BibTex RIS Kaynak Göster

Gen tașınması için olası bir yaklașım; Poli 2-oksazolin tabanlı vektörler

Yıl 2014, Sayı: 2, 113 - 132, 01.06.2014

Öz

Günümüzde, sentetik polimerlerin ilaç ve gen taşıyıcı sistem olarak kullanımı artan bir hızla devam etmektedir. Bunlar arasında, yüksek biyouyumluluk, görünmezlik stealth etkisi, düşük ortalama molekül dağılımı, yüksek terapötik yanıt, ilaç ve gen taşıma için polimer uç gruplarına eklenen fonksiyonel gruplar ile yüksek fonksiyonellik ve kimyasal yapının kolay değiştirilebilmesi ile farklı moleküllerin taşınması gibi çok yönlülük özellikleri ile 2-oksazolinler gen taşıyıcı sistemler olarak umut verici materyallerdir ve bu kapsamda yeni bir polimerik platform oluşturmaktadırlar. Özellikle polimerik terapötik olarak POx, PEG ile eşit düzeyde protein etkileşimi göstermesine rağmen, düşük spesifik olmayan organ birikimi göstermektedir. Bununla birlikte kimyasal stabilitesi de PEG’e göre önemli ölçüde daha iyidir. Günümüzde kullanılan PEG’lenmiş etkin maddelerin sürekli uygulanma zorlukları, immünolojik yanıt oluşturma, hızlandırılmış kan klerensi, biyoparçalanır olmayışı ve vücutta birikimi gibi dezavantajlarından dolayı, PEG yerine hidrofilik POx kullanımı iyi bir tercihtir. Son zamanlarda, etkin madde taşıyıcı özelliklerinin yanı sıra, gen tedavi uygulamalarında da POx polimerleri potansiyel bir alternatif olarak tartışılmaktadır. Gen taşınmasında POx’un kısmi hidrolizi ile sentezlenen PEI’nin in vitro hücre kültüründe düşük sitotoksisite ve yüksek gen aktarım etkinliği sergilemesi ve DNA ile sıkı kompleks oluşturma ve polimer kondensasyon kapasitesinin gen aktarımı için uygun olması gibi avantajları nedeniyle günümüzde araştırmacılar tarafından sıklıkla tercih edilmektedir. Bu derlemede işlevsel özellikleri ile Poli 2-oksazolin ler ele alınmış ve gen taşımadaki başarılı uygulamalarına örnekler verilerek vektör olarak kullanımlarının avantajları ile ilgili bilgilere yer verilmiştir.

