Motor Dysfunction and Related Synaptic Organisation in AVV-Mediated Alpha-Synuclein Overexpression Model of Parkinson’s Disease
Year 2020,
Volume: 40 Issue: 2, 74 - 82, 01.06.2020
Elif Çınar
,
Gül Çakmaklı
Banu Tel
Abstract
In Parkinson’s disease (PD), pathological intracellular aggregation of alpha-synuclein plays a key role in the neurodegenerative process. In this study, we aimed to investigate the progression of motor dysfunction and related changes in synaptic organization in an alpha-synuclein overexpressing viral vector model of Parkinson’s disease (PD) in rats.
Adeno-associated viral vectors (AAV) were stereotaxically injected bilaterally into substantia nigra (SN) together with dentate gyrus (DG). Further 7 animals were used as naïve controls. All animals were tested for locomotor activity for an hour from 3rd to 15th week. After that rats striati were analyzed by Western blotting for alpha-synuclein, tyrosine hydroxylase and synaptophysin expression.
Alpha-synuclein injected group moved less distance compare to control and their movement decreased by time till the 7th week then start to increase but yet slightly lower than the controls. Synaptophysin level was 13% and TH level was 25% decreased in alpha-synuclein group compare to controls.
Due to compensation mechanisms to protect neurons from neuronal death or alpha-synuclein accumulation in DG, alpha-synuclein group sustained to move in open field locomotor activity test. Although the model is open for improvement, it is useful to study early stage of PD and motor dysfunctions that occur due to alpha-synuclein overexpression.
Supporting Institution
Hacettepe Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi (BAP)
Thanks
rAAV5-α-syn and rAAV5-eGFP viral vectors were kindly obtained from Michael J. Fox Foundation as a gift.
References
- 1. Varma D, Sen D. Role of the unfolded protein response in the pathogenesis of Parkinson's disease. Acta Neurobioliae Experimentalis. 2015;75(1):1-26.
- 2. Fortuna JTS, Gralle M, Beckman D, Neves FS, Diniz LP, Frost PS, et al. Brain infusion of alpha-synuclein oligomers induces motor and non-motor Parkinson's disease-like symptoms in mice. Behavioural Brain Research. 2017;333:150-60.
- 3. Kurnik M, Thor P. The non-motor complications in Parkinson's disease - what can we learn from animal models? Folia Medica Cracoviensia. 2015;55(2):69-84.
- 4. McDowell K, Chesselet MF. Animal models of the non-motor features of Parkinson's disease. Neurobiology of Disease. 2012;46(3):597-606.
- 5. Hall H, Jewett M, Landeck N, Nilsson N, Schagerlof U, Leanza G, et al. Characterization of cognitive deficits in rats overexpressing human alpha-synuclein in the ventral tegmental area and medial septum using recombinant adeno-associated viral vectors. PLoS One. 2013;8(5):e64844.
- 6. Bonito-Oliva A, Masini D, Fisone G. A mouse model of non-motor symptoms in Parkinson's disease: focus on pharmacological interventions targeting affective dysfunctions. Frontiers in Behavioral Neuroscience. 2014;8:290.
- 7. Sampaio TB, Marcondes Sari MH, Pesarico AP, Mantovani AC, Zeni G, Nogueira CW. 7-Fluoro-1,3-diphenylisoquinoline reverses motor and non-motor symptoms induced by MPTP in mice: Role of striatal neuroinflammation. European Journal of Pharmacology. 2018;819:129-35.
- 8. Rana AQ, Masroor MS, Khan AS. A review of methods used to study cognitive deficits in Parkinson's disease. Neurological Research. 2013;35(1):1-6.
- 9. Bonito-Oliva A, Pignatelli M, Spigolon G, Yoshitake T, Seiler S, Longo F, et al. Cognitive impairment and dentate gyrus synaptic dysfunction in experimental parkinsonism. Biological Psychiatry. 2014;75(9):701-10.
- 10. Titova N, Schapira AHV, Chaudhuri KR, Qamar MA, Katunina E, Jenner P. Nonmotor Symptoms in Experimental Models of Parkinson's Disease. International Review of Neurobiology. 2017;133:63-89.
- 11. Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M. Alpha-synuclein in Lewy bodies. Nature. 1997;388(6645):839-40.
