135. https://doi.org/10.3390/polym14061135
  • 20. Sadeq ZA, Sabri LA, Al-Kinani KK. Natural polymer Effect on gelation and rheology of ketotifen-loaded pH-sensitive in situ ocular gel (Carbapol). Journal of Advanced Pharmacy Education and Research. 2022;12(2–2022):45–50. https://doi.org/10.51847/zof4tcfekt
  • 21. Ilochonwu BC, Van Der Lugt SA, Annala A, Di Marco G, Sampon T, Siepmann J, et al. Thermo-responsive Diels-Alder stabilized hydrogels for ocular drug delivery of a corticosteroid and an anti-VEGF fab fragment. J Control Release. 2023;361:334–49. https://doi.org/10.1016/j.jcon- rel.2023.07.052
  • 22. De Luca I, Di Cristo F, Conte R, Peluso G, Cerruti P, Calarco A. In-Situ thermoresponsive hydrogel containing resveratrol-loaded nanoparticles as a localized drug delivery platform for dry eye disease. Antioxidants. 2023;12(5):993. https://doi.org/10.3390/antiox12050993
  • 23. Xu H, Liu Y, Jin L, Chen X, Chen X, Wang Q, et al. Preparation and characterization of ion-sensitive brimonidine tartrate in situ gel for ocular delivery. Pharmaceuticals. 2023;16(1):90. https://doi.org/10.3390/ph16010090
  • 24. Saurabh SS, Rathore KS, Ghosh S. Formulation and evaluation of cetirizine hydrochloride pH trigged in-situ ocular gel. Int J App Pharm. 2023;15(2):106–16. https://doi.org/10.22159/ijap.2023v15i2.46040
  • 25. Bhattacharjee J, Roy S. Smart materials for sustainable energy. Nat Resour Conserv Res. 2024;7:5536. https://doi.org/10.24294/nrcr.v7i1.5536
  • 26. Yin Y, Rogers JA. Introduction: smart materials. Vol. 122, Chem Rev. ACS Publications; 2022. p. 4885–6. https://doi.org/10.1021/acs.chemrev.2c00074
  • 27. Polat HK. In situ gels triggered by temperature for ocular delivery of dexamethasone and dexamethasone/SBE-β-CD complex. J Res Pharm. 2022;26(4):873–83. https://doi.org/10.29228/jrp.186
  • 28. Qi R, Mundy E, Amsden BG. Visible light degradable micelles for intraocular corticosteroid delivery. J Mater Chem B. 2024;12(8):2099–113. https://doi.org/10.1039/d3tb02793g
  • 29. Zhu Q, Wei Y, Li C, Mao S. Inner layer-embedded contact lenses for ion-triggered controlled drug delivery. Mater Sci Eng C. 2018;93:36–48. https://doi.org/10.1016/j.msec.2018.07.065
  • 30. Allam A, Elsabahy M, El Badry M, Eleraky NE. Betaxolol-loaded niosomes integrated within pH-sensitive in situ forming gel for management of glaucoma. Int J Pharm. 2021;598:120380. https://doi.org/10.1016/j.ijpharm.2021.120380
  • 31. Cao X, Wang C, Deng Z, Zhong Y, Chen H. Efficient ocular delivery of siRNA via pH-sensitive vehicles for corneal neovascularization inhibition. Int J Pharm X. 2023;5:100183. https://doi.org/10.1016/j.ijpx.2023.100183
  • 32. Noreen S, Ghumman SA, Batool F, Ijaz B, Basharat M, Noureen S, et al. Terminalia arjuna gum/alginate in situ gel system with prolonged retention time for ophthalmic drug delivery. Int J Biol Macromol. 2020;152:1056–67. https://doi.org/10.1016/j.ijbiomac.2019.10.193
  • 33. Terreni E, Zucchetti E, Tampucci S, Burgalassi S, Monti D, Chetoni P. Combination of nanomicellar technology and in situ gelling polymer as ocular drug delivery system (ODDS) for cyclosporine-A. Pharmaceutics. 2021;13(2):192. https://doi.org/10.3390/pharmaceutics13020192
  • 34. Maddiboyina B, Jhawat V, Desu PK, Gandhi S, Nakkala RK, Singh S. Formulation and evaluation of thermosensitive flurbiprofen in situ nano gel for the ocular delivery. J Biomat Sci-Polym E. 2021;32(12):1584–97. https://doi.org/10.1080/09205063.2021.1927460
  • 35. Wang L, Pan H, Gu D, Sun H, Chen K, Tan G, et al. A novel carbon dots/thermo-sensitive in situ gel for a composite ocular drug delivery system: characterization, ex-vivo imaging, and in vivo evaluation. Int J Mol Sci. 2021;22(18):9934. https://doi.org/10.3390/ijms22189934
  • 36. Permana AD, Utami RN, Layadi P, Himawan A, Juniarti N, Anjani QK, et al. Thermosensitive and mucoadhesive in situ ocular gel for effective local delivery and antifungal activity of itraconazole nanocrystal in the treatment of fungal keratitis. Int J Pharm. 2021;602:120623. https://doi.org/10.1016/j.ijp-harm.2021.120623
  • 37. Morsi N, Ibrahim M, Refai H, El Sorogy H. Nanoemulsion-based electrolyte triggered in situ gel for ocular delivery of acetazolamide. Eur J Pharm Sci. 2017;104:302–14. https://doi.org/10.1016/j.ejps.2017.04.013