Kaynakça

  • Kronek, J., Kronekova,´ Z., Luston,ˇ J., Paulovicˇova,´ E., Paulovicˇova,´ L., Mendrek, B., In vitro bio-immunological and cytotoxicity studies of poly(2-oxazolines), J Mater Sci Mater Med., 22,(7), 1725–34, 2011.
  • Fernandes, J., Qiu, X., Winnik, F,M., Benderdour, M., Zhang, X., Dai, K., Shi, Q., L inear polyethylenimine produced by partial acid hydrolysis of poly(2-ethyl-2-oxazoline) for DNA and siRNA delivery in vitro, International Journal of Nanomedicine, (8) 4091–4102, 2013.
  • Meredith A., Mintzer and Eric E. Simanek, Nonviral Vectors for Gene Delivery, Chem. Rev., 109, 259–302, 2009.
  • Lin, C,P., Sung Y,C., Hsiue, G,H., Non-viral pH-sensitive Gene Carriers based on Poly((2- ethyl-2-oxazoline)-co-ethylenimine)-block-Poly(2-ethyl-2-oxazoline): A Study of Gene Release Behavior, Journal of Medical and Biological Engineering, 32(5): 365-372, 2011.
  • W. T. Godbey, K. K. Wu and A. G. Mikos, “Poly(ethylenimine) and its role in gene delivery,” J. Control. Release, 60: 149-160, 1999.
  • Yue, Y., Wu, C., Progress and perspectives in developing polymeric vectors for in vitro gene delivery, Biomater. Sci., ,1, 152-170, 2013.
  • Hsiue, G. H., Chiang, H. Z. and Wang, C. H, Novel pH-Sensitive gene carriers based on diblock copolymers of poly(2-ethyl- 2-oxazoline) and linear polyethylenimine, Bioconjug. Chem., 17, 781-786, 2006.
  • Wang, C.H., G.-H. Hsiue, Polymer-DNA hybrid nanoparticles based on folate- polyethylenimine-block-poly(L-lactide), Bioconjug. Chem. 16 (2), 391–396, (2005).
  • Sedlacek, O., Monnery, B.D., Filippov, S.K., Hoogenboom, R., Hruby, M., Poly(2-Oxazoline) s – Are They More Advantageous for Biomedical Applications Than Other Polymers?, Macromolecular Rapid Communications, 33(19), 1648-1662, 2012.
  • Gaspar, V.M., Gonçalves, C., Melo-Diogo, D., C. Costa, E., Queiroz, J.A., Pichon, Sousa, F., C., Correia I. J., Poly (2-ethyl-2-oxazoline)-PLA-g-PEI Amphiphilic Triblock Micelles for Co- delivery of Minicircle DNA and Chemotherapeutics, Journal of Controlled Release, 2014. doi: 10.1016/j.jconrel.2014.06.040
  • Ishida, T., Wang, X., Shimizu, T., Nawata, K.., Kiwada, H., PEGylated liposomes elicit an anti-PEG IgM response in a T cell-independent manner, Journal of controlled release, 122, 349-355, 2007.
  • Bauer, M., Lautenschlaeger, C., Kempe, K., Tauhardt, L., Schubert, US., Fischer, D., Poly(2- ethyl-2-oxazoline) as alternative for the stealth polymer poly(ethylene glycol): comparison of in vitro cytotoxicity and hemocompatibility, Macromol Biosci., 12(7):986–98, 2012.
  • Schlaad, H., Hoogenboom, R., Special issue: poly(2-oxazoline)s and related pseudo- polypeptides, Macromol Rapid Commun., 33, (19), 2012.
  • Adams, N., Schubert, US., Poly(2-oxazolines) in biological and biomedical application contexts, Adv Drug Deliv Rev., 59, (15), 2007.
  • Hoogenboom, R., Schlaad, H., Bioinspired poly(2-oxazoline)s, Polymers, 3,(1), 2011.
  • Schlaad, H., Diehl, C., Gress, A., Meyer, M., Demirel, AL., Nur, Y., Poly(2-oxazoline)s as smart bioinspired polymers, Macromol Rapid Commun., 31, (6), 2010.
  • Lüdtke, K., Jordan, R., Hommes, P., Nuyken, O., Naumann, C.A., Lipopolymers from new 2-substituted-2-oxazolines for artificial cell membrane constructs, Macromol. Biosci. 5, (2005)
  • Bloksma, M. M., Schubert, U. S., Hoogenboom, R., Macromol. Rapid Commun. 2011, 32, 1419–1441.
  • Zalipsky, S., Hansen, C.B., Oaks, J.M., Allen, T.M., Evaluation of blood clearance rates and biodistribution of poly(2-oxazoline)-grafted liposomes, J. Pharm. Sci., 85, 133–137, (1996).
  • Konradi, R., Pidhatika, B., Mühlebach, A., Textor, M., Poly-2-methyl-2-oxazoline: A Peptide- like Polymer for Protein-Repellent Surfaces, Langmuir 24613–616, (2008).
  • Naka, K., Nakamura, T., Ohki, A., Maeda, S., Aggregation behavior and interaction with human serum albumin of 2-oxazoline block copolymers in aqueous solutions, Macromol. Chem. Phys., 198, 101–116, (1997).
  • Gaertner, F.C., Luxenhofer, R., Blechert, B., Jordan, R., Essler, M., Synthesis, biodistribution and excretion of radiolabeled poly(2-alkyl-2-oxazoline)s, J. Control. Release, 119, 291–300, (2007).
  • Obeid, R., Scholz, C., Synthesis and self-assembly of well-defined poly(amino acid) end- capped poly(ethylene glycol) and poly(2-methyl-2-oxazoline), Biomacromolecules, 12, 3797–3804, 2011.
