Research Article
BibTex RIS Cite

N’-(2-(5-((Theophylline-7-yl)methyl)- 4-ethyl-1,2,4-triazole-3-ylthio)acetyl) isonicotinohydrazide As Antitubercular Agents

Year 2022, Volume: 42 Issue: 3, 149 - 155, 01.09.2022
https://doi.org/10.52794/hujpharm.1011368

Abstract

The paper presents the results of histological studies of tuberculosis in rabbits in an experimental model with comparative treatment with isoniazid and N'-(2-(5-((theophylline-7-yl)methyl)-4-ethyl-1,2,4-triazole-3-ylthio)acetyl)isonicotinohydrazide. The calculated dose of N'-(2-(5-((theophylline-7-yl)methyl)-4-ethyl-1,2,4-triazole-3-ylthio)acetyl)isonicotino-hydrazide for subcutaneous administration indicates its prospects for veterinary practice as an effective and safe tuberculocidal drug.

References

  • 1. Joseph KN Kuria. Diseases Caused by Bacteria in Cattle: Tuberculosis, Bacterial Cattle Diseases, Hussein Abdel hay El-Sayed Kaoud, IntechOpen. 2019. DOI: 10.5772/intechopen.82051. Available from: https://www.intechopen.com/chapters/64814
  • 2. Pereira AC, Ramos B, Reis AC, Cunha MV. Non-Tuberculous Mycobacteria: Molecular and Physiological Bases of Virulence and Adaptation to Ecological Niches. Microorganisms. 2020;8(9):1380. DOI: 10.3390/microorganisms8091380.
  • 3. Butler RE, Smith AA, Mendum TA et al. Mycobacterium bovis uses the ESX-1 Type VII secretion system to escape predation by the soil-dwelling amoeba Dictyostelium discoideum. The ISME Journal. 2020;14:919–930. https://doi.org/10.1038/s41396-019-0572-z
  • 4. Manyi-Loh C, Mamphweli S, Meyer E, Okoh A. Antibiotic Use in Agriculture and Its Consequential Resistance in Environmental Sources: Potential Public Health Implications. Molecules. 2018;23(4):795. https://doi.org/10.3390/molecules23040795
  • 5. Kirimuhuzya C. Multi-Drug/Extensively Drug Resistant Tuberculosis (Mdr/Xdr-Tb): Renewed Global Battle Against Tuberculosis? Understanding Tuberculosis - New Approaches to Fighting Against Drug Resistance. 2012. http://dx.doi.org/10.5772/29667.
  • 6. Palchykov VA, Zazharskyi VV, Brygadyrenko VV, Davydenko PO, Kulishenko OM, Borovik IV. Chemical composition and antibacterial effect of ethanolic extract of Buxus sempervirens on cryogenic strains of microorganisms in vitro. Chemical Data Collections. 2020;25:100323. https://doi.org/10.1016/j.cdc.2019.100323
  • 7. Toktogonova AA. Causes of treatment defaults in those suffering from multiple drug resistance tuberculosis in Kyrgyzstan republic. Tuberculosis and Lung Diseases. 2016;94(12):38–42. doi:10.21292/2075-1230-2016-94-12-38-42
  • 8. Singh PK, Singh U, Jain A. Emergence of Specific gyrA Mutations Associated High-Level Fluoroquinolone-Resistant Mycobacterium tuberculosis among Multidrug-Resistant Tuberculosis Cases in North India. Microbial Drug Resistance. 2021;27(5):647-65. doi:10.1089/mdr.2020.0240
  • 9. Faridgohar M. Finding New Ways to Combat Multidrug-Resistant Tuberculosis. Microbial Drug Resistance. 2020;26(1):71–80. doi:10.1089/mdr.2018.0353
  • 10. Kurz SG, Furin JJ, Bark CM. Drug Resistant Tuberculosis: Challenges and Progress. Infectious Disease Clinics of North America. 2016;30(2):509–522. doi:10.1007/978-3-319-47266-9_33.
  • 11. Kuzmina NV, Nelidova NV. Clinical characteristics of patients with disseminated tuberculosis and multiple drug resistance, residing in the northern territories. Tuberculosis and Lung Diseases. 2018;96(5):56–57. doi:10.21292/2075-1230-2018-96-5-56-57
  • 12. Patil JS. Epidemiology of Tuberculosis and Drug Resistance in Tuberculosis Treatment in Indian Patients. Advances in Pharmacoepidemiology & Drug Safety. 2015;04(04). doi:10.4172/2167-1052.1000e132
  • 13. Sheyfer YA, Gelberg IS. Analysis of treatment outcomes for destructive pulmonary tuberculosis in patients with multiple drug resistance of M. tuberculosis. Tuberculosis and Lung Diseases. 2020;98(10):23–27. doi:10.21292/2075-1230-2020-98-10-23-27
