BibTex RIS Cite

Siklodekstrinler ve Biyomedikal Alandaki Uygulamaları

Year 2016, Issue: 1, 50 - 69, 01.01.2016

Abstract

Siklodekstrinler 6, 7 veya 8 sırasıyla α, β, γ siklodekstrin glikopiranoz ünitesinden oluşmuş olan siklik oligosakkaritlerdir. PEG, adamantan ve kolesterol gibi konuk moleküllerle inklüzyon kompleksi oluşturabilen hidrofobik bir iç kaviteye sahiptirler. CD’ler nanoteknoloji alanında da rol oynamaya başlamıştır. Bu kapsamda, CD’ler konuk molekülleri sadece iç kavitelerine dahil ederek değil, nanometrik platformda da dış çevreye karşı seçici kimyasal manipülasyona uğrayabilen nanomateryaller oluşturabilmektedirler. Kimyasal, supramoleküler ve teknolojik kavramların kombinasyonu, sentetik kimyadan farmasötik formülasyonlara, materyal biliminden biyofiziğe kadar faklı araştırma alanlarının girişim yapmasına izin vermektedir.

References

  • 1. Mellet CO, Fernandez JG, Benito J. Cyclodextrins for Pharmaceutical and Biomedical Applications. Supramolecular Systems in Biomedical Fields, RSC Publishing. 2013:94- 139.
  • 2. Kurkov SV, Loftsson T. Cyclodextrins. International Journal of Pharmaceutics. 2013;453(1):167-180.
  • 3. Yavuz B, Bilensoy E, Vural İ, Şumnu M. Alternative oral exemestane formulation: Improved dissolution and permeation. International Journal of Pharmaceutics. 2010;398(1–2):137-145.
  • 4. Loftsson T, Duchene D. Cyclodextrins and their pharmaceutical applications. International Journal of Pharmaceutics. 2007;329(1):1-11.
  • 5. J Otero-Espinar F, Blanco-Mendez J. Editorial (Thematic Issue: Natural & SyntheticallyModified Cyclodextrins and Polymers in Drug Delivery Systems). Current Topics in Medicinal Chemistry. 2014;14(4):463-464.
  • 6. Loftsson T, Brewster ME. Pharmaceutical applications of cyclodextrins: basic science and product development. Journal of Pharmacy and Pharmacology. 2010;62(11):1607- 1621.
  • 7. Nitalikar MM, Sakarkar DM, Jain PV. The cyclodextrins: a review. Journal of Current Pharmaceutical Research. 2012;10(1):01-06.
  • 8. Laza-Knoerr A, Gref R, Couvreur P. Cyclodextrins for drug delivery. Journal of Drug Targeting. 2010;18(9):645-656.
  • 9. Loftsson T, Brewster ME. Pharmaceutical applications of cyclodextrins: effects on drug permeation through biological membranes. Journal of Pharmacy and Pharmacology. 2011;63(9):1119-1135.
  • 10. Zhang X, Zhang C, Sun G, et al. Cyclodextrins and Their Derivatives in the Resolution of Chiral Natural Products: a Review. Instrumentation Science & Technology. 2012;40(2- 3):194-215.
  • 11. Duchêne D. Cyclodextrins and their inclusion complexes. Cyclodextrins in Pharmaceutics, Cosmetics, and Biomedicine: Current and Future. Industrial Applications. 2011:1-18.
  • 12. Szejtli J. Cyclodextrin inclusion complexes. Cyclodextrin Technology: Springer; 1988:79-185.
  • 13. Klein CT, Viernastein H, Wolschann P. Inclusion complexation with cyclodextrins. Minerva Biotecnologica. 2000;12(4):287.
  • 14. Brewster ME, Loftsson T. Cyclodextrins as pharmaceutical solubilizers. Advanced Drug Delivery Reviews. 2007;59(7):645-666.
  • 15. Liu L, Guo Q-X. The driving forces in the inclusion complexation of cyclodextrins. Journal of Inclusion Phenomena and Macrocyclic Chemistry. 2002;42(1-2):1-14.
  • 16. Challa R, Ahuja A, Ali J, Khar RK. Cyclodextrins in drug delivery: an updated review. AAPS PharmSciTech. 2005;6(2):E329-357.
  • 17. Albers E, Muller BW. Cyclodextrin derivatives in pharmaceutics. Critical Reviews In Therapeutic Drug Carrier Systems. 1995;12(4):311-337.
