Systematic Scrutinization of Vital factors for the Development of Efficient Cisplatin-Quercetin Loaded Bionanomicelles
Year 2024,
Volume: 44 Issue: 2, 92 - 107, 01.06.2024
Hardik Rana
,
Neha Sisodia
,
Mansi Dholakia
Vaishali Gandhi
Abstract
The present work aims to optimize and assess the Cisplatin (CIS) and Quercetin (QCT)-loaded biodegradable polymeric nanomicelles (PNM). The development of a quantitative method for the estimation of CIS and QCT in pharmaceutical dosage form was another objective. The aluminum plates coated with silica gel F254 used for separation of both the drugs employing Toluene: Methanol: Ethyl acetate: DMF: Triethylamine (5:0.5:3.5:1:1 drop % v/v/v/v/v) as mobile phase. Results of the validation parameter indicate that the developed method was precise, accurate, and robust. CIS and QCT-loaded PNM formulated using solvent evaporation technique employing poly lactic-co-glycolic acid (PLGA) 50:50. The Quality by Design (QbD) was accomplished to identify the critical manufacturing attributes and critical process parameters. Optimization of the formulation was performed by central composite design using particle size and % encapsulation efficiency as dependent variables. The amount of PLGA and Span selected as independent variables. Statistically substantial variables identified using regression analysis and analysis of variance. A diffusion study revealed that optimized nanomicelles were capable to sustain the drug release up to 8h. Zeta sizer, TEM confirmed the stability and nano-sized nanoparticles. CIS-QCT PNM was found to be an alternate route to systemic treatment.
References
- 1. World Health Organization. WHO Cancer Report 2020 Global
Profile. 2020. Available from: https://www.who.int/health-
topics/cancer
- 2. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA
Cancer J Clin. 2020; 70(1): 7-30. http://dx.doi.org/10.3322/
caac.21590
- 3. Liu B, Yuan Z, Wei CY. Combined microwave ablation and
minimally invasive open decompression for managing tho-
racic metastasis in breast cancer. Cancer Manag Res. 2018;
10:1397-401. http://dx.doi.org/10.2147/CMAR.S159561
- 4. SIRO Cinepharm USA. Lung Cancer Focus : India, Tracing
the Evolution, Prevalence, Distribution, Etiology, Association,
Occurrence, Types, Manifestation & Imoact of Lung Cancer in
India. 2015.
- 5. Gujral H, Deulkar K. A review of techniques for lung cancer
detection. Int J Curr Eng Technol. 2015; 5(3):1597-602.
- 6. Mathur P, Sathishkumar K, Chaturvedi M, et al. Cancer Statis-
tics, 2020: Report From National Cancer Registry Programme,
India. JCO Glob Oncol. 2020; 6:1063-75. doi: 10.1200/
GO.20.00122.
- 7. Virmani AK, Fong KM, Kodagoda D, et al. Allelotyping
demonstrates common and distinct patterns of chromosomal
loss in human lung cancer types. Genes Chromosomes Cancer.
1998; 21(4):308-19. http://dx.doi.org/10.1002/(SICI)1098-
2264(199804)21:4<308::AID-GCC4>3.0.CO;2-2
- 8. Wang J, Nie JJ, Guo P, Yan Z, Yu B, Bu W. Rhodium(I) com-
plex-based polymeric nanomicelles in water exhibiting coex-
istent near-infrared phosphorescence imaging and anticancer
activity in vivo. J Am Chem Soc. 2020; 142(6):2709-14. http://
dx.doi.org/10.1021/jacs.9b11013
- 9. Gadgeel SM, Ramalingam SS, Kalemkerian GP. Treatment of
lung cancer. Radiol Clin North Am. 2012; 50(5):961-74. http://
dx.doi.org/10.1016/j.rcl.2012.06.003
- 10. Levet V, Rosière R, Merlos R, et al. Development of con-
trolled-release cisplatin dry powders for inhalation against
lung cancers. Int J Pharm. 2016; 515(1-2):209-20. http://
dx.doi.org/10.1016/j.ijpharm.2016.10.019
- 11. Dasari S, Tchounwou PB. Cisplatin in cancer therapy: Molec-
ular mechanisms of action. Eur J Pharmacol. 2014; 740:364-
78. http://dx.doi.org/10.1016/j.ejphar.2014.07.025
- 12. Gibellini L, Pinti M, Nasi M, et al. Quercetin and cancer
chemoprevention. Evid Based Complement Alternat Med.
2011; 2011: 591356. http://dx.doi.org/10.1093/ecam/neq053
- 13. Rau JL. The inhalation of drugs: Advantages and problems.
Respir Care. 2005; 50(3):367-82.
- 14. Sánchez-González PD, López-Hernández FJ, Dueñas M, et al.