  • 14. Gavali D, Aring B, Gadhavi H, Nathamehta A, Dave A, Nakhva A. Prevalence of Pre-Extensively Drug Resistance Tuberculosis (Pre XDR-TB) & Extensively Drug Resistance Tuberculosis (XDR-TB) among Pulmonary Multidrug Resistance Tuberculosis at a Tertiary Care Hospital, Jamnagar. Journal of Advances in Microbiology. 2019; 1-9. doi:10.9734/jamb/2019/v19i230186
  • 15. Bihdan O, Parchenko V, Zazharskyi V, Fotina T, Davydenko P. Studying of physico-chemical properties of 5-(2-,3-fluorophenyl)-4-((aryl-, geteryl)yliden)amino-1,2,4-triazole-3-thiols and any of their retrieval products. Research Journal of Pharmaceutical, Biological and Chemical Sciences. 2019;10(1):464-474.
  • 16. Zazharskyi V, Parchenko M, Parchenko V, Davydenko P, Kulishenko O, Zazharskaya N. Physicochemical properties of new S-derivatives of 5-(5-bromofuran-2-yl)-4-methyl-1,2,4-triazole-3-thiols. Voprosy Khimii i Khimicheskoi Tekhnologii. 2020;(6):50–58. doi:10.32434/0321-4095-2020-133-6-50-58
  • 17. Gotsulya AS. Synthesis and antiradical activity of alkyl derivatives of 5-(5-methyl-1H-pyrazol-3-yl)-4-phenyl-4H-1,2,4-triazole-3-thiol. Journal of Faculty of Pharmacy of Ankara University. 2020;44(2):211-219.
  • 18. Frolova Y, Kaplaushenko A, Nagornaya N. Design, synthesis, antimicrobial and antifungal activities of new 1,2,4-triazole derivatives containing 1H-tetrazole moiety. Journal of Faculty of Pharmacy of Ankara University. 2020;44(1):70-88. DOI: 10.33483/jfpau.574001
  • 19. Hulina Y, Kaplaushenko A. Synthesis, physical and chemical properties of 5-((1H-tetrazole-1-yl)methyl)-4-R-4H-1,2,4-triazole-3-thiols and their chemical transformations. Russian Journal of Biopharmaceuticals. 2018;10:26-30.
  • 20. Samelyuk YG, Kaplaushenko AG. Synthesis Of 3-Alkylthio(sulfo)-1,2,4-triazoles, Containing Methoxyphenyl Substituents At C5atoms, Their Antipyretic Activity, Propensity To Adsorption And Acute Toxicity. Journal of Chemical and Pharmaceutical Research. 2014;6(5):1117-1121.
  • 21. Karpun Y, Polishchuk N. Synthesis and antimicrobial activity of s-substituted derivatives of 1,2,4-triazole-3-thiol. ScienceRise: Pharmaceutical Science. 2021;3(31):64-69.
  • 22. Gotsulia AS, Zazharskyi VV, Davydenko PO. Synthesis and antituberculosis activity of N'-(2-(5-((theophylline-7'-yl)methyl)-4-R-4H-1,2,4-triazole-3-ylthio)acetyl)-isonicotinohydrazides. Zaporozhye medical journal. 2018;20(4):578-583. doi: 10.14739/2310-1210.2018.4.135677
  • 23. Наказ МОЗ України «Порядок проведення доклінічного вивчення лікарських засобів та експертизи матеріалів доклінічного вивчення лікарських засобів» від 14.12.2009 р. №944.
  • 24. Stephanov OV. Doklinichni doslidzhennia likarskikh zasobiv [Preclinical studies of medicines]. Кyiv: Avicenna. [in Ukrainian]. Kyiv: Avicena. 2001. 528 p.
  • 25. Singh A, Prasad R, Balasubramanian V, Gupta N. Drug-Resistant Tuberculosis and HIV Infection: Current Perspectives. HIV AIDS (Auckl). 2020;12:9-31.

N’-(2-(5-((Theophylline-7-yl)methyl)- 4-ethyl-1,2,4-triazole-3-ylthio)acetyl) isonicotinohydrazide As Antitubercular Agents

Year 2022, Volume: 42 Issue: 3, 149 - 155, 01.09.2022
https://doi.org/10.52794/hujpharm.1011368

Abstract

The paper presents the results of histological studies of tuberculosis in rabbits in an experimental model with comparative treatment with isoniazid and N'-(2-(5-((theophylline-7-yl)methyl)-4-ethyl-1,2,4-triazole-3-ylthio)acetyl)isonicotinohydrazide. The calculated dose of N'-(2-(5-((theophylline-7-yl)methyl)-4-ethyl-1,2,4-triazole-3-ylthio)acetyl)isonicotino-hydrazide for subcutaneous administration indicates its prospects for veterinary practice as an effective and safe tuberculocidal drug.