- 12. Angot E, Steiner JA, Hansen C, Li JY, Brundin P. Are synucleinopathies prion-like disorders? The Lancet Neurology. 2010;9(11):1128-38.
- 13. Hansen C, Li JY. Beyond alpha-synuclein transfer: pathology propagation in Parkinson's disease. Trends in Molecular Medicine. 2012;18(5):248-55.
- 14. Brundin P, Olsson R. Can alpha-synuclein be targeted in novel therapies for Parkinson's disease? Expert Review of Neurotherapeutics. 2011;11(7):917-9.
- 15. Dauer W, Przedborski S. Parkinson's disease: mechanisms and models. Neuron. 2003;39(6):889-909.
- 16. Campos FL, Carvalho MM, Cristovao AC, Je G, Baltazar G, Salgado AJ, et al. Rodent models of Parkinson's disease: beyond the motor symptomatology. Frontiers Behavioral Neuroscience. 2013;7:175.
- 17. Duty S, Jenner P. Animal models of Parkinson's disease: a source of novel treatments and clues to the cause of the disease. British Journal of Pharmacology. 2011;164(4):1357-91.
- 18. Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, et al. Mutation in the alpha-synuclein gene identified in families with Parkinson's disease. Science. 1997;276(5321):2045-7.
- 19. Goldberg MS, Lansbury PT, Jr. Is there a cause-and-effect relationship between alpha-synuclein fibrillization and Parkinson's disease? Nature Cell Biology. 2000;2(7):E115-9.
- 20. Masliah E, Rockenstein E, Veinbergs I, Mallory M, Hashimoto M, Takeda A, et al. Dopaminergic loss and inclusion body formation in alpha-synuclein mice: implications for neurodegenerative disorders. Science. 2000;287(5456):1265-9.
- 21. Kirik D, Rosenblad C, Burger C, Lundberg C, Johansen TE, Muzyczka N, et al. Parkinson-like neurodegeneration induced by targeted overexpression of alpha-synuclein in the nigrostriatal system. Journal of Neuroscience. 2002;22(7):2780-91.
- 22. Klein RL, King MA, Hamby ME, Meyer EM. Dopaminergic cell loss induced by human A30P alpha-synuclein gene transfer to the rat substantia nigra. Human Gene Therapy. 2002;13(5):605-12.
- 23. Richfield EK, Thiruchelvam MJ, Cory-Slechta DA, Wuertzer C, Gainetdinov RR, Caron MG, et al. Behavioral and neurochemical effects of wild-type and mutated human alpha-synuclein in transgenic mice. Experimental Neurology. 2002;175(1):35-48.
- 24. Yamada M, Iwatsubo T, Mizuno Y, Mochizuki H. Overexpression of alpha-synuclein in rat substantia nigra results in loss of dopaminergic neurons, phosphorylation of alpha-synuclein and activation of caspase-9: resemblance to pathogenetic changes in Parkinson's disease. Journal of Neurochemistry. 2004;91(2):451-61.
- 25. Maingay M, Romero-Ramos M, Kirik D. Viral vector mediated overexpression of human alpha-synuclein in the nigrostriatal dopaminergic neurons: a new model for Parkinson's disease. CNS Spectrums. 2005;10(3):235-44.
- 26. Ulusoy A, Decressac M, Kirik D, Bjorklund A. Viral vector-mediated overexpression of alpha-synuclein as a progressive model of Parkinson's disease. Progress in Brain Research. 2010;184:89-111.
- 27. Volpicelli-Daley LA, Kirik D, Stoyka LE, Standaert DG, Harms AS. How can rAAV-alpha-synuclein and the fibril alpha-synuclein models advance our understanding of Parkinson's disease? Jornal of Neurochemistry. 2016;139 Suppl 1:131-55.
- 28. Cinar E, Yalcin-Cakmakli G, Saka E, Ulusoy A, Yuruker S, Elibol B, et al. Modelling cognitive deficits in Parkinson's disease: Is CA2 a gateway for hippocampal synucleinopathy? Experimental Neurology. 2020;330:113357.