Differential effect of quercetin on cisplatin-induced toxicity in
kidney and tumor tissues. Food Chem Toxicol. 2017; 107(Pt
A):226-36. http://dx.doi.org/10.1016/j.fct.2017.06.047
- 15. Garbuzenko OB, Mainelis G, Taratula O, Minko T. Inhalation
treatment of lung cancer: the influence of composition, size
and shape of nanocarriers on their lung accumulation and
retention. Cancer Biol Med. 2014; 11(1):44-55. http://dx.doi.
org/10.7497/j.issn.2095-3941.2014.01.004
- 16. Zheng X, Xie J, Zhang X, et al. An overview of polymeric
nano micelles in clinical trials and on the market. Chin
Chem Lett 2021. 32(1):243-57. http://dx.doi.org/10.1016/j.
cclet.2020.11.029
- 17. Rassu G, Pavan B, Mandracchia D, et al. Polymeric nano mi-
celles based on inulin D α-tocopherol succinate for the treat-
ment of diabetic retinopathy. J Drug Deliv Sci Technol. 2021;
61:102286. http://dx.doi.org/10.1016/j.jddst.2020.102286
- 18. Wang AZ, Langer R, Farokhzad OC. Nanoparticle delivery of
cancer drugs. Annu Rev Med. 2012; 63:185-98. http://dx.doi.
org/10.1146/annurev-med-040210-162544
- 19. Jeetah R, Bhaw-Luximon A, Jhurry D. Polymeric nanomicelles
for sustained delivery of anti-cancer drugs. Mutat Res. 2014;
768:47-59. http://dx.doi.org/10.1016/j.mrfmmm.2014.04.009
- 20. Kanazawa T, Taki H, Okada H. Nose-to-brain drug delivery
system with ligand/cell-penetrating peptide-modified poly -
meric nano-micelles for intracerebral gliomas. Eur J Pharm
Biopharm. 2020; 152:85-94. http://dx.doi.org/10.1016/j.
ejpb.2020.05.001
- 21. Jahan F, Zaman S. Mapping the potential of thiolated plu-
ronic based nanomicelles for the safe and targeted delivery of
vancomycin against staphylococcal blepharitis. J Drug Deliv
Sci Technol. 2020; 61:102220. http://dx.doi.org/10.1016/j.
jddst.2020.102220
- 22. Farhadi E, Kobarfard F, H Shirazi F. FTIR Biospectroscopy in-
vestigation on cisplatin cytotoxicity in three pairs of sensitive
and resistant cell line. Iran J Pharm Res. 2016; 15(1):213-20.
- 23. Kumari A, Yadav SK, Pakade YB, Singh B, Yadav SC. Devel-
opment of biodegradable nanoparticles for delivery of querce-
tin. Colloids Surf B Biointerfaces. 2010; 80(2):184-92. http://
dx.doi.org/10.1016/j.colsurfb.2010.06.002
- 24. Vaghani D, Patel A, Thakkar V, Gohel M, Lalji B, Gandhi T.
Exploring polymeric nano-particles as targeted pulmonary
delivery of rifampicin, ethambutol and ofloxacin against inh-
resistant tuberculosis. J Lung Pulm Respir Res. 2017; 4(1):1-
13. http://dx.doi.org/10.15406/jlprr.2017.04.00116
- 25. Mathur P, Saini S, Paul E, Sharma C, Mehtani P. Endophytic
fungi mediated synthesis of iron nanoparticles: Characteriza-
tion and application in methylene blue decolorization. Curr
Res Green Sustain Chem. 2021; 4:100053. http://dx.doi.
org/10.1016/j.crgsc.2020.100053
- 26. Aziz A, Ali N, Khan A, et al. Chitosanzinc sulfide nanoparti-
cles, characterization and their photocatalytic degradation ef-
ficiency for azo dyes. Int J Biol Macromol. 2020; 153:502-12.
http://dx.doi.org/10.1016/j.ijbiomac.2020.02.310
- 27. Basotra M, Singh S K, Gulati M. Development and validation
of a simple and sensitive spectrometric method for estimation
of cisplatin hydrochloride in tablet dosage forms : Applica-
tion to dissolution studies. ISRN Anal Chem. 2013. https://doi.
org/10.1155/2013/936254
- 28. Motisariya MH, Patel KG, Shah PA. Validated stability-indi-
cating high performance thin layer chromatographic method
for determination of ivabradine hydrochloride in bulk and
marketed formulation : An application to kinetic study. Bull
Fac Pharm Cairo Univ. 2013; 51(2):233-41. http://dx.doi.
org/10.1016/j.bfopcu.2013.07.001
- 29. Shah P, Patel J, Patel K, Gandhi T. Development and valida-
tion of an hptlc method for the simultaneous estimation of
clonazepam and paroxetine hydrochloride using a DOE ap-
proach. J Taibah Univ Sci. 2017; 11(1):121-32. http://dx.doi.
org/10.1016/j.jtusci.2015.11.004
- 30. Elkhoudary MM, Selim BM, AbdelSalam RA, Hadad GM,
El-Gindy A. Development and validation of a simple HPTLC
method for the determination of new hepatitis C Subtype 4
antiviral agents in their tablet dosage form. J Planar Chroma-
togr Mod TLC. 2020; 33(1):71-7. http://dx.doi.org/10.1007/
s00764-019-00006-y
- 31. Ahmad W, Husain I, Ahmad N, et al. Box–behnken supported
development and validation of robust HPTLC Method: An ap-
plication in estimation of punarnavine in leaf, stem, and their
Callus of Boerhavia diffusa linn. 3 Biotech. 2020; 10(4):1-10.
doi: 10.1007/s13205-020-2154-1
- 32. Emam AA, Naguib IA, Hassan ES, Abdelaleem EA. De-
velopment and validation of RP-HPLC and an ecofriendly
HPTLC method for simultaneous determination of felodipine
and metoprolol succinate, and their major metabolites in hu-
man spiked plasma. J AOAC Int. 2020; 103(4):966-71. http://
dx.doi.org/10.1093/jaoacint/qsz040
- 33. Thomas AB, Patil SD, Nanda RK, Kothapalli LP, Bho-
sle SS, Deshpande AD. Stability-indicating HPTLC method
for simultaneous determination of nateglinide and met-
formin hydrochloride in pharmaceutical dosage form. Saudi
Pharm J. 2011;19(4): 221-31. http://dx.doi.org/10.1016/j.