  • 38. Tagalpallewar A, Rai P, Polshettiwar S, Manish W, Baheti A. Formulation, optimization and evaluation of ion triggered ophthalmic in situ gel. Pharm Res Int. 2021;33:58–77. https://doi.org/10.9734/jpri/2021/v33i28a31511
  • 39. Xia H, Yang J, Song F, Pu G, Dong F, Liang Z, et al. Development of ion-triggered in situ gel containing ketoconazole/hydroxypropyl-β-cyclodextrin for ocular delivery: in vitro and in vivo evaluation. Drug Deliv. 2024;31(1):2424217. https://doi.org/10.1080/10717544.2024.2424217
  • 40. Tian B, Liu Y, Liu J. Smart stimuli-responsive drug delivery systems based on cyclodextrin: A review. Carbohyd Polym. 2021;251:116871. https://doi.org/10.1016/j.carbpol.2020.116871
  • 41. Alvarez-Lorenzo C, Concheiro A. Smart drug delivery systems: from fundamentals to the clinic. Chem Commun. 2014;50(58):7743–65. https://doi.org/10.1039/c4cc01429d
  • 42. Bassetto M, Ajoy D, Poulhes F, Obringer C, Walter A, Messadeq N, et al. Magnetically assisted drug delivery of topical eye drops maintains retinal function in vivo in mice. Pharmaceutics. 2021;13(10):1650. https://doi.org/10.3390/pharmace-utics13101650
  • 43. Basuki JS, Qie F, Mulet X, Suryadinata R, Vashi A V, Peng YY, et al. Photo-modulated therapeutic protein release from a hydrogel depot using visible light. Angew Chem-Ger Edit. 2017;129(4):986–91. https://doi.org/10.1002/ange.201610618
  • 44. Yu Y, Huang Y, Feng W, Yang M, Shao B, Li J, et al. NIR-triggered upconversion nanoparticles@ thermo-sensitive liposome hybrid theranostic nanoplatform for controlled drug delivery. RSC Adv. 2021;11(46):29065–72. https://doi.org/10.1039/d1ra04431a
  • 45. Long K, Yang Y, Lv W, Jiang K, Li Y, Lo ACY, et al. Green light-triggered intraocular drug release for intravenous chemotherapy of retinoblastoma. Adv Sci. 2021;8(20):2101754. https://doi.org/10.1002/advs.202101754
  • 46. Zheng Q, Ge C, Li K, Wang L, Xia X, Liu X, et al. Remote-controlled dexamethasone-duration on eye-surface with a micelle-magnetic nanoparticulate co-delivery system for dry eye disease. Acta Pharm Sin B. 2024; https://doi.org/10.1016/j.apsb.2024.05.004
  • 47. Wang C, Seo SJ, Kim JS, Lee SH, Jeon JK, Kim JW, et al. Intravitreal implantable magnetic micropump for on-demand VEGFR-targeted drug delivery. J Control Release. 2018;283:105–12. https://doi.org/10.1016/j.jcon-rel.2018.05.030
  • 48. Seggio M, Tessaro AL, Nostro A, Ginestra G, Graziano ACE, Cardile V, et al. A thermoresponsive gel photoreleasing nitric oxide for potential ocular applications. J Mater Chem B. 2020;8(39):9121–8. https://doi.org/10.1039/d0tb01194k
  • 49. Pilipenko IM, Korzhikov-Vlakh VA, Zakharova N V, Urtti A, Tennikova TB. Thermo-and pH-sensitive glycosaminoglycans derivatives obtained by controlled grafting of poly (N-isopropylacrylamide). Carbohyd Polym. 2020;248:116764. https://doi.org/10.1016/j.carbpol.2020.116764
  • 50. Yang H, Ding S, Fan D, Zhu Z, Fan Y, Li J, et al. Design and evaluation of a dual-sensitive in situ gel for the controlled release of pranoprofen. AAPS PharmSciTech. 2024;25(2):35. https://doi.org/10.1208/s12249-024-02748-3
  • 51. Wang S, Chen B, Ouyang L, Wang D, Tan J, Qiao Y, et al. A novel stimuli-responsive injectable antibacterial hydrogel to achieve synergetic photothermal/gene-targeted therapy towards uveal melanoma. Adv Sci. 2021;8(18):2004721. https://doi.org/10.1002/advs.202004721
  • 52. Zhu K, Qian S, Guo H, Wang Q, Chu X, Wang X, et al. pH-activatable organic nanoparticles for efficient low-temperature photothermal therapy of ocular bacterial infection. ACS Nano. 2022;16(7):11136–51. https://doi.org/10.1021/acsnano.2c03971
There are 52 citations in total.

Details

Primary Language English
Subjects Pharmaceutical Delivery Technologies
Journal Section Review
Authors

Burak Emre Çaprak 0009-0008-2250-3780

Fatemeh Shahbazi 0009-0004-9825-8989

Naile Öztürk 0000-0002-7617-8433

Submission Date February 10, 2025
Acceptance Date May 2, 2025
Publication Date June 1, 2025
DOI https://doi.org/10.52794/hujpharm.1636945
IZ https://izlik.org/JA53YM27ZR
Published in Issue Year 2025 Volume: 45 Issue: 2

Cite

Vancouver 1.Çaprak BE, Shahbazi F, Öztürk N. Smart Ocular Drug Delivery Systems: Design Principles and Recent Advances. HUJPHARM [Internet]. 2025 June 1;45(2):162-74. Available from: https://izlik.org/JA53YM27ZR