Review
BibTex RIS Cite

Targeting Pyruvate Kinase: Novel Therapeutic Strategies in Metabolic and Blood Disorders

Year 2025, Volume: 45 Issue: 4, 374 - 387, 01.12.2025
https://doi.org/10.52794/hujpharm.1691229

Abstract

Pyruvate kinase (PK) is a critical enzyme in the final step of glycolysis, catalyzing the conversion of phosphoenolpyruvate to pyruvate, while generating ATP in the process. There are several isoforms of PK, including PKM1, PKM2, PKL, and PKR, expressed in a tissue-specific manner. PKM1 is predominantly found in tissues with high-energy demands, such as muscle, while PKM2 is present in proliferating cells, including tumor cells. PKL is mainly expressed in the liver, and PKR is primarily found in red blood cells. Beyond its role in energy metabolism, PK dysfunction is implicated in various metabolic and hematologic disorders. Defects in PK, such as pyruvate kinase deficiency, lead to hemolytic anemia and other blood disorders. Current drug discovery efforts, including the development of Mitapivat, aim to address PK deficiencies and improve red blood cell function. Mitapivat, a potent activator of PK, has shown promise in clinical trials for treating PK deficiency. The future of PK-targeted therapies looks bright, with ongoing research focusing on the development of selective PK activators and inhibitors to treat metabolic diseases, cancer, and hematologic disorders. These therapeutic strategies offer the potential to enhance cellular metabolism and improve patient outcomes.

Thanks

I would like to express my sincere gratitude to my Ph. D guide Dr T Yunus Pasha to contributed to this review. I extend my deepest appreciation to our institution “Faculty of Pharmacy-Sri Adichunchanagiri College of Pharmacy” for providing the necessary resources and support.