jsps.2011.06.005
- 34. Mistry NN, Shah P, Patel K, Hingorani L. Simultaneous
estimation of stigmasterol and withaferin A in union total
herbal formulation using validated HPTLC method. J Appl
Pharm Sci. 2015; 5(08):159-66. http://dx.doi.org/10.7324/
JAPS.2015.50825
- 35. Ahmad A, Amir M, Alshadidi AA, Hussain MD, Haq A, Kazi
M. Central composite design expert-supported develop-
ment and validation of HPTLC method: Relevance in quan-
titative evaluation of protopine in Fumaria indica. Saudi
Pharm J. 2020; 28(4):487-94. http://dx.doi.org/10.1016/j.
jsps.2020.02.011
- 36. Kekre VA, Walode SG. Validated Hptlc Method for Estima-
tion of Curcumin Content in Dietary Supplement. IJPRS.
2012; 3(10):3796-800. http://dx.doi.org/10.13040/IJP-
SR.0975-8232.3(10).3796-00
- 37. Patel RB, Patel MR, Patni NR, Agrawal V. Efinaconazole:
DoE-supported development and validation of a quantitative
HPTLC method and its application for the assay of drugs in so-
lution and microemulsion-based formulations. Anal Methods.
2020; 12(10):1380-8. http://dx.doi.org/10.1039/C9AY02599E
- 38. Syed HK, Liew KB, Loh GO, Peh KK. Stability indicating
HPLC-UV method for detection of curcumin in Curcuma
longa extract and emulsion formulation. Food Chem. 2015;
170:321-6. http://dx.doi.org/10.1016/j.foodchem.2014.08.066
- 39. Alam P, Ezzeldin E, Iqbal M, et al. Ecofriendly densitometric
RP-HPTLC method for determination of rivaroxaban in na-
noparticle formulations using green solvents. RSC Advances.
2020; 10(4):2133-40. http://dx.doi.org/10.1039/C9RA07825H
- 40. BinduG, Ravi Kiran Suripeddi, Development and validation
of HPTLC method for identification and quantification of
sterols from leaves of Erythroxylum Monogynum Roxb. and
in vitro evaluation of antioxidant and anti-glycation activi-
ties. S Afr J Bot. 2021; 137:24-34. http://dx.doi.org/10.1016/j.
sajb.2020.10.005
- 41. Shewiyo DH, Kaale E, Risha PG, Dejaegher B, Smeyers-
Verbeke J, Vander Heyden Y. HPTLC methods to assay
active ingredients in pharmaceutical formulations: A review
of the method development and validation steps. J Pharm
Biomed Anal. 2012; 66:11-23. http://dx.doi.org/10.1016/j.
jpba.2012.03.034
- 42. ICH topic Q2 (R1) validation of analytical procedures : Text
and methodology. Int Conf Harmon. 2005; 1-17. Available
from: https://doi.org/http://www.ich.org/fileadmin/Public_
Web_Site/ICH_Products/Guidelines/Quality/Q2_R1/Step4/
Q2_R1__Guideline.pdf
- 43. Hu X, Han R, Quan LH, Liu CY, Liao YH. Stabilization and
sustained release of zeylenone, a soft cytotoxic drug, within
polymeric micelles for local antitumor drug delivery. Int J
Pharm. 2013; 450(1-2):331-7. http://dx.doi.org/10.1016/j.ijp-
harm.2013.04.007
- 44. Szczęch M, Szczepanowicz K. Polymeric core-shell nanopar-
ticles prepared by spontaneous emulsification solvent evapo -
ration and functionalized by the layer-by-layer method. Nano-
materials (Basel). 2020; 10(3):5-8. http://dx.doi.org/10.3390/
nano10030496
- 45. Jia F, Li Y, Lu J, Deng X, Wu Y. Amphiphilic block copoly-
mers-guided strategies for assembling nanoparticles: From ba-
sic construction methods to bioactive agent delivery applica-
tions. ACS Appl Bio Mater. 2020; 3(10):6546-55. http://dx.doi.
org/10.1021/acsabm.0c01039
- 46. Gregg Claycamp H. Perspective on quality risk management
of pharmaceutical quality. Drug Inf J. 2007; 41(3): 353-67.
http://dx.doi.org/10.1177/009286150704100309
- 47. Dave VS, Fahmy RM, Bensley D, Hoag SW. Eudragit(®)
RS PO/RL PO as rate-controlling matrix-formers via roller
compaction: Influence of formulation and process variables
on functional attributes of granules and tablets. Drug Dev Ind
Pharm. 2012; 38(10):1240-53. http://dx.doi.org/10.3109/0363
9045.2011.645831
- 48. Dave VS, Fahmy RM, Hoag SW. Investigation of the physical-
mechanical properties of Eudragit(®) RS PO/RL PO and their
mixtures with common pharmaceutical excipients. Drug Dev
Ind Pharm. 2013; 39(7):1113-25. http://dx.doi.org/10.3109/03
639045.2012.714786
- 49. A Review of: “ Introduction to Quality Control. ” By Kaoru
Ishikawa. Translated by J. H. Loftus (Chapman and Hall, Lon-
don, 1991). Int J Prod Res. 1992; 30(12):2952-2. http://dx.doi.
org/10.1080/00207549208948202
- 50. Stamatis DH. Failure mode and effect analysis FMEA from the-
ory to execution. 2nd ed. Milwaukee: ASQ Quality Press 2003.