- 29. Gombash SE, Manfredsson FP, Kemp CJ, Kuhn NC, Fleming SM, Egan AE, et al. Morphological and behavioral impact of AAV2/5-mediated overexpression of human wildtype alpha-synuclein in the rat nigrostriatal system. PLoS One. 2013;8(11):e81426.
- 30. Oliveras-Salva M, Van der Perren A, Casadei N, Stroobants S, Nuber S, D'Hooge R, et al. rAAV2/7 vector-mediated overexpression of alpha-synuclein in mouse substantia nigra induces protein aggregation and progressive dose-dependent neurodegeneration. Molecular Neurodegeneration. 2013;8:44.
- 31. Ulusoy A, Sahin G, Bjorklund T, Aebischer P, Kirik D. Dose optimization for long-term rAAV-mediated RNA interference in the nigrostriatal projection neurons. Molecular Therapy. 2009;17(9):1574-84.
Year 2020,
Volume: 40 Issue: 2, 74 - 82, 01.06.2020
Elif Çınar
,
Gül Çakmaklı
Banu Tel
References
- 1. Varma D, Sen D. Role of the unfolded protein response in the pathogenesis of Parkinson's disease. Acta Neurobioliae Experimentalis. 2015;75(1):1-26.
- 2. Fortuna JTS, Gralle M, Beckman D, Neves FS, Diniz LP, Frost PS, et al. Brain infusion of alpha-synuclein oligomers induces motor and non-motor Parkinson's disease-like symptoms in mice. Behavioural Brain Research. 2017;333:150-60.
- 3. Kurnik M, Thor P. The non-motor complications in Parkinson's disease - what can we learn from animal models? Folia Medica Cracoviensia. 2015;55(2):69-84.
- 4. McDowell K, Chesselet MF. Animal models of the non-motor features of Parkinson's disease. Neurobiology of Disease. 2012;46(3):597-606.
- 5. Hall H, Jewett M, Landeck N, Nilsson N, Schagerlof U, Leanza G, et al. Characterization of cognitive deficits in rats overexpressing human alpha-synuclein in the ventral tegmental area and medial septum using recombinant adeno-associated viral vectors. PLoS One. 2013;8(5):e64844.
- 6. Bonito-Oliva A, Masini D, Fisone G. A mouse model of non-motor symptoms in Parkinson's disease: focus on pharmacological interventions targeting affective dysfunctions. Frontiers in Behavioral Neuroscience. 2014;8:290.
- 7. Sampaio TB, Marcondes Sari MH, Pesarico AP, Mantovani AC, Zeni G, Nogueira CW. 7-Fluoro-1,3-diphenylisoquinoline reverses motor and non-motor symptoms induced by MPTP in mice: Role of striatal neuroinflammation. European Journal of Pharmacology. 2018;819:129-35.
- 8. Rana AQ, Masroor MS, Khan AS. A review of methods used to study cognitive deficits in Parkinson's disease. Neurological Research. 2013;35(1):1-6.
- 9. Bonito-Oliva A, Pignatelli M, Spigolon G, Yoshitake T, Seiler S, Longo F, et al. Cognitive impairment and dentate gyrus synaptic dysfunction in experimental parkinsonism. Biological Psychiatry. 2014;75(9):701-10.
- 10. Titova N, Schapira AHV, Chaudhuri KR, Qamar MA, Katunina E, Jenner P. Nonmotor Symptoms in Experimental Models of Parkinson's Disease. International Review of Neurobiology. 2017;133:63-89.
- 11. Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M. Alpha-synuclein in Lewy bodies. Nature. 1997;388(6645):839-40.
- 12. Angot E, Steiner JA, Hansen C, Li JY, Brundin P. Are synucleinopathies prion-like disorders? The Lancet Neurology. 2010;9(11):1128-38.
- 13. Hansen C, Li JY. Beyond alpha-synuclein transfer: pathology propagation in Parkinson's disease. Trends in Molecular Medicine. 2012;18(5):248-55.
- 14. Brundin P, Olsson R. Can alpha-synuclein be targeted in novel therapies for Parkinson's disease? Expert Review of Neurotherapeutics. 2011;11(7):917-9.
- 15. Dauer W, Przedborski S. Parkinson's disease: mechanisms and models. Neuron. 2003;39(6):889-909.