  • 18. Rouf MA, Vural I, Bilensoy E, Hincal A, Erol DD. Rapamycin-cyclodextrin complexation: improved solubility and dissolution rate. Journal of Inclusion Phenomena and Macrocyclic Chemistry. 2011;70(1-2):167-175.
  • 19. Irie T, Uekama K. Cyclodextrins in peptide and protein delivery. Advanced Drug Delivery Reviews. 1999;36(1):101-123.
  • 20. Brewster ME, Simpkins JW, Hora MS, Stern WC, Bodor N. The potential use of cyclodextrins in parenteral formulations. PDA Journal of Pharmaceutical Science and Technology. 1989;43(5):231-240.
  • 21. Rajewski RA, Stella VJ. Pharmaceutical applications of cyclodextrins. 2. In vivo drug delivery. Journal of Pharmaceutical Sciences. 1996;85(11):1142-1169.
  • 22. Memisoglu-Bilensoy E, Bochot A, Trichard L, Duchene D, Hıncal A. Amphiphilic cyclodextrins and microencapsulation. Microencapsulation-2nd and Revised Edition. 2005:269-295.
  • 23. Ünal H, Öztürk N, Bilensoy E. Formulation development, stability and anticancer efficacy of core-shell cyclodextrin nanocapsules for oral chemotherapy with camptothecin. Beilstein Journal of Organic Chemistry. 2015;11(1):204-212.
  • 24. Uekama K, Hirayama F, Irie T. Cyclodextrin drug carrier systems. Chemical Reviews. 1998;98(5):2045-2076.
  • 25. Khan AR, Forgo P, Stine KJ, D'Souza VT. Methods for selective modifications of cyclodextrins. Chemical Reviews. 1998;98(5):1977-1996.
  • 26. Benito JM, Gómez-García M, Ortiz Mellet C, Baussanne I, Defaye J, García Fernández JM. Optimizing saccharide-directed molecular delivery to biological receptors: design, synthesis, and biological evaluation of glycodendrimer-cyclodextrin conjugates. Journal of the American Chemical Society. 2004;126(33):10355-10363.
  • 27. Çirpanli Y, Bilensoy E, Lale Doğan A, Çaliş S. Comparative evaluation of polymeric and amphiphilic cyclodextrin nanoparticles for effective camptothecin delivery. European Journal of Pharmaceutics and Biopharmaceutics. 2009;73(1):82-89.
  • 28. Zhang H, Cai Z, Sun Y, Yu F, Chen Y, Sun B. Folate‐conjugated β‐cyclodextrin from click chemistry strategy and for tumor‐targeted drug delivery. Journal of Biomedical Materials Research Part A. 2012;100(9):2441-2449.
  • 29. Uekama K. Design and evaluation of cyclodextrin-based drug formulation. Chemical and Pharmaceutical Bulletin. 2004;52(8):900-915.
  • 30. Bilensoy E. Cyclodextrins In Pharmaceutics, Cosmetics, and Biomedicine: Current and Future Industrial Applications: John Wiley & Sons; 2011.
  • 31. van de Manakker F, Vermonden T, van Nostrum CF, Hennink WE. Cyclodextrin-based polymeric materials: synthesis, properties, and pharmaceutical/biomedical applications. Biomacromolecules. 2009;10(12):3157-3175.
  • 32. Gref R, Duchene D. Cyclodextrins as “smart” components of polymer nanoparticles. Journal of Drug Delivery Science and Technology. 2012;22(3):223-233.
  • 33. Concheiro A, Alvarez-Lorenzo C. Chemically cross-linked and grafted cyclodextrin hydrogels: From nanostructures to drug-eluting medical devices. Advanced Drug Delivery Reviews. 2013;65(9):1188-1203.
  • 34. Davis ME. Design and development of IT-101, a cyclodextrin-containing polymer conjugate of camptothecin. Advanced Drug Delivery Reviews. 2009;61(13):1189-1192.
  • 35. Garcia-Rio L, J Otero-Espinar F, Luzardo-Alvarez A, Blanco-Mendez J. Cyclodextrin based rotaxanes, polyrotaxanes and polypseudorotaxanes and their biomedical applications. Current Topics in Medicinal Chemistry. 2014;14(4):478-493.
  • 36. Ooya T, Yui N. Polyrotaxanes: synthesis, structure, and potential in drug delivery. Critical Reviews™ in Therapeutic Drug Carrier Systems. 1999;16(3): 289-330.