References

  • 1. Gupta V, Bamezai RNK. Human pyruvate kinase M2: A multifunctional protein. Protein Science. 2010;19:2031–44. https://doi.org/10.1002/pro.505.
  • 2. Bar-Even A, Flamholz A, Noor E, Milo R. Rethinking glycolysis: on the biochemical logic of metabolic pathways. Nat Chem Biol. 2012;8:509–17. https://doi.org/10.1038/nchembio.971.
  • 3. Schormann N, Hayden KL, Lee P, Banerjee S, Chattopadhyay D. An overview of structure, function, and regulation of pyruvate kinases. Protein Science. 2019;28:1771–84. https://doi.org/10.1002/pro.3691.
  • 4. Stincone A, Prigione A, Cramer T, Wamelink MMC, Campbell K, Cheung E, et al. The return of metabolism: biochemistry and physiology of the pentose phosphate pathway. Biological Reviews. 2015;90:927–63. https://doi.org/10.1111/brv.12140.
  • 5. Israelsen WJ, Vander Heiden MG. Pyruvate kinase: Function, regulation and role in cancer. Semin Cell Dev Biol. 2015;43:43–51. https://doi.org/10.1016/j.semcdb.2015.08.004.
  • 6. Toller-Kawahisa JE, Viacava PR, Palsson-McDermott EM, Nascimento DC, Cervantes-Silva MP, O’Carroll SM, et al. Metabolic reprogramming of macrophages by PKM2 promotes IL-10 production via adenosine. Cell Rep. 2025;44:115172. https://doi.org/10.1016/j.celrep.2024.115172.
  • 7. Luke N, Hillier K, Al-Samkari H, Grace RF. Updates and advances in pyruvate kinase deficiency. Trends Mol Med. 2023;29:406–18. https://doi.org/10.1016/j.molmed.2023.02.005.
  • 8. Zahra K, Dey T, Ashish, Mishra SP, Pandey U. Pyruvate Kinase M2 and Cancer: The Role of PKM2 in Promoting Tumorigenesis. Front Oncol. 2020;10. https://doi.org/10.3389/fonc.2020.00159.
  • 9. Jadhav M, Sharma S, Kalmegh V, Kapoor S, Shard A. Moonlighting Effects of Pyruvate Kinase M2 in Chronic Liver Diseases. Gene Expr. 2023;22:250–7. https://doi.org/10.14218/GE.2023.00038.
  • 10. Park B, Kim JY, Riffey OF, Dowker-Key P, Bruckbauer A, McLoughlin J, et al. Pyruvate kinase M1 regulates butyrate metabolism in cancerous colonocytes. Sci Rep. 2022;12:8771. https://doi.org/10.1038/s41598-022-12827-9.
  • 11. Olea-Flores M, Sharma T, Verdejo-Torres O, DiBartolomeo I, Thompson PR, Padilla-Benavides T, et al. Muscle-Specific Pyruvate Kinase Isoforms, Pkm1 and Pkm2, Regulate Mammalian SWI/SNF Proteins and Histone 3 Phosphorylation During Myoblast Differentiation. 2024. https://doi.org/10.1101/2024.04.10.588959.
  • 12. Dombrauckas JD, Santarsiero BD, Mesecar AD. Structural Basis for Tumor Pyruvate Kinase M2 Allosteric Regulation and Catalysis. Biochemistry. 2005;44:9417–29. https://doi.org/10.1021/bi0474923.
  • 13. Mazurek S, Boschek CB, Hugo F, Eigenbrodt E. Pyruvate kinase type M2 and its role in tumor growth and spreading. Semin Cancer Biol. 2005;15:300–8. https://doi.org/10.1016/j.semcancer.2005.04.009.
  • 14. Palsson-McDermott EM, Dyck L, Zasłona Z, Menon D, McGettrick AF, Mills KHG, et al. Pyruvate Kinase M2 Is Required for the Expression of the Immune Checkpoint PD-L1 in Immune Cells and Tumors. Front Immunol. 2017;8. https://doi.org/10.3389/fimmu.2017.01300.
  • 15. Eigenbrodt E, Reinacher M, Scheefers-Borchel U, Scheefers H, Friis R. Double role for pyruvate kinase type M2 in the expansion of phosphometabolite pools found in tumor cells. Crit Rev Oncog. 1992;3:91–115.
  • 16. Palsson-McDermott EM, Curtis AM, Goel G, Lauterbach MAR, Sheedy FJ, Gleeson LE, et al. Pyruvate Kinase M2 Regulates Hif-1α Activity and IL-1β Induction and Is a Critical Determinant of the Warburg Effect in LPS-Activated Macrophages. Cell Metab. 2015;21:65–80. https://doi.org/10.1016/j.cmet.2014.12.005.
  • 17. Nain-Perez A, Nilsson O, Lulla A, Håversen L, Brear P, Liljenberg S, et al. Tuning liver pyruvate kinase activity up or down with a new class of allosteric modulators. Eur J Med Chem. 2023;250:115177.