  • Victor, R., Poly(2-oxazoline)s as materials for biomedical applications, J Mater Sci: Mater Med., 2014.
  • Viegas, T. X., Bentley, M. D., Harris, J.M., Fang, Z., Yoon, K., Dizman, B., Weimer, R., Mero, A., Pasut, G., Veronese, F. M., Polyoxazoline: Chemistry, Properties, and Applications in Drug Delivery, Bioconjugate Chem., 22 (5), 976–986, 2011.
  • Bauer, M., Lautenschlaeger, C., Kempe, K., Tauhardt, L., Schubert, US., Fischer, D., Poly(2- ethyl-2-oxazoline) as alternative for the stealth polymer poly(ethylene glycol): comparison of in vitro cytotoxicity and hemocompatibility, Macromol Biosci., 12(7):986–98, 2012.
  • Luxenhofer, R., Sahay, G., Schulz, A., Alakhova, D., Bronich, TK., Jordan, R., Structure- property relationship in cytotoxicity and cell uptake of poly(2-oxazoline) amphiphiles, J Control Release,153(1):73–82, 2011.
  • Wang, X., Li, X., Li, Y., Zhou, Y., Fan, C., Li, W., Synthesis, characterization and biocompatibility of poly(2-ethyl-2-oxazoline)–poly(D,L-lactide)–poly(2-ethyl-2-oxazoline) hydrogels, Acta Biomater., 7(12)4149–59, 2011.
  • Konradi, R., Acikgoz, C., Textor, M., Polyoxazolines for nonfouling surface coatings—a direct comparison to the gold standard PEG, Macromol Rapid Commun., 33(19), 1663–76, 2012.
  • Pidhatika, B., Rodenstein, M., Chen, Y., Rakhmatullina, E., Mu¨hlebach, A., Acikgoz, C., Comparative stability studies of poly(2-methyl-2-oxazoline) and poly(ethylene glycol) brush coatings, Biointerphases, 7(1):1–15, 2012.
  • Kempe, K., Vollrath, A., Schaefer, H.W., Poehlmann, T.G., Biskup, C., Hoogenboom, R., Hornig, S., Schubert, U.S., Macromol Rapid Commun., 31:1869–1873 (2010).
  • Viegas, T.X., Bentley, M.D., Harris, J.M., Fang, Z., Yoon, K., Dizman, B., Weimer, R., Mero, A., Pasut, G., Veronese, F.M., Polyoxazoline: chemistry, properties, and applications in drug delivery, Bioconjug Chem., 22:976–986, 2011
  • Shah, R., Kronekova, Z., Zahoranová, A., Roller, L., Saha, N., Saha, P., Kronek, J., In vitro study of partially hydrolyzed poly(2-ethyl-2-oxazolines) as materials for biomedical applications, J Mater Sci Mater Med. ,(4):5485, 2015.
  • Lee, S.C., Kim, C., Kwon, I.C., Chung, H., Jeong, S.Y, Polymeric micelles of poly(2-ethyl-2- oxazoline)-block-poly(caprolactone) copolymer as a carrier for paclitaxel, J. control. rel., 89: 437–446, (2003).
  • Warchol, J.F., Walton, C.D., Creping adhesives containing oxazoline polymer blends and use in paper product applications, US 97-795911 (1998).
  • Frechet, J.M.J., Yui, K., Polymerizable polyoxazolines and hyperbranched polymers prepared them, US 96-660684 (1997).
  • Brinkhuis, R.H.G., Hyperbranched ester-oxazoline polymers as binders for coatings, inks and adhesives, WO 2002-EP13898 (2003)
  • Ma, S.-H., Rodriguez-Parada, J.N., Preparation of block copolymers of oxazolines and/or oxazines and their use in ink-jet inks as pigment dispersants, US 97-963839 (1998).
  • Ansari, A.M., Scaria, P.V., Woodle, M.C., Polymers for delivering peptides and small molecules in vivo, WO 2003-US2710 (2003).
  • Farkas, P,, Korcova, J., Kronek, J., Bystricky, S., Preparation of synthetic polyoxazoline based carrier and Vibrio cholerae O-specific polysaccharide conjugate vaccine, Eur. j. med. chem., 45: 795-799, (2010).
  • Korcova, J., Machova, E., Farkas, P., Bystricky, S., Immunomodulative properties of conjugates composed of detoxified lipopolysaccharide and capsular polysaccharide of Vibrio cholerae O135 bound to BSA-protein carrier, Biologia, 65: 768-775, (2010).
  • Thomas, M., Lu, J.J., Ge, Q., Zhang, C.C., Cheng, J.Z, Klibanov, A.M., Full deacylation of polyethylenimine dramatically boots its gene delivery efficiency and specifity to Mouse lung, Proc. nat. acad. sci. USA, 102: 5679-5684, (2005).
  • Mulligan, R.C., The basic science of gene therapy, Science 260, 926–932, 1993.
  • Ver ma, I. M., & Somia, N., Gene therapy—promises, problems and rospects, Nature, 389, 239−242, (1997).
  • Pack, D. W., Hoffman, A., Pun, S., & Stayton, P. S., Design and development of polymers for gene delivery, Nat Rev Drug Discov., 4,581−593, (2005).
  • Wong, S.Y., Pelet, J.M., Putnam, D., Polymer systems for gene delivery—past, present, and future, Prog Polym Sci., 32(8–9):799–837, 2007.
  • Felgner, P.L., Rhodes, G., Gene therapeutics, Nature, 24: 351-352, 1991.