  • 37. Loethen S, Kim JM, Thompson DH. Biomedical applications of cyclodextrin based polyrotaxanes. Journal of Macromolecular Science, Part C: Polymer Reviews. 2007;47(3):383-418.
  • 38. Ooya T, Yui N. Synthesis of theophylline–polyrotaxane conjugates and their drug release via supramolecular dissociation. Journal of Controlled Release. 1999;58(3):251-269.
  • 39. Wenz G, Han B-H, Müller A. Cyclodextrin rotaxanes and polyrotaxanes. Chemical Reviews. 2006;106(3):782-817.
  • 40. Yui N, Ooya T. Molecular mobility of interlocked structures exploiting new functions of advanced biomaterials. Chemistry-A European Journal. 2006;12(26):6730-6737.
  • 41. Caló E, Khutoryanskiy VV. Biomedical applications of hydrogels: a review of patents and commercial products. European Polymer Journal. 2015;65:252-267.
  • 42. Moya-Ortega MD, Alvarez-Lorenzo C, Concheiro A, Loftsson T. Cyclodextrin-based nanogels for pharmaceutical and biomedical applications. International Journal of Pharmaceutics. 2012;428(1):152-163.
  • 43. van de Manakker F, Braeckmans K, Morabit Ne, De Smedt SC, van Nostrum CF, Hennink WE. Protein‐Release Behavior of Self‐Assembled PEG–β‐Cyclodextrin/PEG– Cholesterol Hydrogels. Advanced Functional Materials. 2009;19(18):2992-3001.
  • 44. Peng K, Tomatsu I, Kros A. Light controlled protein release from a supramolecular hydrogel. Chemical Communications. 2010;46(23):4094-4096.
  • 45. Yang J-A, Yeom J, Hwang BW, Hoffman AS, Hahn SK. In situ-forming injectable hydrogels for regenerative medicine. Progress in Polymer Science. 2014;39(12):1973- 1986.
  • 46. Benkirane‐Jessel N, Schwinte P, Falvey P, et al. Build‐up of Polypeptide Multilayer Coatings with Anti‐Inflammatory Properties Based on the Embedding of Piroxicam– Cyclodextrin Complexes. Advanced Functional Materials. 2004;14(2):174-182.
  • 47. Ortiz M, Fragoso A, O'Sullivan CK. Detection of antigliadin autoantibodies in celiac patient samples using a cyclodextrin-based supramolecular biosensor. Analytical Chemistry. 2011;83(8):2931-2938.
  • 48. Grünstein D, Maglinao M, Kikkeri R, et al. Hexameric supramolecular scaffold orients carbohydrates to sense bacteria. Journal of the American Chemical Society. 2011;133(35):13957-13966.
  • 49. Yang Y-W. Towards biocompatible nanovalves based on mesoporous silica nanoparticles. Medicinal Chemical Communacations. 2011;2(11):1033-1049.
  • 50. Ambrogio MW, Pecorelli TA, Patel K, et al. Snap-top nanocarriers. Organic Letters. 2010;12(15):3304-3307.
  • 51. Kim H, Kim S, Park C, Lee H, Park HJ, Kim C. Glutathione‐Induced Intracellular Release of Guests from Mesoporous Silica Nanocontainers with Cyclodextrin Gatekeepers. Advanced Materials. 2010;22(38):4280-4283.
  • 52. Ferris DP, Zhao Y-L, Khashab NM, Khatib HA, Stoddart JF, Zink JI. Light-operated mechanized nanoparticles. Journal of the American Chemical Society. 2009;131(5):1686-1688.
  • 53. Park C, Kim H, Kim S, Kim C. Enzyme responsive nanocontainers with cyclodextrin gatekeepers and synergistic effects in release of guests. Journal of the American Chemical Society. 2009;131(46):16614-16615.
  • 54. Patel K, Angelos S, Dichtel WR, et al. Enzyme-responsive snap-top covered silica nanocontainers. Journal of the American Chemical Society. 2008;130(8):2382-2383.
  • 55. Xue M, Cao D, Stoddart JF, Zink JI. Size-selective pH-operated megagates on mesoporous silica materials. Nanoscale. 2012;4(23):7569-7574.
  • 56. Greco F, Vicent MJ. Combination therapy: opportunities and challenges for polymer– drug conjugates as anticancer nanomedicines. Advanced Drug Delivery Reviews. 2009;61(13):1203-1213.