  • 18. Wang H, Chu W, Das SK, Ren Q, Hasstedt SJ, Elbein SC. Liver Pyruvate Kinase Polymorphisms Are Associated With Type 2 Diabetes in Northern European Caucasians. Diabetes. 2002;51:2861–5. https://doi.org/10.2337/diabetes.51.9.2861.
  • 19. Salek S, Boscoe AN, Piantedosi S, Egan S, Evans CJ, Wells T, et al. Development of the pyruvate kinase deficiency diary and pyruvate kinase deficiency impact assessment: Disease-specific assessments. Eur J Haematol. 2020;104:427–34. https://doi.org/10.1111/ejh.13376.
  • 20. Bianchi P, Fermo E. Molecular heterogeneity of pyruvate kinase deficiency. Haematologica. 2020;105:2218–28. https://doi.org/10.3324/haematol.2019.241141.
  • 21. Morris R, Black KA, Stollar EJ. Uncovering protein function: from classification to complexes. Essays Biochem. 2022;66:255–85. https://doi.org/10.1042/EBC20200108.
  • 22. Nakatsu D, Horiuchi Y, Kano F, Noguchi Y, Sugawara T, Takamoto I, et al. L-cysteine reversibly inhibits glucose-induced biphasic insulin secretion and ATP production by inactivating PKM2. Proc Natl Acad Sci U S A. 2015;112:E1067-76. https://doi.org/10.1073/pnas.1417197112.
  • 23. Chaneton B, Hillmann P, Zheng L, Martin ACL, Maddocks ODK, Chokkathukalam A, et al. Serine is a natural ligand and allosteric activator of pyruvate kinase M2. Nature. 2012;491:458–62. https://doi.org/10.1038/nature11540.
  • 24. Li Y, Li X, Liu J, Wang H, Fan L, Li J, et al. PKM2, a potential target for regulating cancer. Gene. 2018;668:48–53. https://doi.org/10.1016/j.gene.2018.05.038.
  • 25. Iqbal MA, Siddiqui FA, Gupta V, Chattopadhyay S, Gopinath P, Kumar B, et al. Insulin enhances metabolic capacities of cancer cells by dual regulation of glycolytic enzyme pyruvate kinase M2. Mol Cancer. 2013;12:72. https://doi.org/10.1186/1476-4598-12-72.
  • 26. Gallagher PG, Glader B. Diagnosis of Pyruvate Kinase Deficiency. Pediatr Blood Cancer. 2016;63:771–2. https://doi.org/10.1002/pbc.25922.
  • 27. Zanella A, Fermo E, Bianchi P, Valentini G. Red cell pyruvate kinase deficiency: molecular and clinical aspects. Br J Haematol. 2005;130:11–25. https://doi.org/10.1111/j.1365-2141.2005.05527.x.
  • 28. Gordon-Smith EC. Erythrocyte enzyme deficiencies. Pyruvate kinase deficiency. J Clin Pathol Suppl (R Coll Pathol). 1974;8:128–33.
  • 29. Jacobasch G, Rapoport SM. Hemolytic anemias due to erythrocyte enzyme deficiencies. Mol Aspects Med. 1996;17:143–70. https://doi.org/10.1016/0098-2997(96)88345-2.
  • 30. Park YS, Han JH, Park JH, Choi JS, Kim SH, Kim HS. Pyruvate Kinase M2: A New Biomarker for the Early Detection of Diabetes-Induced Nephropathy. Int J Mol Sci. 2023;24:2683. https://doi.org/10.3390/ijms24032683.
  • 31. Sas KM, Kayampilly P, Byun J, Nair V, Hinder LM, Hur J, et al. Tissue-specific metabolic reprogramming drives nutrient flux in diabetic complications. JCI Insight. 2016;1. https://doi.org/10.1172/jci.insight.86976.
  • 32. Rajala A, Soni K, Rajala RVS. Metabolic and Non-metabolic Roles of Pyruvate Kinase M2 Isoform in Diabetic Retinopathy. Sci Rep. 2020;10:7456. https://doi.org/10.1038/s41598-020-64487-2.
  • 33. Rajala A, Wang Y, Soni K, Rajala RVS. Pyruvate kinase M2 isoform deletion in cone photoreceptors results in age-related cone degeneration. Cell Death Dis. 2018;9:737. https://doi.org/10.1038/s41419-018-0712-9.
  • 34. Wang Y, Liu J, Jin X, Zhang D, Li D, Hao F, et al. O- GlcNAcylation destabilizes the active tetrameric PKM2 to promote the Warburg effect. Proceedings of the National Academy of Sciences. 2017;114:13732–7. https://doi.org/10.1073/pnas.1704145115.
  • 35. Hsu M-C, Hung W-C. Pyruvate kinase M2 fuels multiple aspects of cancer cells: from cellular metabolism, transcriptional regulation to extracellular signaling. Mol Cancer. 2018;17:35. https://doi.org/10.1186/s12943-018-0791-3.
  • 36. Boxer MB, Jiang J, Vander Heiden MG, Shen M, Skoumbourdis AP, Southall N, et al. Evaluation of Substituted N , N ′-Diarylsulfonamides as Activators of the Tumor Cell Specific M2 Isoform of Pyruvate Kinase. J Med Chem. 2010;53:1048–55. https://doi.org/10.1021/jm901577g.