  • Ward, C. M., Read, M. L., & Seymour, L. W., Systemic circulation of poly(L-lysine)/DNA vectors is influenced by polycation molecular weight and type of DNA: differential circulation in mice and rats and the implications for human gene therapy, Blood 97, 2221−2229, 2001.
  • Jeong, J.H., Song, S.H., Lim, D.W., Lee, H., Park, T.G., DNA transfection using linear poly(ethylenimine) prepared by controlled acid hydrolysis of poly(2-ethyl-2-oxazoline), J Control Release.;73(2–3):391–9,2001.
  • Felgner, P.L., Rhodes, G., Gene therapeutics, Nature, 24: 351-352, 1991.
  • Hsiue, G.H., Chiang, H.Z., Wang, C.H., Juang, T.M., Nonviral gene carriers based on diblock copolymers of poly(2-ethyl-2-oxazoline) and linear polyethylenimine. Bioconjug. chem. 17: 781-786(2006).
  • Halacheva, S., Price, G.J., Garamus, V.M., Effect of Temperature and Polymer Composition upon the Aqueous Solution Properties of Comblike Linear Poly(ethyleneimine)/Poly(2-ethyl- 2-oxazoline)-Based Polymers, Macromolecules, 44: 7394-7404, (2011).
  • Von Erlach, T,, Zwicker, S., Pidhatika, B., Konradi, R., Textor, M., Hall, H., Luhmann, T., Formation and characterization of DNA-polymer-condensates based on poly(2-methyl-2- oxazoline) grafted poly(L-lysine) for non-viral delivery of therapeutic DNA, Biomaterials, 32: 5291-5303, (2011).
  • Kabanov, A.V., Batrakova, E.V., Alakhov, V.Y., Adv Drug Deliv Rev., 54:759–779, 2002.
  • Lin, J.; Qiu, S.; Lewis, K.; Klibanov, A.M. Bactericidal Properties of Flat Surfaces and Nanoparticles Derivatized with Alkylated Polyethylenimines. Biotechnol. Prog., 18, 1082- 1086, 2002.
  • Jeong, J.H., Song, S.H., Lim, D.W., Lee, H., Park, T.G., DNA transfection using linear poly(ethylenimine) prepared by controlled acid hydrolysis of poly(2-ethyl-2-oxazoline), J. Control. Release, 73, (2-3) 391–399, 2001.
  • Abdalla, B., Hassan, A., Goula, D., Benoist, C., Behr, J.P., Demeneix, B., A powerful non- viral vector for in vivo gene transfer in the adult mammalian brian: polyethyleneimine, Hum. Gene Ther.,7, 1947–1954, 1996.
  • Bertrand, J.R., Pottier, M., Vekris, A., Opolon, P., Maksimenko, A., Malvy, C., Comparison of antisense oligonucleotides and siRNAs in cell culture and in vivo, Biochem. Biophys. Res. Commun., 296, 1000–1004, 2002.
  • Chen, P., Edelman, J.D., Gharib, S.A., Comparative Evaluation of miRNA Expression between in Vitro and in VivoAirway Epithelium Demonstrates Widespread Differences, Am J Pathol., 183(5), 1405–1410, 2013.
  • Wang, C.H., Hsiue, G.H., Polymer-DNA hybrid nanoparticles based on folate- polyethylenimine-block-poly(L-lactide), Bioconjug Chem., 16(2):391-6, 2005.
  • Bauhuber S, Liebl R, Tomasetti L, Rachel R, Goepferich A, Breunig M. A library of strictly linear poly(ethylene glycol)–poly(ethylene imine) diblock copolymers to perform structure– function relationship of non-viral gene carriers. J Control Release. 162(2):446–55, 2012.
  • Von Erlach, T,, Zwicker, S., Pidhatika, B., Konradi, R., Textor, M., Hall, H., Luhmann, T., gaspar and characterization of DNA-polymer-condensates based on poly(2-methyl-2- oxazoline) grafted poly(L-lysine) for non-viral delivery of therapeutic DNA, Biomaterials, 32: 5291-5303, 2011.
  • Grayson, S.M., Cortez, M., inventors; Polyplex Gene Delivery Vectors, International Patent WO 2011/116371, 2011.
  • Zhong, Z., Feijen, J., Lok, M.C., Hennink, W.E., Christensen, L.V., Yockman, J.W., Kim, Y.-H., Kim, S.W., Low molecular weight linear poly (ethyleneimine)-b-poly(ethylene glycol)- b-poly(ethyleneimine) triblock copolymers: synthesis, characterization and in vitro gene transfer properties, Biomacromolecules 6 (6) 3440–3448, 2005.
  • Brissault, B., Kichler, A., Leborgne, C., Danos, O., Cheradame, H., Gau, J., Auvray, L., Guis, C., Synthesis, characterization and gene transfer application of poly(ethylene glycol- b-ethylenimine) with high molar mass polyamine block, Biomacromolecules, 7, (10) 2863– 2870, 2006.
  • Brissault, B., Kichler, A., Leborgne, C., Jarroux, N., Cheradame, H., Guis, C., Amphiphilic poly[(propylene glycol)-block-(2-methyl-2-oxazoine)] copolymers for gene transfer in skeletal muscle, ChemMedChem., 2: 1202-1207, 2007.
  • Fiore, G.L., Edwards, J.M., Payne, S..J., Klinkenberg, J.L., Gioeli, D.G., Demas, J.N., Fraser C.L., Ruthenium(II) Tris(bipyridine)-Centered Poly(ethylenimine) for Gene Delivery, Biomacromolecules, 8, 2829-2835, 2007.