References

  • 1. Joseph KN Kuria. Diseases Caused by Bacteria in Cattle: Tuberculosis, Bacterial Cattle Diseases, Hussein Abdel hay El-Sayed Kaoud, IntechOpen. 2019. DOI: 10.5772/intechopen.82051. Available from: https://www.intechopen.com/chapters/64814
  • 2. Pereira AC, Ramos B, Reis AC, Cunha MV. Non-Tuberculous Mycobacteria: Molecular and Physiological Bases of Virulence and Adaptation to Ecological Niches. Microorganisms. 2020;8(9):1380. DOI: 10.3390/microorganisms8091380.
  • 3. Butler RE, Smith AA, Mendum TA et al. Mycobacterium bovis uses the ESX-1 Type VII secretion system to escape predation by the soil-dwelling amoeba Dictyostelium discoideum. The ISME Journal. 2020;14:919–930. https://doi.org/10.1038/s41396-019-0572-z
  • 4. Manyi-Loh C, Mamphweli S, Meyer E, Okoh A. Antibiotic Use in Agriculture and Its Consequential Resistance in Environmental Sources: Potential Public Health Implications. Molecules. 2018;23(4):795. https://doi.org/10.3390/molecules23040795
  • 5. Kirimuhuzya C. Multi-Drug/Extensively Drug Resistant Tuberculosis (Mdr/Xdr-Tb): Renewed Global Battle Against Tuberculosis? Understanding Tuberculosis - New Approaches to Fighting Against Drug Resistance. 2012. http://dx.doi.org/10.5772/29667.
  • 6. Palchykov VA, Zazharskyi VV, Brygadyrenko VV, Davydenko PO, Kulishenko OM, Borovik IV. Chemical composition and antibacterial effect of ethanolic extract of Buxus sempervirens on cryogenic strains of microorganisms in vitro. Chemical Data Collections. 2020;25:100323. https://doi.org/10.1016/j.cdc.2019.100323
  • 7. Toktogonova AA. Causes of treatment defaults in those suffering from multiple drug resistance tuberculosis in Kyrgyzstan republic. Tuberculosis and Lung Diseases. 2016;94(12):38–42. doi:10.21292/2075-1230-2016-94-12-38-42
  • 8. Singh PK, Singh U, Jain A. Emergence of Specific gyrA Mutations Associated High-Level Fluoroquinolone-Resistant Mycobacterium tuberculosis among Multidrug-Resistant Tuberculosis Cases in North India. Microbial Drug Resistance. 2021;27(5):647-65. doi:10.1089/mdr.2020.0240
  • 9. Faridgohar M. Finding New Ways to Combat Multidrug-Resistant Tuberculosis. Microbial Drug Resistance. 2020;26(1):71–80. doi:10.1089/mdr.2018.0353
  • 10. Kurz SG, Furin JJ, Bark CM. Drug Resistant Tuberculosis: Challenges and Progress. Infectious Disease Clinics of North America. 2016;30(2):509–522. doi:10.1007/978-3-319-47266-9_33.
  • 11. Kuzmina NV, Nelidova NV. Clinical characteristics of patients with disseminated tuberculosis and multiple drug resistance, residing in the northern territories. Tuberculosis and Lung Diseases. 2018;96(5):56–57. doi:10.21292/2075-1230-2018-96-5-56-57
  • 12. Patil JS. Epidemiology of Tuberculosis and Drug Resistance in Tuberculosis Treatment in Indian Patients. Advances in Pharmacoepidemiology & Drug Safety. 2015;04(04). doi:10.4172/2167-1052.1000e132
  • 13. Sheyfer YA, Gelberg IS. Analysis of treatment outcomes for destructive pulmonary tuberculosis in patients with multiple drug resistance of M. tuberculosis. Tuberculosis and Lung Diseases. 2020;98(10):23–27. doi:10.21292/2075-1230-2020-98-10-23-27
  • 14. Gavali D, Aring B, Gadhavi H, Nathamehta A, Dave A, Nakhva A. Prevalence of Pre-Extensively Drug Resistance Tuberculosis (Pre XDR-TB) & Extensively Drug Resistance Tuberculosis (XDR-TB) among Pulmonary Multidrug Resistance Tuberculosis at a Tertiary Care Hospital, Jamnagar. Journal of Advances in Microbiology. 2019; 1-9. doi:10.9734/jamb/2019/v19i230186