- 16. Campos FL, Carvalho MM, Cristovao AC, Je G, Baltazar G, Salgado AJ, et al. Rodent models of Parkinson's disease: beyond the motor symptomatology. Frontiers Behavioral Neuroscience. 2013;7:175.
- 17. Duty S, Jenner P. Animal models of Parkinson's disease: a source of novel treatments and clues to the cause of the disease. British Journal of Pharmacology. 2011;164(4):1357-91.
- 18. Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, et al. Mutation in the alpha-synuclein gene identified in families with Parkinson's disease. Science. 1997;276(5321):2045-7.
- 19. Goldberg MS, Lansbury PT, Jr. Is there a cause-and-effect relationship between alpha-synuclein fibrillization and Parkinson's disease? Nature Cell Biology. 2000;2(7):E115-9.
- 20. Masliah E, Rockenstein E, Veinbergs I, Mallory M, Hashimoto M, Takeda A, et al. Dopaminergic loss and inclusion body formation in alpha-synuclein mice: implications for neurodegenerative disorders. Science. 2000;287(5456):1265-9.
- 21. Kirik D, Rosenblad C, Burger C, Lundberg C, Johansen TE, Muzyczka N, et al. Parkinson-like neurodegeneration induced by targeted overexpression of alpha-synuclein in the nigrostriatal system. Journal of Neuroscience. 2002;22(7):2780-91.
- 22. Klein RL, King MA, Hamby ME, Meyer EM. Dopaminergic cell loss induced by human A30P alpha-synuclein gene transfer to the rat substantia nigra. Human Gene Therapy. 2002;13(5):605-12.
- 23. Richfield EK, Thiruchelvam MJ, Cory-Slechta DA, Wuertzer C, Gainetdinov RR, Caron MG, et al. Behavioral and neurochemical effects of wild-type and mutated human alpha-synuclein in transgenic mice. Experimental Neurology. 2002;175(1):35-48.
- 24. Yamada M, Iwatsubo T, Mizuno Y, Mochizuki H. Overexpression of alpha-synuclein in rat substantia nigra results in loss of dopaminergic neurons, phosphorylation of alpha-synuclein and activation of caspase-9: resemblance to pathogenetic changes in Parkinson's disease. Journal of Neurochemistry. 2004;91(2):451-61.
- 25. Maingay M, Romero-Ramos M, Kirik D. Viral vector mediated overexpression of human alpha-synuclein in the nigrostriatal dopaminergic neurons: a new model for Parkinson's disease. CNS Spectrums. 2005;10(3):235-44.
- 26. Ulusoy A, Decressac M, Kirik D, Bjorklund A. Viral vector-mediated overexpression of alpha-synuclein as a progressive model of Parkinson's disease. Progress in Brain Research. 2010;184:89-111.
- 27. Volpicelli-Daley LA, Kirik D, Stoyka LE, Standaert DG, Harms AS. How can rAAV-alpha-synuclein and the fibril alpha-synuclein models advance our understanding of Parkinson's disease? Jornal of Neurochemistry. 2016;139 Suppl 1:131-55.
- 28. Cinar E, Yalcin-Cakmakli G, Saka E, Ulusoy A, Yuruker S, Elibol B, et al. Modelling cognitive deficits in Parkinson's disease: Is CA2 a gateway for hippocampal synucleinopathy? Experimental Neurology. 2020;330:113357.
- 29. Gombash SE, Manfredsson FP, Kemp CJ, Kuhn NC, Fleming SM, Egan AE, et al. Morphological and behavioral impact of AAV2/5-mediated overexpression of human wildtype alpha-synuclein in the rat nigrostriatal system. PLoS One. 2013;8(11):e81426.
- 30. Oliveras-Salva M, Van der Perren A, Casadei N, Stroobants S, Nuber S, D'Hooge R, et al. rAAV2/7 vector-mediated overexpression of alpha-synuclein in mouse substantia nigra induces protein aggregation and progressive dose-dependent neurodegeneration. Molecular Neurodegeneration. 2013;8:44.
- 31. Ulusoy A, Sahin G, Bjorklund T, Aebischer P, Kirik D. Dose optimization for long-term rAAV-mediated RNA interference in the nigrostriatal projection neurons. Molecular Therapy. 2009;17(9):1574-84.