A possible approach for gene transfer; Poly 2-oxazoline based vectors

Yıl 2014, Sayı: 2, 113 - 132, 01.06.2014

Öz

Nowadays, the use of synthetic polymers in drug and gene delivery applications continues at an accelerated rate. Among these, as gene delivery system 2-oxazolines are promising materials with high biocompatibility, stealth effect, lower average molecular weight distribution, higher therapeutic response, higher functionalization with functional groups attached to the polymer end groups to drug and gene delivery and versatility features to deliver the different molecules by changing easily the chemical structures and they form a new polymeric platform. Especially as polymeric therapeutically POx, although equally well protein interaction with PEG and shows low non-specific organ accumulation. However, the chemical stability is significantly better than PEG. In addition, the use of POx instead of hydrophilic PEG is a good option due to disadvantages as consistent application of currently used PEGylated drugs, immunological response, accelerated blood clearance, non-biodegradability and accumulation in the body. Recently, besides active substance delivery properties, POx is also discussed as a potential alternative in gene therapy applications. Recently, PEI synthesized by partial hydrolysis of POx frequently choosen by researches for gene delivery applications because of its advantages, such as low cytotoxicity in cell culture and higher gene transfection efficiency and also forming tight complex with DNA and compatibility for condensation capacity to gene transfection. In this review, the functional properties of poly 2-oxazoline and their advantages about use as a vector with succesful applications of gene delivery were discussed.