  • 15. Bihdan O, Parchenko V, Zazharskyi V, Fotina T, Davydenko P. Studying of physico-chemical properties of 5-(2-,3-fluorophenyl)-4-((aryl-, geteryl)yliden)amino-1,2,4-triazole-3-thiols and any of their retrieval products. Research Journal of Pharmaceutical, Biological and Chemical Sciences. 2019;10(1):464-474.
  • 16. Zazharskyi V, Parchenko M, Parchenko V, Davydenko P, Kulishenko O, Zazharskaya N. Physicochemical properties of new S-derivatives of 5-(5-bromofuran-2-yl)-4-methyl-1,2,4-triazole-3-thiols. Voprosy Khimii i Khimicheskoi Tekhnologii. 2020;(6):50–58. doi:10.32434/0321-4095-2020-133-6-50-58
  • 17. Gotsulya AS. Synthesis and antiradical activity of alkyl derivatives of 5-(5-methyl-1H-pyrazol-3-yl)-4-phenyl-4H-1,2,4-triazole-3-thiol. Journal of Faculty of Pharmacy of Ankara University. 2020;44(2):211-219.
  • 18. Frolova Y, Kaplaushenko A, Nagornaya N. Design, synthesis, antimicrobial and antifungal activities of new 1,2,4-triazole derivatives containing 1H-tetrazole moiety. Journal of Faculty of Pharmacy of Ankara University. 2020;44(1):70-88. DOI: 10.33483/jfpau.574001
  • 19. Hulina Y, Kaplaushenko A. Synthesis, physical and chemical properties of 5-((1H-tetrazole-1-yl)methyl)-4-R-4H-1,2,4-triazole-3-thiols and their chemical transformations. Russian Journal of Biopharmaceuticals. 2018;10:26-30.
  • 20. Samelyuk YG, Kaplaushenko AG. Synthesis Of 3-Alkylthio(sulfo)-1,2,4-triazoles, Containing Methoxyphenyl Substituents At C5atoms, Their Antipyretic Activity, Propensity To Adsorption And Acute Toxicity. Journal of Chemical and Pharmaceutical Research. 2014;6(5):1117-1121.
  • 21. Karpun Y, Polishchuk N. Synthesis and antimicrobial activity of s-substituted derivatives of 1,2,4-triazole-3-thiol. ScienceRise: Pharmaceutical Science. 2021;3(31):64-69.
  • 22. Gotsulia AS, Zazharskyi VV, Davydenko PO. Synthesis and antituberculosis activity of N'-(2-(5-((theophylline-7'-yl)methyl)-4-R-4H-1,2,4-triazole-3-ylthio)acetyl)-isonicotinohydrazides. Zaporozhye medical journal. 2018;20(4):578-583. doi: 10.14739/2310-1210.2018.4.135677
  • 23. Наказ МОЗ України «Порядок проведення доклінічного вивчення лікарських засобів та експертизи матеріалів доклінічного вивчення лікарських засобів» від 14.12.2009 р. №944.
  • 24. Stephanov OV. Doklinichni doslidzhennia likarskikh zasobiv [Preclinical studies of medicines]. Кyiv: Avicenna. [in Ukrainian]. Kyiv: Avicena. 2001. 528 p.
  • 25. Singh A, Prasad R, Balasubramanian V, Gupta N. Drug-Resistant Tuberculosis and HIV Infection: Current Perspectives. HIV AIDS (Auckl). 2020;12:9-31.
There are 25 citations in total.

Details

Primary Language English
Subjects Pharmacology and Pharmaceutical Sciences
Journal Section Research Articles
Authors

Andrey Gotsulya 0000-0001-9696-221X

Vladimir Zazharskyı 0000-0003-2674-2494

Volodymyr Parchenko 0000-0002-2283-1695

Pavel Davydenko 0000-0002-8425-3835

Oleg Kulıshenko 0000-0001-6801-2380

Tetyana Brytanova 0000-0003-1805-4552

Publication Date September 1, 2022
Acceptance Date August 10, 2022
Published in Issue Year 2022 Volume: 42 Issue: 3

Cite

Vancouver Gotsulya A, Zazharskyı V, Parchenko V, Davydenko P, Kulıshenko O, Brytanova T. N’-(2-(5-((Theophylline-7-yl)methyl)- 4-ethyl-1,2,4-triazole-3-ylthio)acetyl) isonicotinohydrazide As Antitubercular Agents. HUJPHARM. 2022;42(3):149-55.