- 51. Mahdizadeh M, Zamanzade E. A new reliability measure in
ranked set sampling. Stat Hefte. 2018; 59(3):861-91. http://
dx.doi.org/10.1007/s00362-016-0794-3
- 52. Zamanzade E, Mahdizadeh M. Using ranked set sampling
with extreme ranks in estimating the population proportion.
Stat Methods Med Res. 2020; 29(1):165-77. http://dx.doi.
org/10.1177/0962280218823793
- 53. Fahmy R, Kona R, Dandu R, Xie W, Claycamp G, Hoag SW.
Quality by design I: Application of failure mode effect analy-
sis (FMEA) and Plackett-Burman design of experiments in the
identification of “main factors” in the formulation and process
design space for roller-compacted ciprofloxacin hydrochlo -
ride immediate-release tablets. AAPS PharmSciTech. 2012;
13(4):1243-54. http://dx.doi.org/10.1208/s12249-012-9844-x
- 54. Gurram RK, Gandra S, Shastri NR. Design and optimiza-
tion of disintegrating pellets of MCC by non-aqueous extru-
sion process using statistical tools. Eur J Pharm Sci. 2016;
84(1):146-56. http://dx.doi.org/10.1016/j.ejps.2016.01.021
- 55. Bei YY, Zhou XF, You BG, et al. Application of the central
composite design to optimize the preparation of novel mi-
celles of harmine. Int J Nanomedicine. 2013; 8:1795-808.
http://dx.doi.org/10.2147/IJN.S43555
- 56. Kollipara S, Bende G, Movva S, Saha R. Application of ro-
tatable central composite design in the preparation and opti-
mization of poly(lactic-co-glycolic acid) nanoparticles for
controlled delivery of paclitaxel. Drug Dev Ind Pharm. 2010;
36(11):1377-87. http://dx.doi.org/10.3109/03639045.2010.48
7263
- 57. Singh B, Chakkal SK, Ahuja N. Formulation and optimization
of controlled release mucoadhesive tablets of atenolol using
response surface methodology. AAPS PharmSciTech. 2006;
7(1):E3. http://dx.doi.org/10.1208/pt070103
- 58. Zhang Z, Feng SS. The drug encapsulation efficiency, in vitro
drug release, cellular uptake and cytotoxicity of paclitaxel-
loaded poly(lactide)-tocopheryl polyethylene glycol succinate
nanoparticles. Biomaterials. 2006; 27(21):4025-33. http://
dx.doi.org/10.1016/j.biomaterials.2006.03.006
- 59. Praphakar RA, Munusamy MA, Rajan M. Development of
extended-voyaging antioxidant linked amphiphilic poly-
meric nanomicelles for anti-tuberculosis drug delivery. Int J
Pharm. 2017; 524(1-2):168-77. http://dx.doi.org/10.1016/j.
ijpharm.2017.03.089
- 60. Sugihara K, Nakano S, Koda M, Tanaka K, Fukuishi N, Gemba
M. Stimulatory effect of cisplatin on production of lipid per-
oxidation in renal tissues. Jpn J Pharmacol. 1987; 43(3):247-
52. http://dx.doi.org/10.1016/S0021-5198(19)43504-X
- 61. Sezgin Z, Yüksel N, Baykara T. Preparation and characteriza-
tion of polymeric micelles for solubilization of poorly soluble
anticancer drugs. Eur J Pharm Biopharm. 2006; 64(3):261-8.
http://dx.doi.org/10.1016/j.ejpb.2006.06.003
- 62. Oda CMR, Silva JO, Fernandes RS, et al. Encapsulating
paclitaxel in polymeric nano micelles increases antitumor
activity and prevents peripheral neuropathy. Biomed
Pharmacother. 2020; 132:110864. http://dx.doi.org/10.1016/j.bi-
opha.2020.110864
- 63. Rana HB, Raj A, Patel A, Gohel M. Preparation, optimization
and in vitro characterization of cisplatin loaded novel poly-
meric micelles for treatment of lung cancer. Int J Res Sci Innov.
2016; IV(I):431-41.
- 64. Wei Z, Hao J, Yuan S, et al. Paclitaxel-loaded Pluronic P123/
F127 mixed polymeric micelles: Formulation, optimization
and in vitro characterization. Int J Pharm. 2009; 376(1-2):176-
85. http://dx.doi.org/10.1016/j.ijpharm.2009.04.030
- 65. Singhvi G, Singh M. Review : In vitro drug release characteri-
zation models. Int J Pharm Stud Res. 2011; II(I):77-84.
- 66. Shrikhande SS, Rao A, Ambekar A, Bajaj AN. Metered dose
inhalation formulations of salbutamol sulphate using non-
CFC propellant tetrafluoroethane. Int J Pharm Sci Drug Res.
2011; 3(4):292-6.