Kaynakça

  • Kronek, J., Kronekova,´ Z., Luston,ˇ J., Paulovicˇova,´ E., Paulovicˇova,´ L., Mendrek, B., In vitro bio-immunological and cytotoxicity studies of poly(2-oxazolines), J Mater Sci Mater Med., 22,(7), 1725–34, 2011.
  • Fernandes, J., Qiu, X., Winnik, F,M., Benderdour, M., Zhang, X., Dai, K., Shi, Q., L inear polyethylenimine produced by partial acid hydrolysis of poly(2-ethyl-2-oxazoline) for DNA and siRNA delivery in vitro, International Journal of Nanomedicine, (8) 4091–4102, 2013.
  • Meredith A., Mintzer and Eric E. Simanek, Nonviral Vectors for Gene Delivery, Chem. Rev., 109, 259–302, 2009.
  • Lin, C,P., Sung Y,C., Hsiue, G,H., Non-viral pH-sensitive Gene Carriers based on Poly((2- ethyl-2-oxazoline)-co-ethylenimine)-block-Poly(2-ethyl-2-oxazoline): A Study of Gene Release Behavior, Journal of Medical and Biological Engineering, 32(5): 365-372, 2011.
  • W. T. Godbey, K. K. Wu and A. G. Mikos, “Poly(ethylenimine) and its role in gene delivery,” J. Control. Release, 60: 149-160, 1999.
  • Yue, Y., Wu, C., Progress and perspectives in developing polymeric vectors for in vitro gene delivery, Biomater. Sci., ,1, 152-170, 2013.
  • Hsiue, G. H., Chiang, H. Z. and Wang, C. H, Novel pH-Sensitive gene carriers based on diblock copolymers of poly(2-ethyl- 2-oxazoline) and linear polyethylenimine, Bioconjug. Chem., 17, 781-786, 2006.
  • Wang, C.H., G.-H. Hsiue, Polymer-DNA hybrid nanoparticles based on folate- polyethylenimine-block-poly(L-lactide), Bioconjug. Chem. 16 (2), 391–396, (2005).
  • Sedlacek, O., Monnery, B.D., Filippov, S.K., Hoogenboom, R., Hruby, M., Poly(2-Oxazoline) s – Are They More Advantageous for Biomedical Applications Than Other Polymers?, Macromolecular Rapid Communications, 33(19), 1648-1662, 2012.
  • Gaspar, V.M., Gonçalves, C., Melo-Diogo, D., C. Costa, E., Queiroz, J.A., Pichon, Sousa, F., C., Correia I. J., Poly (2-ethyl-2-oxazoline)-PLA-g-PEI Amphiphilic Triblock Micelles for Co- delivery of Minicircle DNA and Chemotherapeutics, Journal of Controlled Release, 2014. doi: 10.1016/j.jconrel.2014.06.040
  • Ishida, T., Wang, X., Shimizu, T., Nawata, K.., Kiwada, H., PEGylated liposomes elicit an anti-PEG IgM response in a T cell-independent manner, Journal of controlled release, 122, 349-355, 2007.
  • Bauer, M., Lautenschlaeger, C., Kempe, K., Tauhardt, L., Schubert, US., Fischer, D., Poly(2- ethyl-2-oxazoline) as alternative for the stealth polymer poly(ethylene glycol): comparison of in vitro cytotoxicity and hemocompatibility, Macromol Biosci., 12(7):986–98, 2012.
  • Schlaad, H., Hoogenboom, R., Special issue: poly(2-oxazoline)s and related pseudo- polypeptides, Macromol Rapid Commun., 33, (19), 2012.
  • Adams, N., Schubert, US., Poly(2-oxazolines) in biological and biomedical application contexts, Adv Drug Deliv Rev., 59, (15), 2007.
  • Hoogenboom, R., Schlaad, H., Bioinspired poly(2-oxazoline)s, Polymers, 3,(1), 2011.
  • Schlaad, H., Diehl, C., Gress, A., Meyer, M., Demirel, AL., Nur, Y., Poly(2-oxazoline)s as smart bioinspired polymers, Macromol Rapid Commun., 31, (6), 2010.
  • Lüdtke, K., Jordan, R., Hommes, P., Nuyken, O., Naumann, C.A., Lipopolymers from new 2-substituted-2-oxazolines for artificial cell membrane constructs, Macromol. Biosci. 5, (2005)
  • Bloksma, M. M., Schubert, U. S., Hoogenboom, R., Macromol. Rapid Commun. 2011, 32, 1419–1441.
  • Zalipsky, S., Hansen, C.B., Oaks, J.M., Allen, T.M., Evaluation of blood clearance rates and biodistribution of poly(2-oxazoline)-grafted liposomes, J. Pharm. Sci., 85, 133–137, (1996).
  • Konradi, R., Pidhatika, B., Mühlebach, A., Textor, M., Poly-2-methyl-2-oxazoline: A Peptide- like Polymer for Protein-Repellent Surfaces, Langmuir 24613–616, (2008).
  • Naka, K., Nakamura, T., Ohki, A., Maeda, S., Aggregation behavior and interaction with human serum albumin of 2-oxazoline block copolymers in aqueous solutions, Macromol. Chem. Phys., 198, 101–116, (1997).
  • Gaertner, F.C., Luxenhofer, R., Blechert, B., Jordan, R., Essler, M., Synthesis, biodistribution and excretion of radiolabeled poly(2-alkyl-2-oxazoline)s, J. Control. Release, 119, 291–300, (2007).
  • Obeid, R., Scholz, C., Synthesis and self-assembly of well-defined poly(amino acid) end- capped poly(ethylene glycol) and poly(2-methyl-2-oxazoline), Biomacromolecules, 12, 3797–3804, 2011.
  • Victor, R., Poly(2-oxazoline)s as materials for biomedical applications, J Mater Sci: Mater Med., 2014.