Cyclodextrins and Their Applications in Biomedical Field

Year 2016, Issue: 1, 50 - 69, 01.01.2016

Abstract

Cyclodextrins are natural cyclic oligosaccharides composed of six, seven, or eight glucopyranoside units α, β, γ cyclodextrins respectively . They have a hydrophobic inner cavity, by which they can form an inclusion complex with other guest molecules, such as PEG, adamantane, and cholesterol. CDs are starting to play in nanotechnology area. In this context, CDs might not only be regarded as hosts to modify the properties of an included guest by using their ‘‘inner’’ space, but also as nanometric platforms, themselves susceptible to selective chemical manipulation forming nano-objects with tailored capabilities towards the outer environment. The combination of chemical, supramolecular and nanotechnological term allows interference between distant research disciplines, from synthetic chemistry to pharmaceutical formulation, or from material science and biophysics to diagnosis.

References

  • 1. Mellet CO, Fernandez JG, Benito J. Cyclodextrins for Pharmaceutical and Biomedical Applications. Supramolecular Systems in Biomedical Fields, RSC Publishing. 2013:94- 139.
  • 2. Kurkov SV, Loftsson T. Cyclodextrins. International Journal of Pharmaceutics. 2013;453(1):167-180.
  • 3. Yavuz B, Bilensoy E, Vural İ, Şumnu M. Alternative oral exemestane formulation: Improved dissolution and permeation. International Journal of Pharmaceutics. 2010;398(1–2):137-145.
  • 4. Loftsson T, Duchene D. Cyclodextrins and their pharmaceutical applications. International Journal of Pharmaceutics. 2007;329(1):1-11.
  • 5. J Otero-Espinar F, Blanco-Mendez J. Editorial (Thematic Issue: Natural & SyntheticallyModified Cyclodextrins and Polymers in Drug Delivery Systems). Current Topics in Medicinal Chemistry. 2014;14(4):463-464.
  • 6. Loftsson T, Brewster ME. Pharmaceutical applications of cyclodextrins: basic science and product development. Journal of Pharmacy and Pharmacology. 2010;62(11):1607- 1621.
  • 7. Nitalikar MM, Sakarkar DM, Jain PV. The cyclodextrins: a review. Journal of Current Pharmaceutical Research. 2012;10(1):01-06.
  • 8. Laza-Knoerr A, Gref R, Couvreur P. Cyclodextrins for drug delivery. Journal of Drug Targeting. 2010;18(9):645-656.
  • 9. Loftsson T, Brewster ME. Pharmaceutical applications of cyclodextrins: effects on drug permeation through biological membranes. Journal of Pharmacy and Pharmacology. 2011;63(9):1119-1135.
  • 10. Zhang X, Zhang C, Sun G, et al. Cyclodextrins and Their Derivatives in the Resolution of Chiral Natural Products: a Review. Instrumentation Science & Technology. 2012;40(2- 3):194-215.
  • 11. Duchêne D. Cyclodextrins and their inclusion complexes. Cyclodextrins in Pharmaceutics, Cosmetics, and Biomedicine: Current and Future. Industrial Applications. 2011:1-18.
  • 12. Szejtli J. Cyclodextrin inclusion complexes. Cyclodextrin Technology: Springer; 1988:79-185.
  • 13. Klein CT, Viernastein H, Wolschann P. Inclusion complexation with cyclodextrins. Minerva Biotecnologica. 2000;12(4):287.
  • 14. Brewster ME, Loftsson T. Cyclodextrins as pharmaceutical solubilizers. Advanced Drug Delivery Reviews. 2007;59(7):645-666.
  • 15. Liu L, Guo Q-X. The driving forces in the inclusion complexation of cyclodextrins. Journal of Inclusion Phenomena and Macrocyclic Chemistry. 2002;42(1-2):1-14.
  • 16. Challa R, Ahuja A, Ali J, Khar RK. Cyclodextrins in drug delivery: an updated review. AAPS PharmSciTech. 2005;6(2):E329-357.
  • 17. Albers E, Muller BW. Cyclodextrin derivatives in pharmaceutics. Critical Reviews In Therapeutic Drug Carrier Systems. 1995;12(4):311-337.