- 67. Wang J, Kan S, Chen T, Liu J. Application of quality by de-
sign (QbD) to formulation and processing of naproxen pel-
lets by extrusion-spheronization. Pharm Dev Technol. 2015;
20(2):246-56. http://dx.doi.org/10.3109/10837450.2014.9083
00
Systematic Scrutinization of Vital factors for the Development of Efficient Cisplatin-Quercetin Loaded Bionanomicelles
Year 2024,
Volume: 44 Issue: 2, 92 - 107, 01.06.2024
Hardik Rana
,
Neha Sisodia
,
Mansi Dholakia
Vaishali Gandhi
Abstract
The present work aims to optimize and assess the Cisplatin (CIS) and Quercetin (QCT)-loaded biodegradable polymeric nanomicelles (PNM). The development of a quantitative method for the estimation of CIS and QCT in pharmaceutical dosage form was another objective. The aluminum plates coated with silica gel F254 used for separation of both the drugs employing Toluene: Methanol: Ethyl acetate: DMF: Triethylamine (5:0.5:3.5:1:1 drop % v/v/v/v/v) as mobile phase. Results of the validation parameter indicate that the developed method was precise, accurate, and robust. CIS and QCT-loaded PNM formulated using solvent evaporation technique employing poly lactic-co-glycolic acid (PLGA) 50:50. The Quality by Design (QbD) was accomplished to identify the critical manufacturing attributes and critical process parameters. Optimization of the formulation was performed by central composite design using particle size and % encapsulation efficiency as dependent variables. The amount of PLGA and Span selected as independent variables. Statistically substantial variables identified using regression analysis and analysis of variance. A diffusion study revealed that optimized nanomicelles were capable to sustain the drug release up to 8h. Zeta sizer, TEM confirmed the stability and nano-sized nanoparticles. CIS-QCT PNM was found to be an alternate route to systemic treatment.
References
- 1. World Health Organization. WHO Cancer Report 2020 Global
Profile. 2020. Available from: https://www.who.int/health-
topics/cancer
- 2. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA
Cancer J Clin. 2020; 70(1): 7-30. http://dx.doi.org/10.3322/
caac.21590
- 3. Liu B, Yuan Z, Wei CY. Combined microwave ablation and
minimally invasive open decompression for managing tho-
racic metastasis in breast cancer. Cancer Manag Res. 2018;
10:1397-401. http://dx.doi.org/10.2147/CMAR.S159561
- 4. SIRO Cinepharm USA. Lung Cancer Focus : India, Tracing
the Evolution, Prevalence, Distribution, Etiology, Association,
Occurrence, Types, Manifestation & Imoact of Lung Cancer in
India. 2015.
- 5. Gujral H, Deulkar K. A review of techniques for lung cancer
detection. Int J Curr Eng Technol. 2015; 5(3):1597-602.
- 6. Mathur P, Sathishkumar K, Chaturvedi M, et al. Cancer Statis-
tics, 2020: Report From National Cancer Registry Programme,
India. JCO Glob Oncol. 2020; 6:1063-75. doi: 10.1200/
GO.20.00122.
- 7. Virmani AK, Fong KM, Kodagoda D, et al. Allelotyping
demonstrates common and distinct patterns of chromosomal
loss in human lung cancer types. Genes Chromosomes Cancer.
1998; 21(4):308-19. http://dx.doi.org/10.1002/(SICI)1098-
2264(199804)21:4<308::AID-GCC4>3.0.CO;2-2
- 8. Wang J, Nie JJ, Guo P, Yan Z, Yu B, Bu W. Rhodium(I) com-
plex-based polymeric nanomicelles in water exhibiting coex-
istent near-infrared phosphorescence imaging and anticancer
activity in vivo. J Am Chem Soc. 2020; 142(6):2709-14. http://
dx.doi.org/10.1021/jacs.9b11013
- 9. Gadgeel SM, Ramalingam SS, Kalemkerian GP. Treatment of
lung cancer. Radiol Clin North Am. 2012; 50(5):961-74. http://
dx.doi.org/10.1016/j.rcl.2012.06.003
- 10. Levet V, Rosière R, Merlos R, et al. Development of con-
trolled-release cisplatin dry powders for inhalation against
lung cancers. Int J Pharm. 2016; 515(1-2):209-20. http://
dx.doi.org/10.1016/j.ijpharm.2016.10.019
- 11. Dasari S, Tchounwou PB. Cisplatin in cancer therapy: Molec-
ular mechanisms of action. Eur J Pharmacol. 2014; 740:364-
78. http://dx.doi.org/10.1016/j.ejphar.2014.07.025
- 12. Gibellini L, Pinti M, Nasi M, et al. Quercetin and cancer
chemoprevention. Evid Based Complement Alternat Med.
2011; 2011: 591356. http://dx.doi.org/10.1093/ecam/neq053
- 13. Rau JL. The inhalation of drugs: Advantages and problems.
Respir Care. 2005; 50(3):367-82.
- 14. Sánchez-González PD, López-Hernández FJ, Dueñas M, et al.