  • Viegas, T. X., Bentley, M. D., Harris, J.M., Fang, Z., Yoon, K., Dizman, B., Weimer, R., Mero, A., Pasut, G., Veronese, F. M., Polyoxazoline: Chemistry, Properties, and Applications in Drug Delivery, Bioconjugate Chem., 22 (5), 976–986, 2011.
  • Bauer, M., Lautenschlaeger, C., Kempe, K., Tauhardt, L., Schubert, US., Fischer, D., Poly(2- ethyl-2-oxazoline) as alternative for the stealth polymer poly(ethylene glycol): comparison of in vitro cytotoxicity and hemocompatibility, Macromol Biosci., 12(7):986–98, 2012.
  • Luxenhofer, R., Sahay, G., Schulz, A., Alakhova, D., Bronich, TK., Jordan, R., Structure- property relationship in cytotoxicity and cell uptake of poly(2-oxazoline) amphiphiles, J Control Release,153(1):73–82, 2011.
  • Wang, X., Li, X., Li, Y., Zhou, Y., Fan, C., Li, W., Synthesis, characterization and biocompatibility of poly(2-ethyl-2-oxazoline)–poly(D,L-lactide)–poly(2-ethyl-2-oxazoline) hydrogels, Acta Biomater., 7(12)4149–59, 2011.
  • Konradi, R., Acikgoz, C., Textor, M., Polyoxazolines for nonfouling surface coatings—a direct comparison to the gold standard PEG, Macromol Rapid Commun., 33(19), 1663–76, 2012.
  • Pidhatika, B., Rodenstein, M., Chen, Y., Rakhmatullina, E., Mu¨hlebach, A., Acikgoz, C., Comparative stability studies of poly(2-methyl-2-oxazoline) and poly(ethylene glycol) brush coatings, Biointerphases, 7(1):1–15, 2012.
  • Kempe, K., Vollrath, A., Schaefer, H.W., Poehlmann, T.G., Biskup, C., Hoogenboom, R., Hornig, S., Schubert, U.S., Macromol Rapid Commun., 31:1869–1873 (2010).
  • Viegas, T.X., Bentley, M.D., Harris, J.M., Fang, Z., Yoon, K., Dizman, B., Weimer, R., Mero, A., Pasut, G., Veronese, F.M., Polyoxazoline: chemistry, properties, and applications in drug delivery, Bioconjug Chem., 22:976–986, 2011
  • Shah, R., Kronekova, Z., Zahoranová, A., Roller, L., Saha, N., Saha, P., Kronek, J., In vitro study of partially hydrolyzed poly(2-ethyl-2-oxazolines) as materials for biomedical applications, J Mater Sci Mater Med. ,(4):5485, 2015.
  • Lee, S.C., Kim, C., Kwon, I.C., Chung, H., Jeong, S.Y, Polymeric micelles of poly(2-ethyl-2- oxazoline)-block-poly(caprolactone) copolymer as a carrier for paclitaxel, J. control. rel., 89: 437–446, (2003).
  • Warchol, J.F., Walton, C.D., Creping adhesives containing oxazoline polymer blends and use in paper product applications, US 97-795911 (1998).
  • Frechet, J.M.J., Yui, K., Polymerizable polyoxazolines and hyperbranched polymers prepared them, US 96-660684 (1997).
  • Brinkhuis, R.H.G., Hyperbranched ester-oxazoline polymers as binders for coatings, inks and adhesives, WO 2002-EP13898 (2003)
  • Ma, S.-H., Rodriguez-Parada, J.N., Preparation of block copolymers of oxazolines and/or oxazines and their use in ink-jet inks as pigment dispersants, US 97-963839 (1998).
  • Ansari, A.M., Scaria, P.V., Woodle, M.C., Polymers for delivering peptides and small molecules in vivo, WO 2003-US2710 (2003).
  • Farkas, P,, Korcova, J., Kronek, J., Bystricky, S., Preparation of synthetic polyoxazoline based carrier and Vibrio cholerae O-specific polysaccharide conjugate vaccine, Eur. j. med. chem., 45: 795-799, (2010).
  • Korcova, J., Machova, E., Farkas, P., Bystricky, S., Immunomodulative properties of conjugates composed of detoxified lipopolysaccharide and capsular polysaccharide of Vibrio cholerae O135 bound to BSA-protein carrier, Biologia, 65: 768-775, (2010).
  • Thomas, M., Lu, J.J., Ge, Q., Zhang, C.C., Cheng, J.Z, Klibanov, A.M., Full deacylation of polyethylenimine dramatically boots its gene delivery efficiency and specifity to Mouse lung, Proc. nat. acad. sci. USA, 102: 5679-5684, (2005).
  • Mulligan, R.C., The basic science of gene therapy, Science 260, 926–932, 1993.
  • Ver ma, I. M., & Somia, N., Gene therapy—promises, problems and rospects, Nature, 389, 239−242, (1997).
  • Pack, D. W., Hoffman, A., Pun, S., & Stayton, P. S., Design and development of polymers for gene delivery, Nat Rev Drug Discov., 4,581−593, (2005).
  • Wong, S.Y., Pelet, J.M., Putnam, D., Polymer systems for gene delivery—past, present, and future, Prog Polym Sci., 32(8–9):799–837, 2007.
  • Felgner, P.L., Rhodes, G., Gene therapeutics, Nature, 24: 351-352, 1991.
  • Ward, C. M., Read, M. L., & Seymour, L. W., Systemic circulation of poly(L-lysine)/DNA vectors is influenced by polycation molecular weight and type of DNA: differential circulation in mice and rats and the implications for human gene therapy, Blood 97, 2221−2229, 2001.