  • 37. Ning X, Qi H, Li R, Li Y, Jin Y, McNutt MA, et al. Discovery of novel naphthoquinone derivatives as inhibitors of the tumor cell specific M2 isoform of pyruvate kinase. Eur J Med Chem. 2017;138:343–52. https://doi.org/10.1016/j.ejmech.2017.06.064.
  • 38. Rzechonek A, Kaminska A, Mamczur P, Drapiewski A, Budzynski W. Limited Clinical Significance of Dimeric Form of Pyruvate Kinase as a Diagnostic and Prognostic Biomarker in Non-small Cell Lung Cancer. 2016. p. 51–7. https://doi.org/10.1007/5584_2016_92.
  • 39. Chen M, Liu H, Li Z, Ming AL, Chen H. Mechanism of PKM2 affecting cancer immunity and metabolism in Tumor Microenvironment. J Cancer. 2021;12:3566–74. https://doi.org/10.7150/jca.54430.
  • 40. Vander Heiden MG, Christofk HR, Schuman E, Subtelny AO, Sharfi H, Harlow EE, et al. Identification of small molecule inhibitors of pyruvate kinase M2. Biochem Pharmacol. 2010;79:1118–24. https://doi.org/10.1016/j.bcp.2009.12.003.
  • 41. Li Y, Li X, Liu J, Wang H, Fan L, Li J, et al. PKM2, a potential target for regulating cancer. Gene. 2018;668:48–53. https://doi.org/10.1016/j.gene.2018.05.038.
  • 42. Jiang C, Zheng T, Cha H, Kim HS. Abstract 479: Novel specific PKM2 inhibitor, compound 3h, induces apoptotic and autophagic cell death through Akt/mTOR signaling pathway in prostate cancer cells. Cancer Res. 2023;83:479–479. https://doi.org/10.1158/1538-7445.AM2023-479.
  • 43. Huang Y, Chen L, Xie J, Han H, Zhu B, Wang L, et al. High Expression of PKM2 Was Associated with the Poor Prognosis of Acute Leukemia. Cancer Manag Res. 2021;Volume 13:7851–8. https://doi.org/10.2147/CMAR.S331076.
  • 44. Yang G-J, Wu J, Leung C-H, Ma D-L, Chen J. A review on the emerging roles of pyruvate kinase M2 in anti-leukemia therapy. Int J Biol Macromol. 2021;193:1499–506. https://doi.org/10.1016/j.ijbiomac.2021.10.213. 45. Jones CL, Inguva A, Jordan CT. Targeting Energy Metabolism in Cancer Stem Cells: Progress and Challenges in Leukemia and Solid Tumors. Cell Stem Cell. 2021;28:378–93. https://doi.org/10.1016/j.stem.2021.02.013.
  • 46. Wei Y, Wei X, Song J, Huang W, Zeng H, Zheng J, et al. PKM2 Expression Is Associated with Favorable Outcome in Patients with Diffuse Large B-Cell Lymphoma. Blood. 2018;132:5319–5319. https://doi.org/10.1182/blood-2018-99-112849.
  • 47. Martin SP, Fako V, Dang H, Dominguez DA, Khatib S, Ma L, et al. PKM2 inhibition may reverse therapeutic resistance to transarterial chemoembolization in hepatocellular carcinoma. Journal of Experimental & Clinical Cancer Research. 2020;39:99. https://doi.org/10.1186/s13046-020-01605-y.
  • 48. Al-Samkari H, van Beers EJ. Mitapivat, a novel pyruvate kinase activator, for the treatment of hereditary hemolytic anemias. Ther Adv Hematol. 2021;12. https://doi.org/10.1177/20406207211066070
  • 49. Luke N, Hillier K, Al-Samkari H, Grace RF. Updates and advances in pyruvate kinase deficiency. Trends Mol Med. 2023;29:406–18. https://doi.org/10.1016/j.molmed.2023.02.005.
  • 50. Ericsson A, Richard DJ, Wilker E, Lancia DR, Fessler S, Troccolo P, et al. FT-4202, a selective pyruvate kinase R activator for sickle cell disease. Exp Hematol. 2025;141:104673. https://doi.org/10.1016/j.exphem.2024.104673.
  • 51. Nandi S, Dey M. Biochemical and structural insights into how amino acids regulate pyruvate kinase muscle isoform 2. Journal of Biological Chemistry. 2020;295:5390–403. https://doi.org/10.1074/jbc.RA120.013030.
  • 52. Liu VM, Vander Heiden MG. The Role of Pyruvate Kinase M2 in Cancer Metabolism. Brain Pathology. 2015;25:781–3. https://doi.org/10.1111/bpa.12311
  • 53. Vander Heiden MG, Christofk HR, Schuman E, Subtelny AO, Sharfi H, Harlow EE, et al. Identification of small molecule inhibitors of pyruvate kinase M2. Biochem Pharmacol. 2010;79:1118–24. https://doi.org/10.1016/j.bcp.2009.12.003.