Differential effect of quercetin on cisplatin-induced toxicity in
kidney and tumor tissues. Food Chem Toxicol. 2017; 107(Pt
A):226-36. http://dx.doi.org/10.1016/j.fct.2017.06.047
- 15. Garbuzenko OB, Mainelis G, Taratula O, Minko T. Inhalation
treatment of lung cancer: the influence of composition, size
and shape of nanocarriers on their lung accumulation and
retention. Cancer Biol Med. 2014; 11(1):44-55. http://dx.doi.
org/10.7497/j.issn.2095-3941.2014.01.004
- 16. Zheng X, Xie J, Zhang X, et al. An overview of polymeric
nano micelles in clinical trials and on the market. Chin
Chem Lett 2021. 32(1):243-57. http://dx.doi.org/10.1016/j.
cclet.2020.11.029
- 17. Rassu G, Pavan B, Mandracchia D, et al. Polymeric nano mi-
celles based on inulin D α-tocopherol succinate for the treat-
ment of diabetic retinopathy. J Drug Deliv Sci Technol. 2021;
61:102286. http://dx.doi.org/10.1016/j.jddst.2020.102286
- 18. Wang AZ, Langer R, Farokhzad OC. Nanoparticle delivery of
cancer drugs. Annu Rev Med. 2012; 63:185-98. http://dx.doi.
org/10.1146/annurev-med-040210-162544
- 19. Jeetah R, Bhaw-Luximon A, Jhurry D. Polymeric nanomicelles
for sustained delivery of anti-cancer drugs. Mutat Res. 2014;
768:47-59. http://dx.doi.org/10.1016/j.mrfmmm.2014.04.009
- 20. Kanazawa T, Taki H, Okada H. Nose-to-brain drug delivery
system with ligand/cell-penetrating peptide-modified poly -
meric nano-micelles for intracerebral gliomas. Eur J Pharm
Biopharm. 2020; 152:85-94. http://dx.doi.org/10.1016/j.
ejpb.2020.05.001
- 21. Jahan F, Zaman S. Mapping the potential of thiolated plu-
ronic based nanomicelles for the safe and targeted delivery of
vancomycin against staphylococcal blepharitis. J Drug Deliv
Sci Technol. 2020; 61:102220. http://dx.doi.org/10.1016/j.
jddst.2020.102220
- 22. Farhadi E, Kobarfard F, H Shirazi F. FTIR Biospectroscopy in-
vestigation on cisplatin cytotoxicity in three pairs of sensitive
and resistant cell line. Iran J Pharm Res. 2016; 15(1):213-20.
- 23. Kumari A, Yadav SK, Pakade YB, Singh B, Yadav SC. Devel-
opment of biodegradable nanoparticles for delivery of querce-
tin. Colloids Surf B Biointerfaces. 2010; 80(2):184-92. http://
dx.doi.org/10.1016/j.colsurfb.2010.06.002
- 24. Vaghani D, Patel A, Thakkar V, Gohel M, Lalji B, Gandhi T.
Exploring polymeric nano-particles as targeted pulmonary
delivery of rifampicin, ethambutol and ofloxacin against inh-
resistant tuberculosis. J Lung Pulm Respir Res. 2017; 4(1):1-
13. http://dx.doi.org/10.15406/jlprr.2017.04.00116
- 25. Mathur P, Saini S, Paul E, Sharma C, Mehtani P. Endophytic
fungi mediated synthesis of iron nanoparticles: Characteriza-
tion and application in methylene blue decolorization. Curr
Res Green Sustain Chem. 2021; 4:100053. http://dx.doi.
org/10.1016/j.crgsc.2020.100053
- 26. Aziz A, Ali N, Khan A, et al. Chitosanzinc sulfide nanoparti-
cles, characterization and their photocatalytic degradation ef-
ficiency for azo dyes. Int J Biol Macromol. 2020; 153:502-12.
http://dx.doi.org/10.1016/j.ijbiomac.2020.02.310
- 27. Basotra M, Singh S K, Gulati M. Development and validation
of a simple and sensitive spectrometric method for estimation
of cisplatin hydrochloride in tablet dosage forms : Applica-
tion to dissolution studies. ISRN Anal Chem. 2013. https://doi.
org/10.1155/2013/936254
- 28. Motisariya MH, Patel KG, Shah PA. Validated stability-indi-
cating high performance thin layer chromatographic method
for determination of ivabradine hydrochloride in bulk and
marketed formulation : An application to kinetic study. Bull
Fac Pharm Cairo Univ. 2013; 51(2):233-41. http://dx.doi.
org/10.1016/j.bfopcu.2013.07.001
- 29. Shah P, Patel J, Patel K, Gandhi T. Development and valida-
tion of an hptlc method for the simultaneous estimation of
clonazepam and paroxetine hydrochloride using a DOE ap-
proach. J Taibah Univ Sci. 2017; 11(1):121-32. http://dx.doi.
org/10.1016/j.jtusci.2015.11.004
- 30. Elkhoudary MM, Selim BM, AbdelSalam RA, Hadad GM,
El-Gindy A. Development and validation of a simple HPTLC
method for the determination of new hepatitis C Subtype 4
antiviral agents in their tablet dosage form. J Planar Chroma-
togr Mod TLC. 2020; 33(1):71-7. http://dx.doi.org/10.1007/
s00764-019-00006-y
- 31. Ahmad W, Husain I, Ahmad N, et al. Box–behnken supported
development and validation of robust HPTLC Method: An ap-
plication in estimation of punarnavine in leaf, stem, and their
Callus of Boerhavia diffusa linn. 3 Biotech. 2020; 10(4):1-10.
doi: 10.1007/s13205-020-2154-1
- 32. Emam AA, Naguib IA, Hassan ES, Abdelaleem EA. De-
velopment and validation of RP-HPLC and an ecofriendly
HPTLC method for simultaneous determination of felodipine
and metoprolol succinate, and their major metabolites in hu-
man spiked plasma. J AOAC Int. 2020; 103(4):966-71. http://
dx.doi.org/10.1093/jaoacint/qsz040
- 33. Thomas AB, Patil SD, Nanda RK, Kothapalli LP, Bho-
sle SS, Deshpande AD. Stability-indicating HPTLC method
for simultaneous determination of nateglinide and met-
formin hydrochloride in pharmaceutical dosage form. Saudi
Pharm J. 2011;19(4): 221-31. http://dx.doi.org/10.1016/j.