  • 18. Rouf MA, Vural I, Bilensoy E, Hincal A, Erol DD. Rapamycin-cyclodextrin complexation: improved solubility and dissolution rate. Journal of Inclusion Phenomena and Macrocyclic Chemistry. 2011;70(1-2):167-175.
  • 19. Irie T, Uekama K. Cyclodextrins in peptide and protein delivery. Advanced Drug Delivery Reviews. 1999;36(1):101-123.
  • 20. Brewster ME, Simpkins JW, Hora MS, Stern WC, Bodor N. The potential use of cyclodextrins in parenteral formulations. PDA Journal of Pharmaceutical Science and Technology. 1989;43(5):231-240.
  • 21. Rajewski RA, Stella VJ. Pharmaceutical applications of cyclodextrins. 2. In vivo drug delivery. Journal of Pharmaceutical Sciences. 1996;85(11):1142-1169.
  • 22. Memisoglu-Bilensoy E, Bochot A, Trichard L, Duchene D, Hıncal A. Amphiphilic cyclodextrins and microencapsulation. Microencapsulation-2nd and Revised Edition. 2005:269-295.
  • 23. Ünal H, Öztürk N, Bilensoy E. Formulation development, stability and anticancer efficacy of core-shell cyclodextrin nanocapsules for oral chemotherapy with camptothecin. Beilstein Journal of Organic Chemistry. 2015;11(1):204-212.
  • 24. Uekama K, Hirayama F, Irie T. Cyclodextrin drug carrier systems. Chemical Reviews. 1998;98(5):2045-2076.
  • 25. Khan AR, Forgo P, Stine KJ, D'Souza VT. Methods for selective modifications of cyclodextrins. Chemical Reviews. 1998;98(5):1977-1996.
  • 26. Benito JM, Gómez-García M, Ortiz Mellet C, Baussanne I, Defaye J, García Fernández JM. Optimizing saccharide-directed molecular delivery to biological receptors: design, synthesis, and biological evaluation of glycodendrimer-cyclodextrin conjugates. Journal of the American Chemical Society. 2004;126(33):10355-10363.
  • 27. Çirpanli Y, Bilensoy E, Lale Doğan A, Çaliş S. Comparative evaluation of polymeric and amphiphilic cyclodextrin nanoparticles for effective camptothecin delivery. European Journal of Pharmaceutics and Biopharmaceutics. 2009;73(1):82-89.
  • 28. Zhang H, Cai Z, Sun Y, Yu F, Chen Y, Sun B. Folate‐conjugated β‐cyclodextrin from click chemistry strategy and for tumor‐targeted drug delivery. Journal of Biomedical Materials Research Part A. 2012;100(9):2441-2449.
  • 29. Uekama K. Design and evaluation of cyclodextrin-based drug formulation. Chemical and Pharmaceutical Bulletin. 2004;52(8):900-915.
  • 30. Bilensoy E. Cyclodextrins In Pharmaceutics, Cosmetics, and Biomedicine: Current and Future Industrial Applications: John Wiley & Sons; 2011.
  • 31. van de Manakker F, Vermonden T, van Nostrum CF, Hennink WE. Cyclodextrin-based polymeric materials: synthesis, properties, and pharmaceutical/biomedical applications. Biomacromolecules. 2009;10(12):3157-3175.
  • 32. Gref R, Duchene D. Cyclodextrins as “smart” components of polymer nanoparticles. Journal of Drug Delivery Science and Technology. 2012;22(3):223-233.
  • 33. Concheiro A, Alvarez-Lorenzo C. Chemically cross-linked and grafted cyclodextrin hydrogels: From nanostructures to drug-eluting medical devices. Advanced Drug Delivery Reviews. 2013;65(9):1188-1203.
  • 34. Davis ME. Design and development of IT-101, a cyclodextrin-containing polymer conjugate of camptothecin. Advanced Drug Delivery Reviews. 2009;61(13):1189-1192.
  • 35. Garcia-Rio L, J Otero-Espinar F, Luzardo-Alvarez A, Blanco-Mendez J. Cyclodextrin based rotaxanes, polyrotaxanes and polypseudorotaxanes and their biomedical applications. Current Topics in Medicinal Chemistry. 2014;14(4):478-493.
  • 36. Ooya T, Yui N. Polyrotaxanes: synthesis, structure, and potential in drug delivery. Critical Reviews™ in Therapeutic Drug Carrier Systems. 1999;16(3): 289-330.
  • 37. Loethen S, Kim JM, Thompson DH. Biomedical applications of cyclodextrin based polyrotaxanes. Journal of Macromolecular Science, Part C: Polymer Reviews. 2007;47(3):383-418.