  • 54. Temml V, Kutil Z. Structure-based molecular modeling in SAR analysis and lead optimization. Comput Struct Biotechnol J. 2021;19:1431–44. https://doi.org/10.1016/j.csbj.2021.02.018.
  • 55. Cabrera M, Armando R, Czarnowski I, Chinestrad P, Blanco R, Zinni A, et al. CADD-based discovery of novel oligomeric modulators of PKM2 with antitumor activity in aggressive human glioblastoma models. Heliyon. 2025;11:e42238. https://doi.org/10.1016/j.heliyon.2025.e42238.
  • 56. Alquraishi M, Puckett DL, Alani DS, Humidat AS, Frankel VD, Donohoe DR, et al. Pyruvate kinase M2: A simple molecule with complex functions. Free Radic Biol Med. 2019;143:176–92. https://doi.org/10.1016/j.freeradbiomed.2019.08.007.
  • 57. Al-Samkari H, Galactéros F, Glenthøj A, Rothman JA, Andres O, Grace RF, et al. Mitapivat versus Placebo for Pyruvate Kinase Deficiency. New England Journal of Medicine. 2022;386:1432–42. https://doi.org/10.1056/NEJMoa2116634.
  • 58. ClinicalTrials.gov [Internet]. Identifier NCT05175105 A Study to Evaluate the Efficacy and Safety of Mitapivat in Pediatric Participants With Pyruvate Kinase Deficiency (PKD) Who Are Not Regularly Transfused, Followed by a 5-Year Extension Period (ACTIVATE-Kids); [cited 2025 May 4]. Available from: https://clinicaltrials.gov/study/NCT05175105
  • 59. ClinicalTrials.gov [Internet]. Identifier NCT05144256 A Study to Evaluate the Efficacy and Safety of Mitapivat in Pediatric Participants With Pyruvate Kinase Deficiency (PKD) Who Are Regularly Transfused, Followed by a 5-Year Extension Period (ACTIVATE-KidsT); [cited 2025 May 4]. Available from: https://clinicaltrials.gov/study/NCT05144256
  • 60. Rab MAE, van Oirschot BA, Kosinski PA, Hixon J, Johnson K, Chubukov V, et al. AG-348 (Mitapivat), an allosteric activator of red blood cell pyruvate kinase, increases enzymatic activity, protein stability, and ATP levels over a broad range of PKLR genotypes. Haematologica. 2020;105. https://doi.org/10.3324/HAEMATOL.2019.238865.
  • 61. Grace RF, Bianchi P, van Beers EJ, Eber SW, Glader B, Yaish HM, et al. Clinical spectrum of pyruvate kinase deficiency: Data from the pyruvate kinase deficiency natural history study. Blood. 2018;131:2183–92. https://doi.org/10.1182/BLOOD-2017-10-810796.
  • 62. ClinicalTrials.gov [Internet]. Identifier NCT04105166 Gene Therapy for Pyruvate Kinase Deficiency (PKD) (RP-L301); [cited 2025 May 4]. Available from: https://clinicaltrials.gov/study/NCT04105166?cond=NCT04105166&rank=1
  • 63. ClinicalTrials.gov [Internet]. Identifier NCT06422351 Clinical Trial to Evaluate the Efficacy of Gene Therapy for Pyruvate Kinase Deficiency (RP-L301); [cited 2025 May 4]. Available from: https://clinicaltrials.gov/study/NCT06422351?cond=NCT06422351&rank=1
  • 64. Xu JZ, Conrey A, Frey I, Gwaabe E, Menapace LA, Tumburu L, et al. A phase 1 dose escalation study of the pyruvate kinase activator mitapivat (AG-348) in sickle cell disease. Blood. 2022;140:2053–62. https://doi.org/10.1182/BLOOD.2022015403.
  • 65. Kuo KHM, Layton DM, Lal A, Al-Samkari H, Bhatia J, Kosinski PA, et al. Safety and efficacy of mitapivat, an oral pyruvate kinase activator, in adults with non-transfusion dependent α-thalassaemia or β-thalassaemia: an open-label, multicentre, phase 2 study. The Lancet. 2022;400:493–501. https://doi.org/10.1016/S0140-6736(22)01337-X.
  • 66. ClinicalTrials.gov [Internet]. Identifier NCT04536792 A Study to Assess the Safety, Tolerability, Pharmacokinetics, and Pharmacodynamics of AG-946 in Healthy Volunteers and in Participants With Sickle Cell Disease (MITAPIVAT); [cited 2025 May 4]. Available from: https://clinicaltrials.gov/study/NCT04536792?cond=NCT04536792&rank=1