jsps.2011.06.005
- 34. Mistry NN, Shah P, Patel K, Hingorani L. Simultaneous
estimation of stigmasterol and withaferin A in union total
herbal formulation using validated HPTLC method. J Appl
Pharm Sci. 2015; 5(08):159-66. http://dx.doi.org/10.7324/
JAPS.2015.50825
- 35. Ahmad A, Amir M, Alshadidi AA, Hussain MD, Haq A, Kazi
M. Central composite design expert-supported develop-
ment and validation of HPTLC method: Relevance in quan-
titative evaluation of protopine in Fumaria indica. Saudi
Pharm J. 2020; 28(4):487-94. http://dx.doi.org/10.1016/j.
jsps.2020.02.011
- 36. Kekre VA, Walode SG. Validated Hptlc Method for Estima-
tion of Curcumin Content in Dietary Supplement. IJPRS.
2012; 3(10):3796-800. http://dx.doi.org/10.13040/IJP-
SR.0975-8232.3(10).3796-00
- 37. Patel RB, Patel MR, Patni NR, Agrawal V. Efinaconazole:
DoE-supported development and validation of a quantitative
HPTLC method and its application for the assay of drugs in so-
lution and microemulsion-based formulations. Anal Methods.
2020; 12(10):1380-8. http://dx.doi.org/10.1039/C9AY02599E
- 38. Syed HK, Liew KB, Loh GO, Peh KK. Stability indicating
HPLC-UV method for detection of curcumin in Curcuma
longa extract and emulsion formulation. Food Chem. 2015;
170:321-6. http://dx.doi.org/10.1016/j.foodchem.2014.08.066
- 39. Alam P, Ezzeldin E, Iqbal M, et al. Ecofriendly densitometric
RP-HPTLC method for determination of rivaroxaban in na-
noparticle formulations using green solvents. RSC Advances.
2020; 10(4):2133-40. http://dx.doi.org/10.1039/C9RA07825H
- 40. BinduG, Ravi Kiran Suripeddi, Development and validation
of HPTLC method for identification and quantification of
sterols from leaves of Erythroxylum Monogynum Roxb. and
in vitro evaluation of antioxidant and anti-glycation activi-
ties. S Afr J Bot. 2021; 137:24-34. http://dx.doi.org/10.1016/j.
sajb.2020.10.005
- 41. Shewiyo DH, Kaale E, Risha PG, Dejaegher B, Smeyers-
Verbeke J, Vander Heyden Y. HPTLC methods to assay
active ingredients in pharmaceutical formulations: A review
of the method development and validation steps. J Pharm
Biomed Anal. 2012; 66:11-23. http://dx.doi.org/10.1016/j.
jpba.2012.03.034
- 42. ICH topic Q2 (R1) validation of analytical procedures : Text
and methodology. Int Conf Harmon. 2005; 1-17. Available
from: https://doi.org/http://www.ich.org/fileadmin/Public_
Web_Site/ICH_Products/Guidelines/Quality/Q2_R1/Step4/
Q2_R1__Guideline.pdf
- 43. Hu X, Han R, Quan LH, Liu CY, Liao YH. Stabilization and
sustained release of zeylenone, a soft cytotoxic drug, within
polymeric micelles for local antitumor drug delivery. Int J
Pharm. 2013; 450(1-2):331-7. http://dx.doi.org/10.1016/j.ijp-
harm.2013.04.007
- 44. Szczęch M, Szczepanowicz K. Polymeric core-shell nanopar-
ticles prepared by spontaneous emulsification solvent evapo -
ration and functionalized by the layer-by-layer method. Nano-
materials (Basel). 2020; 10(3):5-8. http://dx.doi.org/10.3390/
nano10030496
- 45. Jia F, Li Y, Lu J, Deng X, Wu Y. Amphiphilic block copoly-
mers-guided strategies for assembling nanoparticles: From ba-
sic construction methods to bioactive agent delivery applica-
tions. ACS Appl Bio Mater. 2020; 3(10):6546-55. http://dx.doi.
org/10.1021/acsabm.0c01039
- 46. Gregg Claycamp H. Perspective on quality risk management
of pharmaceutical quality. Drug Inf J. 2007; 41(3): 353-67.
http://dx.doi.org/10.1177/009286150704100309
- 47. Dave VS, Fahmy RM, Bensley D, Hoag SW. Eudragit(®)
RS PO/RL PO as rate-controlling matrix-formers via roller
compaction: Influence of formulation and process variables
on functional attributes of granules and tablets. Drug Dev Ind
Pharm. 2012; 38(10):1240-53. http://dx.doi.org/10.3109/0363
9045.2011.645831
- 48. Dave VS, Fahmy RM, Hoag SW. Investigation of the physical-
mechanical properties of Eudragit(®) RS PO/RL PO and their
mixtures with common pharmaceutical excipients. Drug Dev
Ind Pharm. 2013; 39(7):1113-25. http://dx.doi.org/10.3109/03
639045.2012.714786
- 49. A Review of: “ Introduction to Quality Control. ” By Kaoru
Ishikawa. Translated by J. H. Loftus (Chapman and Hall, Lon-
don, 1991). Int J Prod Res. 1992; 30(12):2952-2. http://dx.doi.
org/10.1080/00207549208948202
- 50. Stamatis DH. Failure mode and effect analysis FMEA from the-
ory to execution. 2nd ed. Milwaukee: ASQ Quality Press 2003.