  • Jeong, J.H., Song, S.H., Lim, D.W., Lee, H., Park, T.G., DNA transfection using linear poly(ethylenimine) prepared by controlled acid hydrolysis of poly(2-ethyl-2-oxazoline), J Control Release.;73(2–3):391–9,2001.
  • Felgner, P.L., Rhodes, G., Gene therapeutics, Nature, 24: 351-352, 1991.
  • Hsiue, G.H., Chiang, H.Z., Wang, C.H., Juang, T.M., Nonviral gene carriers based on diblock copolymers of poly(2-ethyl-2-oxazoline) and linear polyethylenimine. Bioconjug. chem. 17: 781-786(2006).
  • Halacheva, S., Price, G.J., Garamus, V.M., Effect of Temperature and Polymer Composition upon the Aqueous Solution Properties of Comblike Linear Poly(ethyleneimine)/Poly(2-ethyl- 2-oxazoline)-Based Polymers, Macromolecules, 44: 7394-7404, (2011).
  • Von Erlach, T,, Zwicker, S., Pidhatika, B., Konradi, R., Textor, M., Hall, H., Luhmann, T., Formation and characterization of DNA-polymer-condensates based on poly(2-methyl-2- oxazoline) grafted poly(L-lysine) for non-viral delivery of therapeutic DNA, Biomaterials, 32: 5291-5303, (2011).
  • Kabanov, A.V., Batrakova, E.V., Alakhov, V.Y., Adv Drug Deliv Rev., 54:759–779, 2002.
  • Lin, J.; Qiu, S.; Lewis, K.; Klibanov, A.M. Bactericidal Properties of Flat Surfaces and Nanoparticles Derivatized with Alkylated Polyethylenimines. Biotechnol. Prog., 18, 1082- 1086, 2002.
  • Jeong, J.H., Song, S.H., Lim, D.W., Lee, H., Park, T.G., DNA transfection using linear poly(ethylenimine) prepared by controlled acid hydrolysis of poly(2-ethyl-2-oxazoline), J. Control. Release, 73, (2-3) 391–399, 2001.
  • Abdalla, B., Hassan, A., Goula, D., Benoist, C., Behr, J.P., Demeneix, B., A powerful non- viral vector for in vivo gene transfer in the adult mammalian brian: polyethyleneimine, Hum. Gene Ther.,7, 1947–1954, 1996.
  • Bertrand, J.R., Pottier, M., Vekris, A., Opolon, P., Maksimenko, A., Malvy, C., Comparison of antisense oligonucleotides and siRNAs in cell culture and in vivo, Biochem. Biophys. Res. Commun., 296, 1000–1004, 2002.
  • Chen, P., Edelman, J.D., Gharib, S.A., Comparative Evaluation of miRNA Expression between in Vitro and in VivoAirway Epithelium Demonstrates Widespread Differences, Am J Pathol., 183(5), 1405–1410, 2013.
  • Wang, C.H., Hsiue, G.H., Polymer-DNA hybrid nanoparticles based on folate- polyethylenimine-block-poly(L-lactide), Bioconjug Chem., 16(2):391-6, 2005.
  • Bauhuber S, Liebl R, Tomasetti L, Rachel R, Goepferich A, Breunig M. A library of strictly linear poly(ethylene glycol)–poly(ethylene imine) diblock copolymers to perform structure– function relationship of non-viral gene carriers. J Control Release. 162(2):446–55, 2012.
  • Von Erlach, T,, Zwicker, S., Pidhatika, B., Konradi, R., Textor, M., Hall, H., Luhmann, T., gaspar and characterization of DNA-polymer-condensates based on poly(2-methyl-2- oxazoline) grafted poly(L-lysine) for non-viral delivery of therapeutic DNA, Biomaterials, 32: 5291-5303, 2011.
  • Grayson, S.M., Cortez, M., inventors; Polyplex Gene Delivery Vectors, International Patent WO 2011/116371, 2011.
  • Zhong, Z., Feijen, J., Lok, M.C., Hennink, W.E., Christensen, L.V., Yockman, J.W., Kim, Y.-H., Kim, S.W., Low molecular weight linear poly (ethyleneimine)-b-poly(ethylene glycol)- b-poly(ethyleneimine) triblock copolymers: synthesis, characterization and in vitro gene transfer properties, Biomacromolecules 6 (6) 3440–3448, 2005.
  • Brissault, B., Kichler, A., Leborgne, C., Danos, O., Cheradame, H., Gau, J., Auvray, L., Guis, C., Synthesis, characterization and gene transfer application of poly(ethylene glycol- b-ethylenimine) with high molar mass polyamine block, Biomacromolecules, 7, (10) 2863– 2870, 2006.
  • Brissault, B., Kichler, A., Leborgne, C., Jarroux, N., Cheradame, H., Guis, C., Amphiphilic poly[(propylene glycol)-block-(2-methyl-2-oxazoine)] copolymers for gene transfer in skeletal muscle, ChemMedChem., 2: 1202-1207, 2007.
  • Fiore, G.L., Edwards, J.M., Payne, S..J., Klinkenberg, J.L., Gioeli, D.G., Demas, J.N., Fraser C.L., Ruthenium(II) Tris(bipyridine)-Centered Poly(ethylenimine) for Gene Delivery, Biomacromolecules, 8, 2829-2835, 2007.
Toplam 67 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Research Article
Yazarlar

Aslı Kara Bu kişi benim

İmran Vural Bu kişi benim

Özgür Yılmaz Bu kişi benim

Asuman Bozkır Bu kişi benim

Yayımlanma Tarihi 1 Haziran 2014
Yayımlandığı Sayı Yıl 2014 Sayı: 2

Kaynak Göster

Vancouver Kara A, Vural İ, Yılmaz Ö, Bozkır A. Gen tașınması için olası bir yaklașım; Poli 2-oksazolin tabanlı vektörler. HUJPHARM. 2014(2):113-32.