  • 38. Ooya T, Yui N. Synthesis of theophylline–polyrotaxane conjugates and their drug release via supramolecular dissociation. Journal of Controlled Release. 1999;58(3):251-269.
  • 39. Wenz G, Han B-H, Müller A. Cyclodextrin rotaxanes and polyrotaxanes. Chemical Reviews. 2006;106(3):782-817.
  • 40. Yui N, Ooya T. Molecular mobility of interlocked structures exploiting new functions of advanced biomaterials. Chemistry-A European Journal. 2006;12(26):6730-6737.
  • 41. Caló E, Khutoryanskiy VV. Biomedical applications of hydrogels: a review of patents and commercial products. European Polymer Journal. 2015;65:252-267.
  • 42. Moya-Ortega MD, Alvarez-Lorenzo C, Concheiro A, Loftsson T. Cyclodextrin-based nanogels for pharmaceutical and biomedical applications. International Journal of Pharmaceutics. 2012;428(1):152-163.
  • 43. van de Manakker F, Braeckmans K, Morabit Ne, De Smedt SC, van Nostrum CF, Hennink WE. Protein‐Release Behavior of Self‐Assembled PEG–β‐Cyclodextrin/PEG– Cholesterol Hydrogels. Advanced Functional Materials. 2009;19(18):2992-3001.
  • 44. Peng K, Tomatsu I, Kros A. Light controlled protein release from a supramolecular hydrogel. Chemical Communications. 2010;46(23):4094-4096.
  • 45. Yang J-A, Yeom J, Hwang BW, Hoffman AS, Hahn SK. In situ-forming injectable hydrogels for regenerative medicine. Progress in Polymer Science. 2014;39(12):1973- 1986.
  • 46. Benkirane‐Jessel N, Schwinte P, Falvey P, et al. Build‐up of Polypeptide Multilayer Coatings with Anti‐Inflammatory Properties Based on the Embedding of Piroxicam– Cyclodextrin Complexes. Advanced Functional Materials. 2004;14(2):174-182.
  • 47. Ortiz M, Fragoso A, O'Sullivan CK. Detection of antigliadin autoantibodies in celiac patient samples using a cyclodextrin-based supramolecular biosensor. Analytical Chemistry. 2011;83(8):2931-2938.
  • 48. Grünstein D, Maglinao M, Kikkeri R, et al. Hexameric supramolecular scaffold orients carbohydrates to sense bacteria. Journal of the American Chemical Society. 2011;133(35):13957-13966.
  • 49. Yang Y-W. Towards biocompatible nanovalves based on mesoporous silica nanoparticles. Medicinal Chemical Communacations. 2011;2(11):1033-1049.
  • 50. Ambrogio MW, Pecorelli TA, Patel K, et al. Snap-top nanocarriers. Organic Letters. 2010;12(15):3304-3307.
  • 51. Kim H, Kim S, Park C, Lee H, Park HJ, Kim C. Glutathione‐Induced Intracellular Release of Guests from Mesoporous Silica Nanocontainers with Cyclodextrin Gatekeepers. Advanced Materials. 2010;22(38):4280-4283.
  • 52. Ferris DP, Zhao Y-L, Khashab NM, Khatib HA, Stoddart JF, Zink JI. Light-operated mechanized nanoparticles. Journal of the American Chemical Society. 2009;131(5):1686-1688.
  • 53. Park C, Kim H, Kim S, Kim C. Enzyme responsive nanocontainers with cyclodextrin gatekeepers and synergistic effects in release of guests. Journal of the American Chemical Society. 2009;131(46):16614-16615.
  • 54. Patel K, Angelos S, Dichtel WR, et al. Enzyme-responsive snap-top covered silica nanocontainers. Journal of the American Chemical Society. 2008;130(8):2382-2383.
  • 55. Xue M, Cao D, Stoddart JF, Zink JI. Size-selective pH-operated megagates on mesoporous silica materials. Nanoscale. 2012;4(23):7569-7574.
  • 56. Greco F, Vicent MJ. Combination therapy: opportunities and challenges for polymer– drug conjugates as anticancer nanomedicines. Advanced Drug Delivery Reviews. 2009;61(13):1203-1213.
There are 56 citations in total.

Details

Primary Language Turkish
Journal Section Research Article
Authors

Nurten Çelen This is me

Erem Bilensoy This is me

Sema Çalış This is me

Publication Date January 1, 2016
Published in Issue Year 2016 Issue: 1

Cite

Vancouver Çelen N, Bilensoy E, Çalış S. Siklodekstrinler ve Biyomedikal Alandaki Uygulamaları. HUJPHARM. 2016(1):50-69.