  • 67. ClinicalTrials.gov [Internet]. Identifier NCT04770753 A Study Evaluating the Efficacy and Safety of Mitapivat in Participants With Non-Transfusion-Dependent Alpha- or Beta-Thalassemia (α- or β-NTDT) (MITAPIVAT); [cited 2025 May 4]. Available from: https://clinicaltrials.gov/study/NCT04770753?cond=NCT04770753&rank=1
  • 68. ClinicalTrials.gov [Internet]. Identifier NCT03764618 A Phase 3, Multi-Center, Randomized, Double-Blind, Placebo-Controlled, Study of Fostamatinib Disodium in the Treatment of Waiha (MITAPIVAT); [cited 2025 May 4]. Available from: https://clinicaltrials.gov/study/NCT03764618?cond=NCT03764618&rank=1
  • 69. ClinicalTrials.gov [Internet]. Identifier NCT04610866 Safety, Tolerability, Pharmacokinetics, and Pharmacodynamics of Long-term Mitapivat Dosing in Subjects With Stable Sickle Cell Disease: An Extension of a Phase I Pilot Study of Mitapivat (MITAPIVAT); [cited 2025 May 4]. Available from: https://clinicaltrials.gov/study/NCT04610866?cond=NCT04610866&rank=1
  • 70. ClinicalTrials.gov [Internet]. Identifier NCT04987489 A Study of Etavopivat in Patients With Thalassemia or Sickle Cell Disease (MITAPIVAT); [cited 2025 May 4]. Available from: https://clinicaltrials.gov/study/NCT04987489?cond=NCT04987489&rank=1
  • 71. ClinicalTrials.gov [Internet]. Identifier NCT05031780 A Study Evaluating the Efficacy and Safety of Mitapivat (AG-348) in Participants With Sickle Cell Disease (RISE UP) (MITAPIVAT); [cited 2025 May 4]. Available from: https://clinicaltrials.gov/study/NCT05031780?cond=NCT05031780&rank=1
  • 72. ClinicalTrials.gov [Internet]. Identifier NCT05144256 A Study to Evaluate the Efficacy and Safety of Mitapivat in Pediatric Participants With Pyruvate Kinase Deficiency (PKD) Who Are Regularly Transfused, Followed by a 5-Year Extension Period (MITAPIVAT); [cited 2025 May 4]. Available from: https://clinicaltrials.gov/study/NCT05144256?cond=NCT05144256&rank=1
  • 73. ClinicalTrials.gov [Internet]. Identifier NCT05175105 A Study to Evaluate the Efficacy and Safety of Mitapivat in Pediatric Participants With Pyruvate Kinase Deficiency (PKD) Who Are Not Regularly Transfused, Followed by a 5-Year Extension Period (MITAPIVAT); [cited 2025 May 4]. Available from: https://clinicaltrials.gov/study/NCT05175105?cond=NCT05175105&rank=1
  • 74. Brusson M, Miccio A. Genome editing approaches to β-hemoglobinopathies. Prog Mol Biol Transl Sci. 2021;182:153–83. https://doi.org/10.1016/BS.PMBTS.2021.01.025.
  • 75. ClinicalTrials.gov [Internet]. Identifier NCT04205448 Fall Prevention Study Among Seniors in Bomlo (MITAPIVAT); [cited 2025 May 4]. Available from: https://clinicaltrials.gov/study/NCT04205448?cond=NCT04205448&rank=1
  • 76. Apostolidi M, Vathiotis IA, Muthusamy V, Gaule P, Gassaway BM, Rimm DL, et al. Targeting Pyruvate Kinase M2 Phosphorylation Reverses Aggressive Cancer Phenotypes. Cancer Res. 2021;81:4346–59. https://doi.org/10.1158/0008-5472.CAN-20-4190.
  • 77. Parekh DS, Eaton WA, Thein SL. Recent developments in the use of pyruvate kinase activators as a new approach for treating sickle cell disease. Blood. 2024;143:866–71. https://doi.org/10.1182/blood.2023021167. 78. Kapoor S, Kalmegh V, Kumar H, Mandoli A, Shard A. Rare diseases and pyruvate kinase M2: a promising therapeutic connection. Drug Discov Today. 2024;29:103949. https://doi.org/10.1016/j.drudis.2024.103949.
There are 76 citations in total.

Details

Primary Language English
Subjects Pharmaceutical Biochemistry
Journal Section Review
Authors

Thoppalada Yunus Pasha 0000-0003-0385-3343

Manojmouli Chandramouli 0000-0001-8850-7110

Submission Date May 4, 2025
Acceptance Date November 7, 2025
Publication Date December 1, 2025
Published in Issue Year 2025 Volume: 45 Issue: 4

Cite

Vancouver 1.Pasha TY, Chandramouli M. Targeting Pyruvate Kinase: Novel Therapeutic Strategies in Metabolic and Blood Disorders. HUJPHARM [Internet]. 2025 Dec. 1;45(4):374-87. Available from: https://izlik.org/JA53PG92SF