- 51. Mahdizadeh M, Zamanzade E. A new reliability measure in
ranked set sampling. Stat Hefte. 2018; 59(3):861-91. http://
dx.doi.org/10.1007/s00362-016-0794-3
- 52. Zamanzade E, Mahdizadeh M. Using ranked set sampling
with extreme ranks in estimating the population proportion.
Stat Methods Med Res. 2020; 29(1):165-77. http://dx.doi.
org/10.1177/0962280218823793
- 53. Fahmy R, Kona R, Dandu R, Xie W, Claycamp G, Hoag SW.
Quality by design I: Application of failure mode effect analy-
sis (FMEA) and Plackett-Burman design of experiments in the
identification of “main factors” in the formulation and process
design space for roller-compacted ciprofloxacin hydrochlo -
ride immediate-release tablets. AAPS PharmSciTech. 2012;
13(4):1243-54. http://dx.doi.org/10.1208/s12249-012-9844-x
- 54. Gurram RK, Gandra S, Shastri NR. Design and optimiza-
tion of disintegrating pellets of MCC by non-aqueous extru-
sion process using statistical tools. Eur J Pharm Sci. 2016;
84(1):146-56. http://dx.doi.org/10.1016/j.ejps.2016.01.021
- 55. Bei YY, Zhou XF, You BG, et al. Application of the central
composite design to optimize the preparation of novel mi-
celles of harmine. Int J Nanomedicine. 2013; 8:1795-808.
http://dx.doi.org/10.2147/IJN.S43555
- 56. Kollipara S, Bende G, Movva S, Saha R. Application of ro-
tatable central composite design in the preparation and opti-
mization of poly(lactic-co-glycolic acid) nanoparticles for
controlled delivery of paclitaxel. Drug Dev Ind Pharm. 2010;
36(11):1377-87. http://dx.doi.org/10.3109/03639045.2010.48
7263
- 57. Singh B, Chakkal SK, Ahuja N. Formulation and optimization
of controlled release mucoadhesive tablets of atenolol using
response surface methodology. AAPS PharmSciTech. 2006;
7(1):E3. http://dx.doi.org/10.1208/pt070103
- 58. Zhang Z, Feng SS. The drug encapsulation efficiency, in vitro
drug release, cellular uptake and cytotoxicity of paclitaxel-
loaded poly(lactide)-tocopheryl polyethylene glycol succinate
nanoparticles. Biomaterials. 2006; 27(21):4025-33. http://
dx.doi.org/10.1016/j.biomaterials.2006.03.006
- 59. Praphakar RA, Munusamy MA, Rajan M. Development of
extended-voyaging antioxidant linked amphiphilic poly-
meric nanomicelles for anti-tuberculosis drug delivery. Int J
Pharm. 2017; 524(1-2):168-77. http://dx.doi.org/10.1016/j.
ijpharm.2017.03.089
- 60. Sugihara K, Nakano S, Koda M, Tanaka K, Fukuishi N, Gemba
M. Stimulatory effect of cisplatin on production of lipid per-
oxidation in renal tissues. Jpn J Pharmacol. 1987; 43(3):247-
52. http://dx.doi.org/10.1016/S0021-5198(19)43504-X
- 61. Sezgin Z, Yüksel N, Baykara T. Preparation and characteriza-
tion of polymeric micelles for solubilization of poorly soluble
anticancer drugs. Eur J Pharm Biopharm. 2006; 64(3):261-8.
http://dx.doi.org/10.1016/j.ejpb.2006.06.003
- 62. Oda CMR, Silva JO, Fernandes RS, et al. Encapsulating
paclitaxel in polymeric nano micelles increases antitumor
activity and prevents peripheral neuropathy. Biomed
Pharmacother. 2020; 132:110864. http://dx.doi.org/10.1016/j.bi-
opha.2020.110864
- 63. Rana HB, Raj A, Patel A, Gohel M. Preparation, optimization
and in vitro characterization of cisplatin loaded novel poly-
meric micelles for treatment of lung cancer. Int J Res Sci Innov.
2016; IV(I):431-41.
- 64. Wei Z, Hao J, Yuan S, et al. Paclitaxel-loaded Pluronic P123/
F127 mixed polymeric micelles: Formulation, optimization
and in vitro characterization. Int J Pharm. 2009; 376(1-2):176-
85. http://dx.doi.org/10.1016/j.ijpharm.2009.04.030
- 65. Singhvi G, Singh M. Review : In vitro drug release characteri-
zation models. Int J Pharm Stud Res. 2011; II(I):77-84.
- 66. Shrikhande SS, Rao A, Ambekar A, Bajaj AN. Metered dose
inhalation formulations of salbutamol sulphate using non-
CFC propellant tetrafluoroethane. Int J Pharm Sci Drug Res.
2011; 3(4):292-6.
- 67. Wang J, Kan S, Chen T, Liu J. Application of quality by de-
sign (QbD) to formulation and processing of naproxen pel-
lets by extrusion-spheronization. Pharm Dev Technol. 2015;
20(2):246-56. http://dx.doi.org/10.3109/10837450.2014.9083
00